<<

An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery

Alan C. Spivey [email protected]

19th Oct 2019 Lessons in Synthesis - Azadirachtin

• Azadirachtin is a potent insect anti-feedant from the Indian neem tree: – exact biogenesis unknown but certainly via modification:

O MeO C OAc O 2 H O OH O H O OH 12 O O C 11 O 14 OH oxidative 8 O H 7 cleavage highly hindered C-C bond HO OH AcO OH AcO OH for synthesis! H H of C ring H MeO2C O AcO H tirucallol azadirachtanin A azadirachtin (cf. lanosterol) (a limanoid = tetra-nor-triterpenoid)

– Intense synhtetic efforts by the groups of Nicolaou, Watanabe, Ley and others since structural elucidation in 1987. –1st achieved in 2007 by Ley following 22 yrs of effort – ~40 researchers and over 100 person-years of research! – 64-step synthesis

– Veitch Angew. Chem. Int. Ed. 2007, 46, 7629 (DOI) & Veitch Angew. Chem. Int. Ed. 2007, 46, 7633 (DOI) – Review ‘The azadirachtin story’ see: Veitch Angew. Chem. Int. Ed. 2008, 47, 9402 (DOI) Format & Scope of Presentation

& Biosynthesis – some definitions, 1° & 2° metabolites • Shikimate Metabolites – photosynthesis & → shikimate formation → shikimate metabolites – Glyphosate – a non-selective herbicide • Alkaloids – acetylCoA & the → -amino acids → alkaloids – Opioids – powerful pain killers • Fatty Acids and Polyketides –acetylCoA → malonylCoA → fatty acids, , polyketides, macrolide antibiotics – NSAIDs – anti-inflammatory’s • Isoprenoids/terpenes –acetylCoA → mevalonate → isoprenoids, terpenoids, , carotenoids – Statins – -lowering agents Metabolism and Biosynthesis Metabolism & Natural Diversity

O Me Me HO C 2 Me N N NMe O H H H O N N H camphor HO N H MeO NH

lysergic acid CO2 H2O Pi N2 N hv quinine

H Me O O OH O N Me O O H CO2H N clavulanic acid O Me N O OH nicotine patulin Metabolism

• Metabolism is the term used for in vivo processes by which compounds are degraded, interconverted and synthesised: – Catabolic or degradative: primarily to release energy and provide building blocks • generally oxidative processes/sequences (glycolysis, Krebs cycle) – Anabolic or biosynthetic: primarily to create new cellular materials (1° & 2° metabolites) • generally reductive processes/sequences • These two types of process are coupled – one provides the driving force for the other:

Natural product CO2 + H2O secondary metabolites

'CO2 fixation' hv complex metabolites (photosynthesis)

Nutrients ATP components energy energy & Growth storage release Catabolism ADP + P i O 2 oxidative NAD(P)H reductive Energy & degredation biosynthesis Building blocks NAD(P) + H Building Blocks respiration '' simple products (by diazatrophs, lightening, the Haber process)

CO2 + H2O N2 Primary Metabolism - Overview

Primary metabolism Primary metabolites Secondary metabolites

CO2 +H2O 1) 'light reactions': hv -> ATP and NADPH PHOTOSYNTHESIS 2) 'dark reactions': CO2 -> sugars ()

HO O oligosaccharides HOHO polysaccharides HO nucleic acids (RNA, DNA) OH glycolysis glucose & other 4,5,6 & 7 carbon sugars

CO2 SHIKIMATE METABOLITES PO cinnamic acid derivatives CO2 aromatic compounds + HO HO OH lignans, flavinoids PO O OH OH phosphoenol pyruvate erythrose-4- shikimate

ALKALOIDS aromatic amino acids penicillins CO 2 cephalosporins aliphatic amino acids cyclic peptides O pyruvate tetrapyrroles () Citric acid cycle (Krebs cycle) saturated f atty acids FATTY ACIDS & POLYKETIDES SCoA SCoA unsaturated f atty acids prostaglandins CO2 polyacetylenes O O aromatic compounds, polyphenols acetyl malonyl coenzyme A macrolides

CoAS O HO ISOPRENOIDS terpenoids CO2 O HO steroids carotenoids acetoacetyl coenzyme A mevalonate

For interesting animations’ of e.g. photosynthesis see: http://www.johnkyrk.com/index.html Shikimate Metabolites Shikimate Metabolites

H NH3 H NH3 O2C

CO2 CO2 NH3 NH H n O Me O (S)- (S)- (ArC0) OH (ArC ) O O 3 (S)-tyrosine (ArC3) MeO scopoletin SHIKIMATE METABOLITES OH menaquinone ( K2) (ArC3) (ArC ) 1 OH H H HO OH O O 3 H O O H H O O OH Me Me OH MeO OMe - () OMe HO OH (ArC1) OH (ArC3) epigallocatechin (EGC) (ArC3) The Shikimate Biosynthetic Pathway - Overview

• Phosphoenol pyruvate & erythrose-4-phosphate → shikimate → chorismate → prephenate:

– The detailed mechanisms of these steps have been studied intensively. Most are chemically complex and interesting. For additional details see: • Mann Chemical Aspects of Biosynthesis Oxford Primer No. 20, 1994 (key details) •Haslam Shikimic Acid – Metabolism and Metabolites Wiley, 1993 (full details and primary Lit. citations) • http://www.chem.qmul.ac.uk/iubmb/enzyme/reaction/misc/shikim.html (interesting web-site with many biosynethtic pathways) Rational Agrochemical Development – Shikimate Pathway Intervention

• The shikimate biosynthetic pathway is not found in animals/humans – only in plants – selective intervention in these pathways allows development of agrochemicals with minimal human toxicity

• Glyphosate (‘Roundup’) – a Monsanto agrochemical is a potent inhibitor of the conversion of 3-phosphoshikimate (3-PS) → 5-enolpyruvylshikimate-3-phosphate (5-EPS-3P) – a non-selective herbicide

