Synthesis of (؊)-Longithorone A: Using Organic Synthesis to Probe a Proposed Biosynthesis

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of (؊)-Longithorone A: Using Organic Synthesis to Probe a Proposed Biosynthesis Synthesis of (؊)-longithorone A: Using organic synthesis to probe a proposed biosynthesis Carl A. Morales, Mark E. Layton, and Matthew D. Shair* Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 Edited by Kyriacos C. Nicolaou, The Scripps Research Institute, La Jolla, CA, and approved April 15, 2004 (received for review March 19, 2004) We present a full report of our enantioselective synthesis of The synthesis strategy for protected versions of 2 and 3 ,(؊)-longithorone A (1). The synthesis was designed to test the involved atropdiastereoselective ene–yne metathesis (14–16) feasibility of the biosynthetic proposal for 1 put forward by macrocyclization of 6 and 7, and simultaneous generation of the Schmitz involving intermolecular and transannular Diels–Alder 1,3-disubstituted dienes of both paracyclophanes (Fig. 3). reactions of two [12]-paracyclophane quinones. We have found The strategically positioned protected benzylic hydroxyl that if the biosynthesis does involve these two Diels–Alder reac- groups of 6 and 7 would be installed by enantioselective addition tions, the intermolecular Diels–Alder reaction likely occurs before of vinylzinc reagents to the corresponding electron-rich benzal- the transannular cycloaddition. The intermolecular Diels–Alder dehyde (17). These hydroxyl groups would then be used to gear precursors, [12]-paracyclophanes 38, 49, 59, and 60, were prepared the aromatic rings of 6 and 7 during the ene–yne metathesis atropselectively, providing examples of ene–yne metathesis mac- macrocyclizations to set the atropisomerism of 2 and 3. A(1,3) rocyclization. The 1,3-disubstituted dienes produced from the mac- strain (18) should disfavor rotamers 8 and 9 and enforce an rocyclizations represent a previously unreported substitution pat- atropdiastereoselective (19, 20) macrocyclization. After having tern for intramolecular ene–yne metathesis. Protected benzylic served their purpose as control elements in the macrocycliza- hydroxyl stereocenters were used as removable atropisomer con- tions, the protected benzylic hydroxyl groups would be removed trol elements and were installed by using a highly enantioselective reductively, yielding the paracyclophanes as single atropisomers. vinylzinc addition to electron-rich benzaldehydes 26 and 27. Our synthesis plan also relied upon ene–yne metathesis mac- rocyclization to generate 1,3-disubstituted dienes. It had been n intriguing question in natural product biosynthesis is demonstrated that with terminal alkynes intramolecular (21–27) Awhether nature uses Diels–Alder reactions. The answer to ene–yne metathesis generally affords 1,2-disubstituted dienes, this question appears to be yes, because there are many examples whereas intermolecular (28–30) ene–yne metathesis yields 1,3- of spontaneous Diels–Alder reactions in biosyntheses (1) as well disubstituted dienes (Fig. 4). as recently documented examples (2–4) of enzymatically influ- Because ene–yne metathesis had not been applied to the enced Diels–Alder reactions. Longithorone A (1) is a marine synthesis of macrocycles, we hoped to use our system to test the natural product that attracted our attention because of its preference for forming 1,2- vs. 1,3-disubstituted dienes in a unusual structure, but even more so because of the biosynthetic macrocyclization. proposal of Schmitz and co-workers (5, 6) that invoked two Diels–Alder reactions. Schmitz has proposed that 1 arises from Materials and Methods the combination of [12]-paracyclophane quinones 2 and 3 by an Details describing chemical synthesis, general procedures, in- intermolecular Diels–Alder reaction, affording ring E, and a strumentation, molecular modeling, optimization of ene–yne transannular (7) Diels–Alder reaction, generating rings A, C, metathesis macrocyclization conditions, and substrate tables for and D (Fig. 1). macrocyclizations and enantioselective vinylzinc additions can We viewed this interesting proposal as an opportunity to use be found in Supporting Materials and Methods, which is published organic synthesis to make protected versions of 2 and 3 and test, as supporting information on the PNAS web site. The procedures in the laboratory, the