Ceramide Synthase 6 in Metabolic Response to Dietary Fat and Folic Acid

Total Page:16

File Type:pdf, Size:1020Kb

Ceramide Synthase 6 in Metabolic Response to Dietary Fat and Folic Acid CERAMIDE SYNTHASE 6 IN METABOLIC RESPONSE TO DIETARY FAT AND FOLIC ACID Keri Anne Barron A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Nutrition in the Gillings School of Global Public Health. Chapel Hill 2020 Approved by: Natalia Krupenko Sergey Krupenko Folami Ideraabdullah Susan Smith Stephen Hursting © 2020 Keri Anne Barron ALL RIGHTS RESERVED ii ABSTRACT Keri Anne Barron: Ceramide Synthase 6 in Metabolic Response to Dietary Fat and Folic Acid (Under the direction of Natalia Krupenko) Ceramides, a class of bioactive lipids, are important regulators of cellular metabolism mediating response to nutrient stress. Recent work from our laboratory demonstrated that, in cultured cells, folate stress response is mediated by ceramide synthase 6 (CerS6), a sphingolipid enzyme producing C16-ceramide. To test the hypothesis that alterations in dietary FA will induce a CerS6-dependent response in mice, we evaluated the sphingolipid and metabolomic responses in WT and CerS6 KO mice. We also investigated the role of dietary fat in the response to folate stress in WT and KO mice. This dissertation sought to characterize the sphingolipid and metabolomic responses in wild type (WT) and CerS6 knockout (KO) mice to both short-term alterations in dietary FA as well as to long-term changes in dietary FA combined with high fat diet. As expected, CerS6 KO mice compared to WT mice exhibited significant differences in liver sphingolipids, free fatty acids and phosphatidylethanolamines, among other lipids. Inducing folate stress resulted in changes to sphingolipid pools in the liver with significantly different responses between sexes. Because folate has been shown to influence lipid metabolism, we further challenged CerS6 KO and WT mice by altering folate levels in a high fat diet. We found that the low FA, high fat diet led to increased weight gain, hepatic lipid droplet accumulation, and elevated plasma sphingolipid species in male WT mice only. CerS6 KO mice were mostly iii protected from diet-induced weight gain and lipid droplet accumulation. Additionally, they exhibited significantly lower levels of many plasma sphingolipid species indicating that CerS6 plays a critical role in shaping the plasma sphingolipid profile. Interestingly, the presence of too little or too much FA was similarly detrimental in male WT mice whereas female mice demonstrated a protection on the FD diet. In summary, our studies demonstrate that dietary FA affects hepatic and plasma sphingolipid profiles after short- and long-term consumption and that CerS6 is involved in the whole-body response to folate stress. These results underscore the role of ceramides in mediating nutrient challenges as well as the need to investigate the effects of FA supplementation on tissue metabolomes. iv To my parents, Jim, Stephanie, Kaity, Andy, and Kalie for supporting me in every way, believing in me when I was unable to see the end, and encouraging me daily. I wouldn’t have gotten here without all of you. v ACKNOWLEDGEMENTS To my advisor, Natalia Krupenko, for her mentoring, support, encouragement and taking me in as a student when I needed a lab. Thank you for listening to my input on the studies we planned, always hearing me out, and telling me to calm down when I needed it most. To the original Bennett lab members- the people who first welcomed me into the NRI family and taught me the basics of science I would need for the future. Specifically, thank you to Jody and Melissa for becoming friends and family down here. You never gave up on me and were always willing to listen to me stress and vent. Melissa- thank you for only ever giving me 50% of a protocol but helping me figure it out when everything didn’t work. Jody- thank you for always being a friend even through the hard times. And for cleaning up your side of our bench from time to time. Brian- thank you for always pushing me to be better and learn more, except for learning R. That was dumb and I hated every minute of it. And thank you for buying me a brownie when mine was wrongfully consumed. To Kristen and Madeline- thanks for being supportive and optimistic even when I was miserable, for helping me out with lab work especially all of the terrible westerns, and for always being down to get coffee, shamrock shakes, and anything else that sounded delicious. Additionally, to both Krupenko labs for the laughs in lab meetings, encouragement, and constructive criticism that helped me become a better scientist. Finally, I want to thank my Refuge Church family- my Vertical girls and co-leaders over the years that have watched me stress and always remained supportive and unwaveringly vi optimistic even when you had no idea what I was talking about. To my small group and specifically the Pells for being my family in North Carolina, always providing a loving home when I needed to escape the stress in my life and encouraging me through every step of this process. And to everyone that makes up my community here in Kannapolis-Charlotte