H NH3 CO2 CO2 CO2 CO PO 2 CO2 phosphoenol pyruvate CO (PEP) PEP 2 H (S)-tyrosine PO OH PO O + PO O CO2 OH PO OH OP OH OH Pi 3-phosphoshikimate H NH3 HO (3-PS) O 5-enolpyruvylshikimate-3-phosphate CO OH (5-EPS-3P) 2 erythrose-4-phosphate glyphosate (Roundup®) (E-4-P) inhibits this step (S)-phenylalanine

PO N CO2 H2 Chorismate → Tryptophan, Tyrosine & Phenylalanine

• Chorismate → anthranilate → tryptophan

• Chorismate → prephenate → tyrosine & phenylalanine – NB. The chorismate mutase [EC 5.4.99.5] which mediates the conversion of chorismate to prephenate is the only known ‘Claisen rearrangementase’ Tyrosine/Phenylalanine → ArC3 Metabolites

• Tyrosine & phenylalanine → cinnamate derivatives → ArC3 metabolites – , lignans (stereoselective enzymatic dimerisation) & (stereorandom radical polymerisation) Primary Metabolism - Overview

Primary metabolism Primary metabolites Secondary metabolites

CO2 +H2O 1) 'light reactions': hv -> ATP and NADPH PHOTOSYNTHESIS 2) 'dark reactions': CO2 -> sugars (Calvin cycle)

HO O oligosaccharides HOHO polysaccharides HO nucleic acids (RNA, DNA) OH glycolysis glucose & other 4,5,6 & 7 carbon sugars

CO2 SHIKIMATE METABOLITES PO cinnamic acid derivatives CO2 aromatic compounds + HO HO OH lignans, flavinoids PO O OH OH phosphoenol pyruvate erythrose-4-phosphate shikimate

ALKALOIDS aromatic amino acids peptides penicillins CO 2 proteins cephalosporins aliphatic amino acids cyclic peptides O pyruvate tetrapyrroles (porphyrins) Citric acid cycle (Krebs cycle) saturated f atty acids FATTY ACIDS & POLYKETIDES SCoA SCoA unsaturated f atty acids prostaglandins lipids CO2 polyacetylenes O O aromatic compounds, polyphenols acetyl coenzyme A malonyl coenzyme A macrolides

CoAS O HO ISOPRENOIDS terpenoids CO2 O HO steroids carotenoids acetoacetyl coenzyme A mevalonate

For interesting animations’ of e.g. photosynthesis see: http://www.johnkyrk.com/index.html Alkaloids Alkaloids • Definitions: – originally – ‘a natural product that could be extracted out of alkaline but not acidic water’ (i.e. containing a basic function that protonated in acid) – more generally - ‘any non-peptidic & non- nitrogenous secondary metabolite’

H N O OH HO OH N Me H H N N nicotine O N H H CO2H N clavulanic acid retronecine H N H ALKALOIDS H HO N H HO sparteine MeO

N HO2C O N quinine H NMe NMe H H H H HO N morphine H H O H O NH strychnine lysergic acid The Citric Acid Cycle • The citric acid (Krebs) cycle is a major catabolic pathway of 1° metabolism that provides two key building blocks for aliphatic biosynthesis - oxaloacetate & -ketoglutarate:

CO2 NADH CO 2 SCoA O CoA O OVERAL STOICHIOMETRY pyruvate acetyl coenzyme A NAD

CO2 1x O

CO2 CO O CO H2O 2 2 HO '' NADH CO O 2 CO2 + HO CO2 CO2 CO2 CO2 CO2 H2O NAD oxaloacetate citrate cis-aconitate 1x O2 OH CO2

CO2 CO2 malate isocitrate aliphatic amino acids NAD NADH H2O O CO CO 2 CO2 2 GTP NADH FADH2 O CO2 CO2 O SCoA CO2 2x CO2 CO2 CoA CO2 CO2 fumarate FAD oxalosuccinate + Pi + GDP CoA CO CO2 CO2 2 succinate succinyl-SCoA NAD -ketoglutarate 12x ATP energy!

THE CITRIC ACID CYCLE The Biosynthesis of & • Lysine & ornithine - the two most significant, non-aromatic -amino acid precursors to alkaloids: – NB. lysine (Lys) is proteinogenic whereas ornithine (Orn) is not – phenylalanine (Phe), tyrosine (Tyr) & tryptophan (Trp) from shikimate are the other important precursors – biosynthesis is via reductive amination of the appropriate -ketoacid mediated by pyridoxal-5’-phosphate (PLP)

O reductive NH2 NH3 O amination OH O R R R O O O ketoacid amino acid NH3 O H3N NH3 O OO OO CHO tightly lysine (Lys) P O P O pyridoxal O O bound to O O [50 ATP equivs] phosphate enzyme phosphate N Me N Me H H NH3

H3N O O NH3 O O O O O ornithine (Orn) O O oxidative O O [<44 ATP equivs (=Arg)] -ketoglutarate deamination (Glu) citric acid cycle OVERALL: TRANSAMINATION PLP Chemistry – Transamination & Racemisation

• Transamination: PLP Chemistry –

• Decarboxylation:

O O H Enz-NH3 imine R CO2 H exchange Enz H R H R H R Enz-NH Enz N NH 2 OP H 3 N N N OP H OP H N O OP H OP H O O O O Enz-NH CO N 2 2 R H imine N N N H N exchange H H H NH3 bound as imine pyridoxal phosphate decarboxylase bound as imine • Decarboxylation of lysine & ornithine:

PLP dependant PLP decarboxylase piperidine alkaloids O HO2CNH2 NH2 H2NNHNH2 RHN 2 RHN N CO2 R lysine cadaverine iminium salt

PLP dependant decarboxylase PLP pyrrolidine alkaloids HO CNHNH H N NH RHN NH O N 2 2 2 2 2 2 RHN R CO ornithine 2 putrescine iminium salt Lysine-derived Piperidine Alkaloids – Hemlock!