feasibility of the proposed Diels–Alder for the synthesis of tetracycles 4 and 46; macrocycles 14–20; reactions (8). In particular, we were hopeful that our experi- benzylic alcohols 25, 28, and 31; enynes 33, 37, and 39; paracy- ments might suggest whether the intermolecular Diels–Alder clophanes 35, 38, 41, 44, 45, and 49; truncated product 43; model reaction occurs preferentially between compound 4, which has compounds 48, and 50–53; and advanced intermediates 54–56 already undergone a transannular Diels–Alder, and paracyclo- and 58; along with corresponding spectral data can also be found phane 2 to generate 1 or between paracyclophanes 3 and 2 to in Supporting Materials and Methods. For details descriptions of generate 5, followed by a transannular Diels–Alder to afford 1. the synthesis of natural product 1; vinyl iodides 23 and 30; The isolation (5) of longithorones B (9) and C, [12]- benzaldehydes 26 and 27; benzylic alcohols 29 and 32; enynes 34 paracyclophane quinones that closely resemble the structures of and 40; paracyclophanes 36, 42, 59, and 60; and advanced 2 and 3, provided some support for the proposed biosynthesis of intermediates 61 and 52, see ref 13. longithorone A (Fig. 2). We found it intriguing that longithorones B and C exhibit Results and Discussion atropisomerism (10–12) and are single enantiomers. From these Development of Ene–Yne Metathesis Macrocyclization. Before our observations, we recognized that 2 and 3 must be constructed initial disclosure (13) of the synthesis of 1, macrocyclization atropselectively to test whether the absolute and relative stere- using ene–yne metathesis had not been reported (31), and it was ochemistry of 1 is derived solely from the planar chirality of 2 and unknown whether 1,2-disubstituted dienes or 1,3-disubstituted 3. Finally, the isolation of longithorone I suggested that the dienes would be generated. We prepared a series of acyclic biosynthesis of 1 may first involve an intermolecular Diels–Alder reaction between 2 and 3 followed by a transannular cycload- dition. In this paper we present a full description of our synthesis This paper was submitted directly (Track II) to the PNAS office. (13), findings that elucidate the timing of the Diels–Alder Abbreviations: TBS, tert-butyldimethylsilyl; ee, enantiomeric excess; TIPS, triisopropylsilyl; reactions proposed for the biosynthesis of 1, and additional TBAF, tetrabutylammonium fluoride; OTf, trifluoromethansulfonate. examples of ene–yne metathesis macrocyclization demonstrating *To whom correspondence should be addressed. E-mail: [email protected]. its usefulness in forming macrocyclic 1,3-disubstituted dienes. © 2004 by The National Academy of Sciences of the USA 12036–12041 ͉ PNAS ͉ August 17, 2004 ͉ vol. 101 ͉ no. 33 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0401952101 Downloaded by guest on September 23, 2021 SPECIAL FEATURE Fig. 1. Plan for a biomimetic synthesis of longithorone A (1). The order of the intermolecular and transannular Diels–Alder reactions is unknown. enynes and subjected them to conditions optimized for macro- unoptimized yields of 30% and 79%, respectively. The structure cyclization by using catalyst 10 (Scheme 1). Pronounced selec- of 22 was determined by x-ray analysis. Having demonstrated tivity for the formation of 1,3-disubstitued dienes over 1,2- that we could synthesize 1,3-disubstituted dienes from an ene– disubstituted dienes was observed in the reaction, especially for yne metathesis macrocyclization and use them in Diels–Alder ring sizes of 12 and greater. In a representative set of examples, reactions, we focused our efforts toward the synthesis of 1. enynes 11–15 were converted into 1,3-disubstituted diene mac- rocycles 16–20. Installation of the Atropisomer Control Element. Before the mac- An explanation for the preferred formation of 1,3- rocyclizations, it was necessary to enantioselectively install the disubstituted products in these reactions is that the low effective benzylic stereocenters in 6 and 7 that would gear the ring molarity of the reacting terminal olefin and terminal alkyne closure and produce the required atropisomers of the para- CHEMISTRY simulates an intermolecular ene–yne cross metathesis, which is cyclophanes. It had been disclosed that addition of a cis- or known to afford 1,3-disubstituted dienes. Furthermore, under an trans-vinylzinc to benzaldehyde