that has asked about my research, what I would do when I graduated (and kindly smiled when I said I had no idea), encouraged me when I was clearly drained, and reminded me what truly matters in life. And last but not least, to my faithful crazy companion Biscuit for reminding me there is much more to life than school and dissertations. vii PREFACE In addition to the work conducted and included in this dissertation I have co-authored 2 papers related to CerS6. The first is a comparative study of CerS6 using bioinformatic approaches and the second is a review of the literature on possible CerS6-related mechanisms in the link between alcohol and development of cancers: Holmes RS, Barron KA, Krupenko NI. Ceramide Synthase 6: Comparative Analysis, Phylogeny and Evolution. Biomolecules. 2018 Oct; 8(4). PMID: 30297675 Barron K*, Jeffries KA*, Krupenko NI. Sphingolipids and the link between alcohol and cancer. Chem. Biol. Interact., In press. Additionally, I contributed to a collaborative study with members of the nutrition department which is not related to the work presented in this dissertation. Xu X, Drobna Z, Voruganti VS, Barron K, Gonzalez-Horta C, Sanchez-Ramirez B, Ballinas- Casarrubias L, Ceron RH, Moralles DV, Terrazas FAB, Ishida MC, Gutierrez-Torres DS, Saunders RJ, Crandell J, Fry RC, Loomis D, Garcia-Vargas GG, Del Razo LM, Styblo M, Mendez MA. Association between variants in arsenic (+3 oxidation state) methyltransferase (AS3MT) and urinary metabolites of inorganic arsenic: Role of exposure level. Toxicol Sci. 2016 Sept; 153(1):112-123. PMID: 27370415 * co-first authors. viii TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................... xiv LIST OF FIGURES ...................................................................................................................... xv LIST OF ABBREVIATIONS ...................................................................................................... xix CHAPTER 1: INTRODUCTION ................................................................................................... 1 CHAPTER 2: BACKGROUND ..................................................................................................... 4 Background ......................................................................................................................... 4 Folate function and its link to multiple metabolic pathways ....................................... 4 Folate deficiency affects many cellular processes ....................................................... 6 Adverse effects of excessive folate intake ................................................................... 8 Folic acid affects lipid metabolism .............................................................................. 9 Mechanisms connecting folate and lipids .................................................................. 11 Sphingolipid metabolism ........................................................................................... 13 Ceramide synthesis and isoforms of ceramide synthases .......................................... 14 Regulation of ceramide synthesis .............................................................................. 17 Dimerization is an important regulatory mechanism of CerS proteins ..................... 19 Ceramides in cellular signaling ................................................................................. 21 CerS6 and C16-ceramide metabolism......................................................................... 22 Ceramides in obesity and insulin resistance .............................................................. 24 The specific role of CerS6 in high fat diet feeding .................................................... 25 Lipotoxic actions of ceramides .................................................................................. 25 Ceramides and nutrient stress .................................................................................... 28 ix Ceramides respond to folate withdrawal ................................................................... 28 Rationale ........................................................................................................................... 29 Public Health Relevance ..................................................................................................
Recommended publications
  • P53 and Ceramide As Collaborators in the Stress Response
    Int. J. Mol. Sci. 2013, 14, 4982-5012; doi:10.3390/ijms14034982 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review p53 and Ceramide as Collaborators in the Stress Response Rouba Hage-Sleiman 1,2,*, Maria O. Esmerian 1,2, Hadile Kobeissy 2 and Ghassan Dbaibo 1,2 1 Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: [email protected] (M.O.E.); [email protected] (G.D.) 2 Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +961-1-350-000 (ext. 4883). Received: 26 December 2012; in revised form: 22 January 2013 / Accepted: 1 February 2013 / Published: 1 March 2013 Abstract: The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this “tumor suppressor lipid”, ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling.