Socrates drinking poison hemlock, 399 B.C.

"The Death of Socrates" by Jacques-Louis David (1787) Piperidine Alkaloids – Pelletierine & Coniine

• Pelletierine:

lysine O O O

N N N R OSCoA R R CO2 from acetoacetylCoA OSCoA R = H pelletrine lysine R = Me, N-methylpelletrine • Coniine: – in 399 BC Socrates was sentenced to death for impiety and executed by being forced to drink a potion made from poison hemlock. The toxic component in hemlock is coniine. Although by analogy with the above pathway, biosynthesis from lysine might be suspected, it is in fact of origin

3x SCoA malonylCoA CO O O 2 O [O] O O SCoA SCoA SCoA acetylCoA fatty acid NADPH

NADPH PLP NADP ONH2 reductive amination O O

N N H H H O NADP coniceine 2 coniine O NH3

CO2 CO2 Tyrosine-derived Alkaloids - Opium Alkaloids

Benzylisoquinoline Alkaloids

papaverine

morphine Benzylisoquinoline Alkaloids – Ring Formation

• Benzylisoquinoline alkaloids constitute an extremely large and varied group of alkaloids – many, particularly the opium alkaloids (e.g. papaverine, morphine) are biosynthesised from two of tyrosine via nor-coclaurine (and then nor-laudanosoline).

– Mechanism of Pictet Spengler reaction: Benzylisoquinoline Alkaloids - Papaverine

• Papaverine: analgesic contsituent of the opium poppy (Papaver somniferum): – biosynthesis:

– NB. The prefix nor means without a . Coclaurine, reticuline and laudanosine are the N-methyl compounds Oxidative Phenolic Coupling – Morphine & Synthetic Opioids • Morphine: analgesic & sedative contsituent of the opium poppy (Papaver somniferum): – biosynthesis: o-/p- oxidative phenolic coupling of reticuline:

– Morphine acts by activating the opiate receptors in the brain (IC50 3 nM)

– The natural ligands for these receptors are peptides: e.g. Leu-enkephalin (Tyr–Gly–Gly–Phe–Leu) (IC50 12 nM) Dimeric Alkaloids – Vinca extracts

Dimeric Indole Alkaloids

vinblastine (R = Me) vincristine (R = CHO)

Potent anti tumour alkaloids used in cancer chemotherapy Tryptamine + Secolaganin → Strictosidine

• Most alkaloids of mixed Tryptophan/mevalonate biogenesis (>1200) are derived from strictosidine:

– Strictosidine is derived from the condensation of tryptamine with the C10 monoterpene secologanin:

OPP O see isoprenoids HO H OGlu CO2 HO H O tryptophan MeO2C enzymatic mevalonate (x2) geranyl secologanin Pictet-Spengler N NH reaction H H H OGlu CO H isoprene 2 O H O MeO C PLP 2 2 NH3 NH2 strictosidine N N H CO2 H tryptophan tryptamine

– Mechanism of Pictet-Spengler reaction: • via spirocyclic intermediate then Wagner-Meerwein 1,2-alkyl shift:

NH NH NH NH 2 N N NH N N O Wagner-Meerwein H H H H H H H H H H N H OGlu OGlu 1,2-alkyl shift OGlu OGlu H + OGlu H H H H H O O O O O MeO C MeO2C MeO2C MeO2C 2 MeO2C tryptamine secologanin spirocyclic intermediate strictosidine Strictosidine → Vinca, Strychnos, Quinine etc.

• The diversity of alkaloids derived from strictosidine is stunning and many pathways remain to be fully elucidated:

N OH N N H H H H N N H N H H N O H H H MeO2C MeO2C N OAc ajmalicine H MeO H OH Me (vinca) CO2Me MeO2C vinblastine OH (vinca) yohimbine MeO O N N H N 3 NH O N H H H H OGlu N H OH O H O aspidospermine camptothecin MeO2C (vinca) H strictosidine (isovincoside) N H N Me HO H MeO N H O N H H N O H O quinine N O H strychnine (strychnos) gelsemine (oxindole) Primary Metabolism - Overview

Primary metabolism Primary metabolites Secondary metabolites

CO2 +H2O 1) 'light reactions': hv -> ATP and NADPH PHOTOSYNTHESIS 2) 'dark reactions': CO2 -> sugars (Calvin cycle)

HO O oligosaccharides HOHO polysaccharides HO nucleic acids (RNA, DNA) OH glycolysis glucose & other 4,5,6 & 7 carbon sugars

CO2 SHIKIMATE METABOLITES PO cinnamic acid derivatives CO2 aromatic compounds + HO HO OH lignans, flavinoids PO O OH OH phosphoenol pyruvate erythrose-4-phosphate shikimate

ALKALOIDS aromatic amino acids peptides penicillins CO 2 proteins cephalosporins aliphatic amino acids cyclic peptides O pyruvate tetrapyrroles (porphyrins) Citric acid cycle (Krebs cycle) saturated f atty acids FATTY ACIDS & POLYKETIDES SCoA SCoA unsaturated f atty acids prostaglandins lipids CO2 polyacetylenes O O aromatic compounds, polyphenols acetyl coenzyme A malonyl coenzyme A macrolides

CoAS O HO ISOPRENOIDS terpenoids CO2 O HO steroids carotenoids acetoacetyl coenzyme A mevalonate

For interesting animations’ of e.g. photosynthesis see: http://www.johnkyrk.com/index.html Fatty Acids Fatty Acid Primary Metabolites OH OH • Primary metabolites: OH glycerol – fully saturated, linear carboxylic acids & derived (poly)unsaturated derivatives: 3x fatty acids • constituents of essential natural , seed oils, glycerides (fats) & • structural role – glycerides & phospholipids are essential constituents of cell membranes OCOR1 • energy storage – glycerides can also be catabolised into acetate → citric acid cycle OCOR2 OCOR3 • biosynthetic precursors – for elaboration to secondary metabolites glycerides

SATURATED ACIDS [MeCH2(CH2CH2)nCH2CO2H (n=2-8)] e.g.