affords secondary benzylic ethylene atmosphere (32, 33), intermolecular ene–yne metathe- alcohols in moderate enantioselectivities [86% and 73% en- ses have been shown to proceed by ethylene–yne cross metathe- antiomeric excess (ee), respectively] when an ephedrine-based sis followed by a terminal diene–olefin cross metathesis (28). We chiral ligand is used (34). However, addition of vinylzincs to believe that our system behaves similarly: ethylene–yne cross other arylaldehydes was not reported. We investigated the metathesis occurs first, affording a terminal 1,3-diene, followed enantioselective addition of the vinylzinc species derived from by terminal diene–olefin metathesis macrocyclization. The ex- vinyl iodide 23 to several benzaldehydes with differing elec- pected terminal 1,3-diene intermediates could be isolated from tronics and discovered that addition to electron-rich benzal- our ene–yne metathesis macrocyclizations when
Recommended publications
  • Biomolecules
    CHAPTER 3 Biomolecules 3.1 Carbohydrates In the previous chapter you have learnt about the cell and 3.2 Fatty Acids and its organelles. Each organelle has distinct structure and Lipids therefore performs different function. For example, cell membrane is made up of lipids and proteins. Cell wall is 3.3 Amino Acids made up of carbohydrates. Chromosomes are made up of 3.4 Protein Structure protein and nucleic acid, i.e., DNA and ribosomes are made 3.5 Nucleic Acids up of protein and nucleic acids, i.e., RNA. These ingredients of cellular organelles are also called macromolecules or biomolecules. There are four major types of biomolecules— carbohydrates, proteins, lipids and nucleic acids. Apart from being structural entities of the cell, these biomolecules play important functions in cellular processes. In this chapter you will study the structure and functions of these biomolecules. 3.1 CARBOHYDRATES Carbohydrates are one of the most abundant classes of biomolecules in nature and found widely distributed in all life forms. Chemically, they are aldehyde and ketone derivatives of the polyhydric alcohols. Major role of carbohydrates in living organisms is to function as a primary source of energy. These molecules also serve as energy stores, 2021-22 Chapter 3 Carbohydrade Final 30.018.2018.indd 50 11/14/2019 10:11:16 AM 51 BIOMOLECULES metabolic intermediates, and one of the major components of bacterial and plant cell wall. Also, these are part of DNA and RNA, which you will study later in this chapter. The cell walls of bacteria and plants are made up of polymers of carbohydrates.
    [Show full text]
  • Sugars As the Source of Energized Carbon for Abiogenesis
    Astrobiology Science Conference 2010 (2010) 5095.pdf SUGARS AS THE SOURCE OF ENERGIZED CARBON FOR ABIOGENESIS. A. L. Weber, SETI Institute, NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA, 94035-1000, [email protected] Abstract: As shown in Figure 1, abiogenesis has sev- eral requirements: (A) a source of organic substrates and chemical energy that drives the synthesis of (B) useful small molecules (ammonia, monomers, metabo- lites, energy molecules), and (C) a second synthetic processs that yields large replicating and catalytic polymers that control (D) the growth and maintenance of a primitive protocell. Furthermore, the required chemical energy must be sustained and effectively coupled to individual reactions to drive biosynthesis at a rate that counters chemical degradation. Energy coupling would have been especially difficult during the origin of life before the development of powerful enzyme catalysts with 3-D active sites. To solve this energy coupling problem we have investigated abio- genesis using sugar substrates whose energized carbon groups drive spontaneous synthetic self-transformation reactions that yield: biometabolites, catalytic mole- cules, energy-rich thioesters, amino acids, plausible alternative nucleobases and cell-like microstructures [1-8]. Recently, we demonstrated that sugars drive the synthesis of ammonia from nitrite [9]. The ability of sugars to drive ammonia synthesis provides a way to generate ammonia at microscopic sites of sugar-based origins processes, thereby eliminating the need for a planet-wide source of photochemically unstable am- monia. Figure 1. Major Synthetic Processes of Abiogenesis. [1] Weber A. L. (1998) Orig. Life Evol. Biosph., 28, 259-270. [2] Weber A.