    [Show full text]
  • Targeting Cancer Metabolism to Resensitize Chemotherapy: Potential Development of Cancer Chemosensitizers from Traditional Chinese Medicines
    cancers Review Targeting Cancer Metabolism to Resensitize Chemotherapy: Potential Development of Cancer Chemosensitizers from Traditional Chinese Medicines Wei Guo, Hor-Yue Tan, Feiyu Chen, Ning Wang and Yibin Feng * School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 00000, China; [email protected] (W.G.); [email protected] (H.-Y.T.); [email protected] (F.C.); [email protected] (N.W.) * Correspondence: [email protected] Received: 22 December 2019; Accepted: 3 February 2020; Published: 10 February 2020 Abstract: Cancer is a common and complex disease with high incidence and mortality rates, which causes a severe public health problem worldwide. As one of the standard therapeutic approaches for cancer therapy, the prognosis and outcome of chemotherapy are still far from satisfactory due to the severe side effects and increasingly acquired resistance. The development of novel and effective treatment strategies to overcome chemoresistance is urgent for cancer therapy. Metabolic reprogramming is one of the hallmarks of cancer. Cancer cells could rewire metabolic pathways to facilitate tumorigenesis, tumor progression, and metastasis, as well as chemoresistance. The metabolic reprogramming may serve as a promising therapeutic strategy and rekindle the research enthusiasm for overcoming chemoresistance. This review focuses on emerging mechanisms underlying rewired metabolic pathways for cancer chemoresistance in terms of glucose and energy, lipid, amino acid, and nucleotide metabolisms, as well as other related metabolisms. In particular, we highlight the potential of traditional Chinese medicine as a chemosensitizer for cancer chemotherapy from the metabolic perspective. The perspectives of metabolic targeting to chemoresistance are also discussed.
    [Show full text]
  • Správa O Činnosti Organizácie SAV Za Rok 2013
    Ústav normálnej a patologickej fyziológie SAV Správa o činnosti organizácie SAV za rok 2013 Bratislava január 2014 Obsah osnovy Správy o činnosti organizácie SAV za rok 2013 1. Základné údaje o organizácii 2. Vedecká činnosť 3. Doktorandské štúdium, iná pedagogická činnosť a budovanie ľudských zdrojov pre vedu a techniku 4. Medzinárodná vedecká spolupráca 5. Vedná politika 6. Spolupráca s VŠ a inými subjektmi v oblasti vedy a techniky 7. Spolupráca s aplikačnou a hospodárskou sférou 8. Aktivity pre Národnú radu SR, vládu SR, ústredné orgány štátnej správy SR a iné organizácie 9. Vedecko-organizačné a popularizačné aktivity 10. Činnosť knižnično-informačného pracoviska 11. Aktivity v orgánoch SAV 12. Hospodárenie organizácie 13. Nadácie a fondy pri organizácii SAV 14. Iné významné činnosti organizácie SAV 15. Vyznamenania, ocenenia a ceny udelené pracovníkom organizácie SAV 16. Poskytovanie informácií v súlade so zákonom o slobodnom prístupe k informáciám 17. Problémy a podnety pre činnosť SAV PRÍLOHY A Zoznam zamestnancov a doktorandov organizácie k 31.12.2013 B Projekty riešené v organizácii C Publikačná činnosť organizácie D Údaje o pedagogickej činnosti organizácie E Medzinárodná mobilita organizácie Správa o činnosti organizácie SAV 1. Základné údaje o organizácii 1.1. Kontaktné údaje Názov: Ústav normálnej a patologickej fyziológie SAV Riaditeľ: RNDr. Oľga Pecháňová, DrSc. Zástupca riaditeľa: MUDr. Fedor Jagla, CSc. Vedecký tajomník: RNDr. Iveta Bernátová, DrSc. Predseda vedeckej rady: RNDr. Iveta Bernátová, DrSc. Členovia snemu SAV: MUDr. Fedor Jagla, CSc., MUDr. Igor Riečanský, PhD. Adresa: Sienkiewiczova 1, 813 71 Bratislava http://www.unpf.sav.sk Tel.: 02/32296063 Fax: E-mail: [email protected] Názvy a adresy detašovaných pracovísk: nie sú Vedúci detašovaných pracovísk: nie sú Typ organizácie: Rozpočtová od roku 1953 1.2.