CO2H caprylic acid (C8, n = 2) CO2H myristic acid (C14, n = 5) 8 1 14 1

CO H CO2H capric acid (C8, n = 3) 2 palmitic acid (C16, n = 6) 1 10 1 16

CO2H lauric acid (C12, n = 4) CO2H stearic acid (C18, n = 7) 12 1 18 1

MONO-UNSATURATED ACID DERIVATIVES (MUFAs) e.g. 9 9 CO H CO2H 2 1 1 9 (C18, Z-9) palmitoleic acid (C16, Z - ) 18 16 (>80% of fat in olive oil )

POLY-UNSATURATED ACID DERIVATIVES (PUFAs) e.g. 8 5 8 5 CO2H eicosapentaenoic acid (EPA) CO2H arachidonic acid (AA) 1 5 8 11 14, 17 1 (C20, Z -5, Z -8, Z -11, Z -14) (C20, Z- , Z - , Z- , Z - Z - ) 20 11 14 17 20 (in cod liver oil) 11 14 Fatty Acids Derivatives – Secondary Metabolites

• Secondary metabolites – further elaborated derivatives of polyunsaturated fatty acids (PUFAs) • e.g. polyacetylenes & ‘’ (prostaglandins, thromboxanes & leukotrienes)

Cl

Br 9 O H H O H H MeO2C POLYACETYLENES O C e.g. CO2Me H 1 14 18 Br wyerone matricaria ester obtusallene II anti-fungal in chamomile tea marine natural product HO PROSTAGLANDINS CO2H e.g. 1 F2 (PGF2 ) 20 HO OH

THROMBOXANES CO2H EICOSANOIDS e.g. O 1 thromboxane A2 (TXA2) O 20 OH

O 1 CO2H LEUKOTRIENES leukotriene A4 (LTA4) e.g. 20

leukotriene A4(LTA4) Biosynthesis of Fatty Acids – Iterative Oligomerisation

• fatty acids are biosynthesised from acetyl CoA as a starter unit by iterative ‘head-to-tail’ oligomerisation involving:

– condensation with malonyl CoA as an extender unit (with loss of CO2) – a decarboxylative Claisen condensation – 3-step reduction of the resulting ketone → methylene • after n = 2-8 iterations the C8-20 saturated fatty acid is released from the enzyme(s): Biosynthesis of Fatty Acids – Overview of FAS

• The in vivo process by which all this takes place involves a ‘molecular machine’ - Fatty Acid Synthase (FAS) – Type I FAS: single multifunctional complex (e.g. in incl. humans) – Type II FAS: set of discrete, dissociable single-function proteins (e.g. in bacteria) – All FASs comprise 8 components (ACP & 7× catalytic activities): ACP, KS, AT, MT, KR, DH, ER & [TE] :

O

O O O O decarboxylative SHS O O S SH OOS S CoAS O Claisen condensation O AT MT KS ACP KS ACP CoAS KS ACP

1) KR reduction 2) DH SH SH 3) ER n = 2-8 cycles KS ACP n

O S SH O S SH SHS O O translocation TE n OH KS ACP KS ACP KS ACP

KS = keto synthase (also known as CE = condensing enzyme); AT = acetyl ; MT = malonyl transferase; KR = keto reductase; DH = dehydratase; ER = enoyl reductase; TE = ; ACP = acyl carrier protein Human Fatty Acid Synthase (FAS)

• the first three-dimensional structure of human fatty acid synthase (272 kDa) at 4.5 Å resolution by X- ray : – Maier, Jenni & Ban Science 2006, 311, 1258 (DOI) ; also Fungal FAS @ 3.1 Å resolution see: Jenni et al. Science 2007, 316, 254 & 288

Structural overview. (A) Front view: FAS consists of a lower part comprising the KS (lower body) and MAT domains (legs) connected at the waist with an upper part formed by the DH, ER (upper body), and KR domains (arms). (B) Top view of FAS with the ER and KR domains resting on the DH domains. (C) Bottom view showing the arrangement of the KS and MAT domains and the continuous electron density between the KS and MAT domains FATTY ACID BIOSYNTHESIS (type II FAS)

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys SH Pantetheine

SH SH

NB. the following sequence of slides have been adapted from: http://www.courses.fas.harvard.edu/%7echem27/ FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys SH Pantetheine

O Me S Co SH SH Acetyl-CoA

•AT1 loads onto KS1 FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys S Pantetheine O Me

SH SH FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys S Pantetheine O Me

SH SH O O - O S Co Malonyl-CoA

•AT1 loads malonyl group onto ACP1 FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys S Pantetheine O Me

S SH O O O- FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys S Pantetheine O Me

S CO2 SH O O O-

•KS1 catalyzes Claisen condensation FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys SH Pantetheine

S SH O O Me FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys SH Pantetheine S Me O O

SH

•KR1 catalyzes reduction of ketone FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys SH Pantetheine S Me O OH

SH FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys SH S Me Pantetheine O OH

SH

•DH1 catalyzes dehydration of alcohol FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys SH S Me Pantetheine O

SH FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys SH S Me Pantetheine O

SH

•ER1 catalyzes reduction of FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 Cys SH S Me Pantetheine O

SH FATTY ACID BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 MT2 KS2 KR Cys Cys SH SH S O Pantetheine

Me SH

•KS2 catalyzes translocation to module 2 FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Cys Ser S OH O Pantetheine

Me

SH FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Cys Ser S OH O Pantetheine