    [Show full text]
  • An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery
    An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery Alan C. Spivey [email protected] 19th Oct 2019 Lessons in Synthesis - Azadirachtin • Azadirachtin is a potent insect anti-feedant from the Indian neem tree: – exact biogenesis unknown but certainly via steroid modification: O MeO C OAc O 2 H O OH O H O OH 12 O O C 11 O 14 OH oxidative 8 O H 7 cleavage highly hindered C-C bond HO OH AcO OH AcO OH for synthesis! H H of C ring H MeO2C O AcO H tirucallol azadirachtanin A azadirachtin (cf. lanosterol) (a limanoid = tetra-nor-triterpenoid) – Intense synhtetic efforts by the groups of Nicolaou, Watanabe, Ley and others since structural elucidation in 1987. –1st total synthesis achieved in 2007 by Ley following 22 yrs of effort – ~40 researchers and over 100 person-years of research! – 64-step synthesis – Veitch Angew. Chem. Int. Ed. 2007, 46, 7629 (DOI) & Veitch Angew. Chem. Int. Ed. 2007, 46, 7633 (DOI) – Review ‘The azadirachtin story’ see: Veitch Angew. Chem. Int. Ed. 2008, 47, 9402 (DOI) Format & Scope of Presentation • Metabolism & Biosynthesis – some definitions, 1° & 2° metabolites • Shikimate Metabolites – photosynthesis & glycolysis → shikimate formation → shikimate metabolites – Glyphosate – a non-selective herbicide • Alkaloids – acetylCoA & the citric acid cycle → -amino acids → alkaloids – Opioids – powerful pain killers • Fatty Acids and Polyketides –acetylCoA → malonylCoA → fatty acids, prostaglandins, polyketides, macrolide antibiotics – NSAIDs – anti-inflammatory’s • Isoprenoids/terpenes
    [Show full text]
  • Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight
    Received: 26 November 2018 Revised: 29 January 2019 Accepted: 31 January 2019 DOI: 10.1002/rcm.8406 RESEARCH ARTICLE Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis for characterization of lignin oligomers using cationization techniques and 2,5‐dihydroxyacetophenone (DHAP) matrix Amber S. Bowman | Shardrack O. Asare | Bert C. Lynn Department of Chemistry, University of Rationale: Effective analytical techniques are needed to characterize lignin Kentucky, Lexington, KY 40506, USA products for the generation of renewable carbon sources. Application of matrix‐ Correspondence assisted laser desorption/ionization (MALDI) in lignin analysis is limited because of Bert C. Lynn, Department of Chemistry, UK Mass Spectrometry Facility, University of poor ionization efficiency. In this study, we explored the potential of cationization Kentucky, A053 ASTeCC Building, Lexington, along with a 2,5‐dihydroxyacetophenone (DHAP) matrix to characterize model KY 40506‐0286, USA. Email: [email protected] lignin oligomers. Funding information Methods: Synthesized lignin oligomers were analyzed using the developed MALDI National Science Foundation, Grant/Award method. Two matrix systems, DHAP and α‐cyano‐4‐hydroxycinnamic acid (CHCA), Number: OIA 1632854 and three cations (lithium, sodium, silver) were evaluated using a Bruker UltraFlextreme time‐of‐flight mass spectrometer. Instrumental parameters, cation concentration, matrix, sample concentrations, and sample spotting protocols were optimized for improved results. Results: The DHAP/Li+ combination was effective for dimer analysis as lithium adducts. Spectra from DHP and ferric chloride oligomers showed improved signal intensities up to decamers (m/z 1823 for the FeCl3 system) and provided insights into differences in the oligomerization mechanism. Spectra from a mixed DHP oligomer system containing H, G, and S units showed contributions from all monolignols within an oligomer level (e.g.
    [Show full text]
  • Synthesis and Biosynthesis of Polyketide Natural Products
    Syracuse University SURFACE Chemistry - Dissertations College of Arts and Sciences 12-2011 Synthesis and Biosynthesis of Polyketide Natural Products Atahualpa Pinto Syracuse University Follow this and additional works at: https://surface.syr.edu/che_etd Part of the Chemistry Commons Recommended Citation Pinto, Atahualpa, "Synthesis and Biosynthesis of Polyketide Natural Products" (2011). Chemistry - Dissertations. 181. https://surface.syr.edu/che_etd/181 This Dissertation is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Chemistry - Dissertations by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract Traditionally separate disciplines of a large and broad chemical spectrum, synthetic organic chemistry and biochemistry have found in the last two decades a fertile common ground in the area pertaining to the biosynthesis of natural products. Both disciplines remain indispensable in providing unique solutions on numerous questions populating the field. Our contributions to this interdisciplinary pursuit have been confined to the biosynthesis of polyketides, a therapeutically and structurally diverse class of natural products, where we employed both synthetic chemistry and biochemical techniques to validate complex metabolic processes. One such example pertained to the uncertainty surrounding the regiochemistry of dehydration and cyclization in the biosynthetic pathway of the marine polyketide spiculoic acid A. The molecule's key intramolecular cyclization was proposed to occur through a linear chain containing an abnormally dehydrated polyene system. We synthesized a putative advanced polyketide intermediate and tested its viability to undergo a mild chemical transformation to spiculoic acid A. In addition, we applied a synthetic and biochemical approach to elucidate the biosynthetic details of thioesterase-catalyzed macrocyclizations in polyketide natural products.