    [Show full text]
  • Acute and Chronic Complications
    Uniwersytet Medyczny w Łodzi Medical University of Lodz https://publicum.umed.lodz.pl Higher Blood Glucose Variability is Associated with Increased Risk of Hypoglycemia Publikacja / Publication in Well or Poorly Controlled Type 1 or Type 2 Diabetes, Czupryniak Leszek, Borkowska Anna, Szymańska-Garbacz Elektra DOI wersji wydawcy / Published http://dx.doi.org/10.2337/db17-381-663 version DOI Adres publikacji w Repozytorium URL / Publication address in https://publicum.umed.lodz.pl/info/article/AML063ddbabfba14480a6e45b1d944e1ccd/ Repository Data opublikowania w Repozytorium 2020-08-31 / Deposited in Repository on Rodzaj licencji / Type of licence Other open licence Czupryniak Leszek, Borkowska Anna, Szymańska-Garbacz Elektra : Higher Blood Glucose Variability is Associated with Increased Risk of Hypoglycemia in Well or Cytuj tę wersję / Cite this version Poorly Controlled Type 1 or Type 2 Diabetes, Diabetes, vol. 66, no. Suppl. 1, 2017, pp. 103-104, DOI:10.2337/db17-381-663 COMPLICATIONS—HYPOGLYCEMIA COMPLICATIONS—HYPOGLYCEMIA an activating role of SAMSN1, L-triiodothyronine, IFNA4, JAK1 and mTORC1, and an inhibitory action of BDNF, POR, ESR1, CTNNB1 and ERG on the gene networks identified in our samples. Moderated Poster Discussion: Hypoglycemia—Novel Concepts Our study for the first time characterizes the transcriptional responses (Posters: 381-P to 386-P), see page 19. of the BBB compartment to recurrent hypoglycemia exposure and may help identify novel therapeutic targets to restore the impaired responses against 381‑P hypoglycemia in patients with type 1 diabetes. & Supported By: National Institutes of Health; JDRF Hypoglycemia‑Associated Autonomic Failure Is Associated with POSTERS Complications Coordinated miRNA‑mRNA Network Changes in the Ventromedial Acute and Chronic Hypothalamus & 383‑P RAHUL AGRAWAL, CASEY TAYLOR, ADRIANA VIEIRA-DE-ABREU, SIMON J.
    [Show full text]
  • An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery
    An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery Alan C. Spivey [email protected] 19th Oct 2019 Lessons in Synthesis - Azadirachtin • Azadirachtin is a potent insect anti-feedant from the Indian neem tree: – exact biogenesis unknown but certainly via steroid modification: O MeO C OAc O 2 H O OH O H O OH 12 O O C 11 O 14 OH oxidative 8 O H 7 cleavage highly hindered C-C bond HO OH AcO OH AcO OH for synthesis! H H of C ring H MeO2C O AcO H tirucallol azadirachtanin A azadirachtin (cf. lanosterol) (a limanoid = tetra-nor-triterpenoid) – Intense synhtetic efforts by the groups of Nicolaou, Watanabe, Ley and others since structural elucidation in 1987. –1st total synthesis achieved in 2007 by Ley following 22 yrs of effort – ~40 researchers and over 100 person-years of research! – 64-step synthesis – Veitch Angew. Chem. Int. Ed. 2007, 46, 7629 (DOI) & Veitch Angew. Chem. Int. Ed. 2007, 46, 7633 (DOI) – Review ‘The azadirachtin story’ see: Veitch Angew. Chem. Int. Ed. 2008, 47, 9402 (DOI) Format & Scope of Presentation • Metabolism & Biosynthesis – some definitions, 1° & 2° metabolites • Shikimate Metabolites – photosynthesis & glycolysis → shikimate formation → shikimate metabolites – Glyphosate – a non-selective herbicide • Alkaloids – acetylCoA & the citric acid cycle → -amino acids → alkaloids – Opioids – powerful pain killers • Fatty Acids and Polyketides –acetylCoA → malonylCoA → fatty acids, prostaglandins, polyketides, macrolide antibiotics – NSAIDs – anti-inflammatory’s • Isoprenoids/terpenes
    [Show full text]
  • The Effect of Vitamin Supplementation on Subclinical
    molecules Review The Effect of Vitamin Supplementation on Subclinical Atherosclerosis in Patients without Manifest Cardiovascular Diseases: Never-ending Hope or Underestimated Effect? Ovidiu Mitu 1,2,* , Ioana Alexandra Cirneala 1,*, Andrada Ioana Lupsan 3, Mircea Iurciuc 4 , 5 5 2, Ivona Mitu , Daniela Cristina Dimitriu , Alexandru Dan Costache y , Antoniu Octavian Petris 1,2 and Irina Iuliana Costache 1,2 1 Department of Cardiology, Clinical Emergency Hospital “Sf. Spiridon”, 700111 Iasi, Romania 2 1st Medical Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania 3 Department of Cardiology, University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania 4 Department of Cardiology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania 5 2nd Morpho-Functional Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania * Correspondence: [email protected] (O.M.); [email protected] (I.A.C.); Tel.: +40-745-279-714 (O.M.) Medical Student, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania. y Academic Editors: Raluca Maria Pop, Ada Popolo and Stefan Cristian Vesa Received: 25 March 2020; Accepted: 7 April 2020; Published: 9 April 2020 Abstract: Micronutrients, especially vitamins, play an important role in the evolution of cardiovascular diseases (CVD). It has been speculated that additional intake of vitamins may reduce the CVD burden by acting on the inflammatory and oxidative response starting from early stages of atherosclerosis, when the vascular impairment might still be reversible or, at least, slowed down. The current review assesses the role of major vitamins on subclinical atherosclerosis process and the potential clinical implications in patients without CVD.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • PDF (Ph.D.Thesis)