Me

SH O O - O S Co Malonyl-CoA

•MT2 loads malonyl group onto ACP2 FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Cys Ser S OH O Pantetheine

Me

S O O O- FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Cys Ser S OH O Pantetheine

Me

S CO2 O O O-

•KS2 catalyzes Claisen condensation FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Cys Ser SH OH

Pantetheine

S O O

Me FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Cys Ser SH S Me OH Pantetheine O O

•KR2 catalyzes reduction of ketone FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Cys Ser SH S Me OH Pantetheine O OH FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Ser Cys S SH Me OH

Pantetheine O OH

•DH2 catalyzes dehydration of alcohol FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Ser Cys S SH Me OH

Pantetheine O FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Ser Cys S SH Me OH

Pantetheine O

•ER2 catalyzes reduction of alkene FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Ser Cys S SH Me OH

Pantetheine O FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Cys Ser SH OH S Pantetheine O

Me

• TE catalyzes transesterification FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Cys Ser SH O

Pantetheine O SH

Me FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Cys Ser SH O H OH Pantetheine O SH

Me

• TE catalyzes hydrolysis FATTY ACID BIOSYNTHESIS

H1 ER1 ACP2 MT2 KS2 KR2 DH2 ER2 TE Cys Ser SH OH

Pantetheine SH OH O

Me Biosynthesis of Unsaturated Fatty Acids

• two mechanisms are known for the introduction of double bonds into fatty acids: –in BACTERIA: anaerobic [O] → monounsaturated FAs (MUFAs) –in MAMMALS, INSECTS & PLANTS: aerobic [O] → MUFAs & polyunsaturated FAs (PUFAs) Rational Anti-inflammatory Development – Prostaglandin & Thromboxane Pathway Intervention • prostaglandins & thromboxanes are derived from further oxidative processing of arachiodonic acid • both are important which control e.g. smooth muscle contractility (blood pressure), gastric secretion, platelet aggregation & inflammation (

Me Me OMe O OH O HO O O O O 2 CO H CO H O H 2 2 CO2H MeO CO2H OH OH OH Cl OH O 6-methylsalicylic acid orsellinic acid citrinin Griseofulvin actinorhodin (antibiotic) (kidney toxin (treatment for ring (antibiotic) 'yellow rice disease') worm infections) O O OMe O HO O H OH O O MeO POLYKETIDES O H O O MeO aflatoxin B1 (mycotoxic carcingen) O O N O MeO OH H OH O HO O O OH NMe OH OH 2 Me HO O Me O O OH O O OO

rapamycin OOH O O OMe (immunosuppressant) NB. a mixed polypropionate/acetate O OH 6-deoxyerythronolide B erythromycin A mevinolin NB. a polypropionate (antibiotic) (=lovastatin®) (anti-cholesterol) Biosynthesis of Polyketides – Oligomerisation Steps • polyketides are biosynthesised by a process very similar to that for fatty acids – the key differences are: • greater variety of starter units, extender units & termination processes • absent or incomplete reduction of the iteratively introduced -carbonyl groups: ie. each cycle may differ in terms of KR, DH & ER modules &

– this leads to enormous diversity... Biosynthesis of Polyketides – Overview of PKS

• the in vivo process of polyketide synthesis involves PolyKetide Synthases (PKSs): – PKSs (except Type II, see later) comprise the same 8 components as FASs. i.e. (ACP & 7× catalytic activities): ACP, KS, AT, MT, [KR, DH, ER & TE] – Type I PKSs: single (or small set of) multifunctional protein complex(es) • modular (microbial) - each ‘step’ has a dedicated catalytic site (→ macrolides) • iterative (fungal) – single set of catalytic sites, each of which may operate in each iteration (cf. FASs) (→ aromatics/polyphenols - generally) – Type II PKSs: single set of discrete, dissociable single-function proteins • iterative (microbial) - each catalytic module may operate in each iteration (cf. FASs) (→ aromatics/polyphenols)

O

Type I (modular & iterative): O O O O [Type II see later] decarboxylative SHS O O S SH OOS S CoAS O Claisen condensation O AT MT KS ACP KS ACP CoAS KS ACP

1) ± KR reduction ? 2) ± DH SH SH 3) ± ER n O cycles KS ACP O O n O O S SH O S SH SHS O O O O translocation TE n OH CE ACP KS ACP KS ACP

KS = keto synthase; AT = acetyl transferase; MT = malonyl transferase; KR = keto reductase; DH = dehydratase; ER = enoyl reductase; TE = thioesterase; ACP = acyl carrier protein POLYKETIDE BIOSYNTHESIS [Type I – (modular)]

ACP0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 A Cys SH Pantetheine Pantetheine Pantetheine

SH SH

NB. the following sequence of slides has also been adapted from: http://www.courses.fas.harvard.edu/%7echem27/ POLYKETIDE BIOSYNTHESIS

ACP0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 A Cys SH Pantetheine Pantetheine Pantetheine

SH SH O Me S Co Propionyl-CoA

•AT0 loads starting group (propionyl) onto ACP0 POLYKETIDE BIOSYNTHESIS

ACP0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 A Cys SH Pantetheine Pantetheine Pantetheine

S SH O

Me POLYKETIDE BIOSYNTHESIS

ACP0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 A Cys SH Pantetheine Pantetheine S Pantetheine O

Me

SH

•KS1 catalyzes translocation to module 1 POLYKETIDE BIOSYNTHESIS

ACP0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 A Cys S Pantetheine Pantetheine O Pantetheine

Me

SH SH POLYKETIDE BIOSYNTHESIS

P0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 AT2 Cys S Pantetheine O

Me

SH SH O O SH - O S Co Me Methylmalonyl-CoA

•AT1 loads methylmalonyl group onto ACP1 POLYKETIDE BIOSYNTHESIS

P0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 AT2 Cys S Pantetheine O

Me

S SH O Me SH O O- POLYKETIDE BIOSYNTHESIS

P0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 AT2 Cys S Pantetheine O

Me

CO S 2 SH O Me SH O O-

•KS1 catalyzes Claisen condensation POLYKETIDE BIOSYNTHESIS

P0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 AT2 Cys SH Pantetheine

S SH O * Me SH O

Me POLYKETIDE BIOSYNTHESIS

P0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 AT2 Cys SH Me S * Pantetheine Me O O

SH

SH

•KR1 catalyzes reduction of ketone POLYKETIDE BIOSYNTHESIS

P0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 AT2 Cys SH Me Pantetheine S * * Me O OH

Stereocenter SH

SH POLYKETIDE BIOSYNTHESIS

P0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 AT2 Cys Me SH S * Pantetheine * Me O OH

SH

SH

•no DH1 activity POLYKETIDE BIOSYNTHESIS

P0 AT0 ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 AT2 Cys Me SH S * Pantetheine * Me O OH

SH

SH

•no ER1 activity POLYKETIDE BIOSYNTHESIS

ACP1 AT1 KS1 KR1 DH1 ER1 ACP2 AT2 KS2 KR Cys Cys SH SH S O Pantetheine * Me HO * Me

SH

•KS2 catalyzes translocation to module 2 POLYKETIDE BIOSYNTHESIS

H1 ER1 ACP2 AT2 KS2 KR2 DH2 ER2 TE Cys Ser S OH O Pantetheine * Me HO * Me SH Biosynthesis of Erythromycin – Type I(modular) PKS

• 6-deoxyerthronolide is a to erythromycin A – bacterial antibiotic (Streptomyces erythreus): – propionate based heptaketide; 3 multifunctional polypeptides (DEBS1, DEBS2 & DEBS3, all ~350 kDa) –Katz et al. Science 1991, 252, 675 (DOI); Staunton, Leadley et al. Science 1995, 268, 1487 (DOI); Khosla et al. J. Am. Chem. Soc. 1995, 9105 (DOI); review: Staunton & Weissman Nat. Prod. Rep. 2001, 18, 380 (DOI)

DEBS1 DEBS2 DEBS3

module 1 module 2 module 3 module 4 module 5 module 6 O

KR KR DH ER KR KR KR AT KS AT KS AT KS AT KS AT KS AT KS AT TE OH release S S S S S S S O OH O O O O O O O O OH HO HO O HO HO

HO HO O HO loading O HO HO O

HO HO O OH OH HO HO O OH

HO O OH = Acyl Carrier Protein erythronolide B TE = Thioesterase Type II PKSs – Enzyme Clusters (Microbial)

• Type II PKSs: single set of discrete, dissociable single-function proteins (ACP & 6× catalytic

functions): ACP, KS, KS, [KR, DH, ER, & TE][NB. NO acetyl or malonyl (AT, MT)] – iterative - each catalytic module may operate in each iteration (cf. FASs) (→ aromatics/polyphenols) • these clusters (generally) use malonate as BOTH starter & extender unit • their ACP proteins are able to load malonate direct from malonyl CoA (no MT required)

– the starter malonate is decarboxylated by ‘ketosynthase’  (KS) to give S-acetyl-ACP

– the extender malonates undergo decarboxylative Claisen condensations by ketosynthase  (KS) • these clusters rarely utilise KR, DH or ER activities and produce ‘true’ polyketides:

O

O O Type II (iterative): CONH2 O O S O SH S O O S SH OOS S decarboxylative SHS O CoAS O Claisen O O condensation KS CoAS O KS ACP KS ACP KS ACP ACP KS ACP

1) ± KR CONH2 reduction 2) ± DH (rarely) 3) ± ER SH n O cycles

KS ACP O n O O O S SH O S SH SHS O O O O translocation TE n OH KS ACP KS ACP KS ACP

KS = 'keto synthase ' (=decarboxylase!); KS = 'keto synthase ' (=ketosynthase!); KR = keto reductase; DH = dehydratase; ER = enoyl reductase; TE = thioesterase; ACP = acyl carrier protein Biosynthesis of Actinorhodin – Type II PKS

• actinorhodin – octaketide bacterial antibiotic (Streptomyces coelicolor) – Hopwood Chem. Rev. 1997, 97, 2465 (DOI)

7x O O CoAS O OOO OOO OOO PKS 16 O O [ACP, KS, KS] 16 16 OOOOcyclase O OO KR O OO CoAS O O 1 SEnz O SEnz HO SEnz OH 1 OH 1 8x CO2 octaketide

OH O OH OO OH OO 16 16 O cyclase 2 H OO O OO CO2H 1 SEnz SEnz OH O OH 1 actinorhodin

– timing of 1st cyclisation and mechanism of control of chain length uncertain • octaketide synthesis then cyclisation? (as shown above) • hexaketide synthesis then cyclisation then two further rounds of extension? – indications can sometimes be gleaned from biomimetic syntheses. Scope of Structures - Type II PKS

• microbial polyphenolic metabolites:

OH O OH pentaketides (5x C2) OMe OO octaketides (8x C2) emodin eugenone HO MeOOMe O

hexaketides (6x C2) nonaketides (9x C2) OH O OH O O O NH2 plumbagin tetracycline OH Me H H OH NMe2 OH O

O O heptaketides (7x C2) MeO O OH decaketides (10x C2) rubrofusarin rabelomycine

OH OH O OH OOH

• many display interesting biological activities... Primary Metabolism - Overview

Primary metabolism Primary metabolites Secondary metabolites

CO2 +H2O 1) 'light reactions': hv -> ATP and NADPH PHOTOSYNTHESIS 2) 'dark reactions': CO2 -> sugars (Calvin cycle)

HO O oligosaccharides HOHO polysaccharides HO nucleic acids (RNA, DNA) OH glycolysis glucose & other 4,5,6 & 7 carbon sugars