    The biological and clinical characterisation and validation of novel biomarkers in colorectal cancer Seán Fitzgerald B.Sc., M.Sc. This thesis is submitted to Dublin City University for the degree of Ph.D. July 2015 Based on research carried out at School of Biotechnology, Dublin City University, Dublin 9, Ireland. Supervisors: Professor Richard O’Kennedy Dr. Gregor Kijanka External Supervisor: Professor Elaine Kay Department of Pathology, RCSI, Beaumont Hospital. i Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Ph.D. is entirely my own work, that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ____________ ID No.: ___________ Date: _______ ii Acknowledgements Firstly, I would like to express my sincere gratitude and appreciation to my supervisors Prof. Richard O’Kennedy, Prof. Elaine Kay and Dr. Gregor Kijanka. This thesis would not have been possible without the expert advice and guidance that I received from each of you, both on an academic and personal level. I am especially grateful to Dr. Gregor Kijanka for his endless guidance, wisdom and friendship throughout my PhD. I would like to thank all the members of the Applied Biochemistry Group and the School of Biotechnology in DCU for their help, support and friendship over the last few years.
    [Show full text]
  • PC22 Doc. 22.1 Annex (In English Only / Únicamente En Inglés / Seulement En Anglais)
    Original language: English PC22 Doc. 22.1 Annex (in English only / únicamente en inglés / seulement en anglais) Quick scan of Orchidaceae species in European commerce as components of cosmetic, food and medicinal products Prepared by Josef A. Brinckmann Sebastopol, California, 95472 USA Commissioned by Federal Food Safety and Veterinary Office FSVO CITES Management Authorithy of Switzerland and Lichtenstein 2014 PC22 Doc 22.1 – p. 1 Contents Abbreviations and Acronyms ........................................................................................................................ 7 Executive Summary ...................................................................................................................................... 8 Information about the Databases Used ...................................................................................................... 11 1. Anoectochilus formosanus .................................................................................................................. 13 1.1. Countries of origin ................................................................................................................. 13 1.2. Commercially traded forms ................................................................................................... 13 1.2.1. Anoectochilus Formosanus Cell Culture Extract (CosIng) ............................................ 13 1.2.2. Anoectochilus Formosanus Extract (CosIng) ................................................................ 13 1.3. Selected finished
    [Show full text]
  • Structural and Functional Characterization O
    Julius-Maximilians-Universität Würzburg Approaching antimicrobial resistance – Structural and functional characterization of the fungal transcription factor Mrr1 from Candida albicans and the bacterial ß-ketoacyl-CoA thiolase FadA5 from Mycobacterium tuberculosis Auf den Spuren der antimikrobiellen Resistenz – Strukturelle und funktionelle Charakterisierung des Transkriptionsfaktors Mrr1 aus Candida albicans und der bakteriellen β-ketoacyl-CoA thiolase FadA5 aus Mykobakterium tuberculosis Dissertation for a doctoral degree at the Graduate School of Life Sciences, Julius-Maximilians-Universität Würzburg, Section Biomedicine submitted by Christin Marliese Schäfer from Miltenberg am Main Würzburg, November 2014 Submitted on: ………………………………………………………..…… Office stamp Members of the Promotionskomitee: Chairperson: Ulrike Holzgrabe Primary Supervisor: Caroline Kisker Supervisor (Second): Joachim Morschhäuser Supervisor (Third): Nicole Sampson Date of Public Defence: …………………………………………….… Date of Receipt of Certificates: ……………………………………… Table of content Table of content Table of content ....................................................................................................................................... I Summary ................................................................................................................................................. 1 Zusammenfassung ................................................................................................................................... 4 1 Introduction ....................................................................................................................................