CO2 SHIKIMATE METABOLITES PO cinnamic acid derivatives CO2 aromatic compounds + HO HO OH lignans, flavinoids PO O OH OH phosphoenol pyruvate erythrose-4-phosphate shikimate

ALKALOIDS aromatic amino acids peptides penicillins CO 2 proteins cephalosporins aliphatic amino acids cyclic peptides O pyruvate tetrapyrroles (porphyrins) Citric acid cycle (Krebs cycle) saturated f atty acids FATTY ACIDS & POLYKETIDES SCoA SCoA unsaturated f atty acids prostaglandins lipids CO2 polyacetylenes O O aromatic compounds, polyphenols acetyl coenzyme A malonyl coenzyme A macrolides

CoAS O HO ISOPRENOIDS terpenoids CO2 O HO steroids carotenoids acetoacetyl coenzyme A mevalonate

For interesting animations’ of e.g. photosynthesis see: http://www.johnkyrk.com/index.html Isoprenoids Isoprenoids • isoprenoids are widely distributed in the natural world – particularly prevalent in plants and least common in insects; >30,000 known

– composed of integral numbers of C5 ‘isoprene’ units:

• monoterpenes (C10); sesquiterpenes (C15); diterpenes (C20); sesterpenes (C25, rare); triterpenes (C30); carotenoids (C40)

H O H OH O

OH HO O OH thujone borneol lavandulol HO (C10) (C10) (C10) (Z)--bisabolene humulone (2x C ) 5 (C ) 15 H O O OH H n O 5 ISOPRENOIDS H artemisinin (C15) natural rubber (~10 x C5) O

O OPP OPP OH O OH dimethylallyl isopentenyl pyrophosphate pyrophosphate HO OH (DMAPP) (IPP) euonyminol (C ) -carotene (C40) 15 OH OH OH H H OH OH AcO O H OH Ph H O gibberellic acid (C20) (gibberellin A ) H H BzHN O HO 3 H CO H HO O 2 HO O HO cholesterol BzO AcO O (C27 but C30-derived) taxol (C20) Biosynthesis of IPP & DMAPP - via Mevalonate

• IPP & DMAPP are the key C5 precursors to all isoprenoids – the main pathway is via: acetyl CoA → acetoacetyl CoA → HMG CoA → mevalonate → IPP → DMAPP: Rational Anti-cholesterol Development - Statins

• HMG CoA → MVA is the rate determining step in the biosynthetic pathway to cholesterol • ‘Statins’ inhibit HMG CoA reductase and are used clinically to treat hypercholesteraemia -a causative factor in heart disease, see: Wu et al. Tetrahedron 2015, 71, 8487 (DOI) – e.g. mevinolin (=lovastatin®, Merck) from Aspergillus terreus is a competitive inhibitior of HMG-CoA reductase – e.g. lipitor (Atorvastatin calcium, Pfizer) is also a competitive inhibitior of HMG-CoA reductase and the worlds biggest selling drug [first drug to reach $10 billion sales (2004: $10.8 bn] Linear C5n ‘head-to-tail’

• head-to-tail C5 oligomers are the key precursors to isoprenoids – geranyl pyrophosphate (C10) is formed by SN1 alkylation of DMAPP by IPP → monoterpenes – farnesyl (C15) & geranylgeranyl (C20) pyrophosphates are formed by further SN1 alkylations with IPP: Monoterpenes – -Terpinyl Cation Formation

• geranyl pyrophosphate isomerises readily via an allylic cation to linalyl & neryl pyrophosphates – the leaving group abilty of pyrophosphate is enhanced by coordination to Mg2+ – all three pyrophosphates are substrates for cyclases via an -terpinyl cation:

OPP (E) O O Mg O P O P O O O gerenyl Mg pyrophosphate

OPP

linalyl pyrophosphate

OPP (Z) OPP cyclase

= MONOTERPENES (C10) OPP neryl pyrophosphate initial chiral centre -terpinyl cation allylic cation intimate pair Monoterpenes – Fate of the -Terpinyl Cation

• The -terpinyl cation undergoes a rich variety of further chemistry to give a diverse array of monoterpenes • Some important enzyme catalysed pathways are shown below – NB. intervention of Wagner-Meerwein 1,2-hydride- & 1,2-alkyl shifts

limonene -terpineol hydrolysis [O] trapping by PPO- H H OH OH OPP OPP O bornyl borneol camphor E1 elimination trapping with pyrophosphate a b water =

c OPP OPP trapping by alkene H E elimination c 1 = d at 'red' carbon 1,2-alkyl shift c d (anti-Markovnikov) H e = camphene b trapping by alkene H2O at 'blue' carbon (Markovnikov) a -terpinyl cation E1 elimination H d = H H = 1,2-hydride shift e = -pinene H O H E1 elimination = =

-pinene H thujone Sesquiterpenes – Farnesyl Pyrophosphate (FPP)

• ‘SN2’-like alkylation of geranyl PP by IPP gives farnesyl PP:

pro-Rhydrogen is lost

OPP OPP HS HR OPP OPP (E) (E)

geranyl PP IPP E,E-farnesyl PP (FPP)

• just as geranyl PP readily isomerises to neryl & linaly PPs so farnesyl PP readily isomerises to equivalent compounds – allowing many modes of cyclisation & bicyclisation

OPP (E) (E) O O Mg O O P P O E,E-FPP O O Mg

- further cyclisation (E) 6-memb - 1,2-hydride & alkyl shifts (Z) cyclases vast array of 10-memb mono- & bicyclic 11-memb SESQUITERPENES ring cyclised E,Z-FPP OPP - trapping with H2O 'CATIONS' - elimination to

OPP NB. control by: 1) enzyme to enforce conformation & sequestration of reactive intermediates nerolidyl PP 2) intrinsic stereoelectronics of participating orbitals allylic cation intimate ion pair Diterpenes – Geranylgeranyl PP → Taxol

• Taxol is a potent anti-cancer agent used in the treatment of breast & ovarian cancers – comes from the bark of the pacific yew (Taxus brevifolia) – binds to tubulin and intereferes with the assembly of microtubules • biosynthesis is from geranylgeranyl PP:

cembrene

a

cyclisation b AcO 14-exo O sesquiterpene H OH OPP a b Ph (isoprenoid) H BzNH O geranylgeranyl PP H taxol OPP HO O HO BzO AcO O

-amino acid (shikimate)

– for details see: http://www.chem.qmul.ac.uk/iubmb/enzyme/reaction/terp/taxadiene.html – home page is: http://www.chem.qmul.ac.uk/iubmb/enzyme/ • recommendations of the Nomenclature Committee of the International Union of and Molecular on the Nomenclature and Classification of Enzyme-Catalysed Reactions • based at Department of Chemistry, Queen Mary University of London Triterpenes – FPP →

• triterpenes (C ) arise from the ‘head to head’ 30 OPP coupling of two fanesyl PP units to give squalene catalysed by squalene synthase: FPP (acceptor) OPP FPP (donor)

– squalene was first identified as a steroid precursor EnzB: from shark liver oil HH OPP

– the dimerisation proceeds via an unusual mechanism OPP

involving electrophilic cyclopropane formation - squalene synthase blocked by squalestatins rearrangement to a tertiary cyclopropylmethyl cation and reductive cyclopropane ring-opening by NADPH H (NB. exact mechanism disputed) presqualene PP

OPP – Zaragozic acids (squalestatins) mimic a rearrangement intermediate and inhibit squalene H synthase. They constitute interesting leads for H development of new treatments for OPP hypercholesteraemia & heart disease (cf. statins) NADPH

O NADP + PPi

O OH H H OAc squalene HO C 2 O zaragozic acid A HO2C O (squalestatin S1) OH CO2H Oxidosqualene-Lanosterol Cyclase – Mechanism

• oxidosqualene-lanosterol cyclase catalyses the formation of lanosterol from 2,3-oxidosqualene: – this cascade establishes the characteristic ring system of ALL steroids – ring-expansion sequence to establish the C ring – the process is NOT concerted, discrete cationic intermediates are involved & stereoelectronics dictate the regio- & stereoselectivity although the enzyme undoubtedly lays a role in pre-organising the ~chair-boat- chair conformation

–“The enzyme’s role is most likely to shield intermediate carbocations… thereby allowing the hydride and methyl group migrations to proceed down a thermodynamically favorable and kinetically facile cascade” • Wendt et al. Angew. Chem. Int. Ed. 2000, 39, 2812 (DOI) & Wendt ibid 2005, 44, 3966 (DOI) Lanosterol → Cholesterol – Oxidative Demethylation • Several steps are required for conversion of lanosterol to cholesterol:

24 24 hydrogenation H 2) 14 DEMETHYLATION H 14 8 H = 1 HO 5 3) 4 & 4DEMETHYLATION 4 H H HO 8 to 5 rearrangement flat, rigid structure H HO lanosterol cholesterol

24  hydrogenation 2) 14 DEMETHYLATION 2x O NADPH 2 P450 H O2 P450 H HCO2H NADPH H H H 24 14 H :BEnz H 2x H2O NADP O HO O NADP O FeIII

3) 4 & 4DEMETHYLATION

4x O2 P450 4x O2 P450 NADPH

4 HO O O O O O HO H H H CO H H HH 4x H2O 2 4x H2O CO2 OO H OO NADP

8 5  to  rearrangement NAD NADH 8 isomerase 5 H H H H H NADH NAD [-> ] Cholesterol → Human Sex Hormones

• cholesterol is the precursor to the human sex hormones – progesterone, &

– the pathway is characterised by extensive oxidative processing by P450 – estrone is produced from androstendione by oxidative demethylation with concomitant aromatisation:

OH OH O O 2x O P O P NAD H 2 450 H 2 450 H H H H H H

H H H H O H H H H 2x H2O NADH HO HO HO O cholesterol progesterone

[O]

X O III Fe O O EnzB: O H H OOH 2 P450 O 2x O2 P450 H H H H H H H H H O HO HCO H 2 O O androstendione (X = O) estrone 2x H2O (œstrone) testosterone (X = H, OH) DEMETHYLATIVE aromatisation by 'aromatase' enzyme Steroid Ring Cleavage - Vitamin D & Azadirachtin

7 • vitamin D2 is biosynthesised by the photolytic cleavage of  -dehydrocholesterol by UV light: – a classic example of photo-allowed, conrotatory electrocyclic ring-opening:

– D are involved in calcium absorption; defficiency leads to rickets (brittle/deformed bones)

• Azadirachtin is a potent insect anti-feedant from the Indian neem tree: – exact biogenesis unknown but certainly via steroid modification:

O MeO C OAc O 2 H O OH O H O OH 12 O O C 11 O 14 OH oxidative 8 O H 7 cleavage highly hindered C-C bond HO OH AcO OH AcO OH for synthesis! H H of C ring H MeO2C O AcO H tirucallol azadirachtanin A azadirachtin (cf. lanosterol) (a limanoid = tetra-nor-triterpenoid) Summary of Presentation

• Metabolism & Biosynthesis – some definitions, 1° & 2° metabolites • Shikimate Metabolites – photosynthesis & glycolysis → shikimate formation → shikimate metabolites – Glyphosate – a non-selective herbicide • Alkaloids – acetylCoA & the citric acid cycle → -amino acids → alkaloids – Opioids – powerful pain killers • Fatty Acids and Polyketides –acetylCoA → malonylCoA → fatty acids, prostaglandins, polyketides, macrolide antibiotics – NSAIDs – anti-inflammatory’s • Isoprenoids/terpenes –acetylCoA → mevalonate → isoprenoids, terpenoids, steroids, carotenoids – Statins – cholesterol-lowering agents