    [Show full text]
  • A Selective Inhibitor of Ceramide Synthase 1 Reveals a Novel Role in Fat Metabolism
    ARTICLE DOI: 10.1038/s41467-018-05613-7 OPEN A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism Nigel Turner1, Xin Ying Lim2,3, Hamish D. Toop 4, Brenna Osborne 1, Amanda E. Brandon5, Elysha N. Taylor4, Corrine E. Fiveash1, Hemna Govindaraju1, Jonathan D. Teo3, Holly P. McEwen3, Timothy A. Couttas3, Stephen M. Butler4, Abhirup Das1, Greg M. Kowalski 6, Clinton R. Bruce6, Kyle L. Hoehn 7, Thomas Fath1,10, Carsten Schmitz-Peiffer8, Gregory J. Cooney5, Magdalene K. Montgomery1, Jonathan C. Morris 4 & Anthony S. Don3,9 1234567890():,; Specific forms of the lipid ceramide, synthesized by the ceramide synthase enzyme family, are believed to regulate metabolic physiology. Genetic mouse models have established C16 ceramide as a driver of insulin resistance in liver and adipose tissue. C18 ceramide, syn- thesized by ceramide synthase 1 (CerS1), is abundant in skeletal muscle and suggested to promote insulin resistance in humans. We herein describe the first isoform-specific ceramide synthase inhibitor, P053, which inhibits CerS1 with nanomolar potency. Lipidomic profiling shows that P053 is highly selective for CerS1. Daily P053 administration to mice fed a high- fat diet (HFD) increases fatty acid oxidation in skeletal muscle and impedes increases in muscle triglycerides and adiposity, but does not protect against HFD-induced insulin resis- tance. Our inhibitor therefore allowed us to define a role for CerS1 as an endogenous inhibitor of mitochondrial fatty acid oxidation in muscle and regulator of whole-body adiposity. 1 School of Medical Sciences, UNSW Sydney, Sydney 2052 NSW, Australia. 2 Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney 2052 NSW, Australia.
    [Show full text]
  • Ceramides: Nutrient Signals That Drive Hepatosteatosis
    J Lipid Atheroscler. 2020 Jan;9(1):50-65 Journal of https://doi.org/10.12997/jla.2020.9.1.50 Lipid and pISSN 2287-2892·eISSN 2288-2561 Atherosclerosis Review Ceramides: Nutrient Signals that Drive Hepatosteatosis Scott A. Summers Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA Received: Sep 24, 2019 ABSTRACT Revised: Nov 4, 2019 Accepted: Nov 10, 2019 Ceramides are minor components of the hepatic lipidome that have major effects on liver Correspondence to function. These products of lipid and protein metabolism accumulate when the energy needs Scott A. Summers of the hepatocyte have been met and its storage capacity is full, such that free fatty acids start Department of Nutrition and Integrative to couple to the sphingoid backbone rather than the glycerol moiety that is the scaffold for Physiology, University of Utah, 15N 2030E, Salt Lake City, UT 84112, USA. glycerolipids (e.g., triglycerides) or the carnitine moiety that shunts them into mitochondria. E-mail: [email protected] As ceramides accrue, they initiate actions that protect cells from acute increases in detergent- like fatty acids; for example, they alter cellular substrate preference from glucose to lipids Copyright © 2020 The Korean Society of Lipid and they enhance triglyceride storage. When prolonged, these ceramide actions cause insulin and Atherosclerosis. This is an Open Access article distributed resistance and hepatic steatosis, 2 of the underlying drivers of cardiometabolic diseases. under the terms of the Creative Commons Herein the author discusses the mechanisms linking ceramides to the development of insulin Attribution Non-Commercial License (https:// resistance, hepatosteatosis and resultant cardiometabolic disorders.
    [Show full text]