    [Show full text]
  • A Unified Approach for the Enantioselective Synthesis of the Brominated Chamigrene Sesquiterpenes
    Author Manuscript Title: A Unified Approach for the Enantioselective Synthesis of the Brominated Cha- migrene Sesquiterpenes Authors: Alexander J. Burckle; Vasil H. Vasilev; Noah Burns This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofrea- ding process, which may lead to differences between this version and the Version of Record. To be cited as: 10.1002/anie.201605722 Link to VoR: http://dx.doi.org/10.1002/anie.201605722 COMMUNICATION A Unified Approach for the Enantioselective Synthesis of the Brominated Chamigrene Sesquiterpenes Alexander J. Burckle, Vasil H. Vasilev, and Noah Z. Burns* Abstract: The brominated chamigrene sesquiterpenes constitute a representative of the simplest members of the brominated large subclass of bromocyclohexane containing natural products, yet chamigrenes, specifically its isomeric natural product no general enantioselective strategy for the synthesis of these small counterparts, bromochamigrene[3,10,11] (3 and 4, molecules exists. Herein we report a general strategy for accessing Figure 1b). We thus devised a strategy that was capable of this family of secondary metabolites including the enantioselective providing facile access to numerous brominated spirodienes in synthesis of ()-- and ()-ent--bromochamigrene, ()-dactylone, enantioenriched form. and ()-aplydactone. Access to these molecules is enabled by a stereospecific bromopolyene cyclization initiated by the solvolysis of an enantioenriched vicinal bromochloride. Of the roughly 300 natural products that have been isolated and structurally characterized containing a bromocyclohexane motif (1, Figure 1a),[1a-c] more than 50 are represented by the brominated chamigrene sesquiterpenes (2, Figure 1a). Most members of this family differ in their level of saturation, halogenation, and oxygenation (3–8, Figure 1b).
    [Show full text]
  • And Even-Length, Medium-Chain Fatty Acids in Plants (Amino Adds/Elongtin) ANTOANETA B
    Proc. Nadl. Acad. Sci. USA Vol. 91, pp. 11437-11441, November 1994 Biochemistry A pathway for the biosynthesis of straight and branched, odd- and even-length, medium-chain fatty acids in plants (amino adds/elongtin) ANTOANETA B. KROUMOVA, ZHIYI XIE, AND GEORGE J. WAGNER* Plant Physiology/Biochemistry/Molecular Biology Program, Agronomy Department, University of Kentucky, Lexington, KY 40546-0091 Communicated by Martin Gibbs, July 25, 1994 ABSTRACT Pathways and enzymes offatty acid synthase- and even-length scFAs are synthesized via modified mediated, long-even-chain (generally C16-C20) fatty add syn- branched-chain amino acid (bcAA) metabolism in tobacco thesis are well studied, and general metabolism involved in trichome glands (6, 7). It is possible that at least branched and short-chain (Cs-C7) fatty acid biosynthesis is also understood. odd-length mcFAs are formed in this tissue similarly. Alter- In contrast, mechanism of medinm-chain (C#-C14) fatty acid natively, primers derived from bcAA metabolism may be synthesis are unclear. Recent work suggests involvement of elongated by fatty acid synthase (FAS), as suggested for chain-elongation-terminating thloesterases in medium-chain tomato trichomes (8) and tobacco epidermis (9). fatty acid formation in oilseeds and animals. We have shown The classical pathway for bcAA (Val, Leu, Ileu) biosyn- that iso- and anteiso-branched and straigbt, odd- and even- thesis in microorganisms (and largely by inference in plants, length, short-chain fatty adds esterifled in plant-trichome- ref. 10) is shown in the shaded areas of Fig. 1. Key activities gland-produced sucrose esters are synthesized by using carbon involved in branched-chain formation (reactions 1, 1A, and 2) skeletons provided by modified branched-chain amino acid are those catalyzing leucine biosynthesis in all organisms and metabolism/catablis.
    [Show full text]
  • Spontaneous Generation & Origin of Life Concepts from Antiquity to The
    SIMB News News magazine of the Society for Industrial Microbiology and Biotechnology April/May/June 2019 V.69 N.2 • www.simbhq.org Spontaneous Generation & Origin of Life Concepts from Antiquity to the Present :ŽƵƌŶĂůŽĨ/ŶĚƵƐƚƌŝĂůDŝĐƌŽďŝŽůŽŐLJΘŝŽƚĞĐŚŶŽůŽŐLJ Impact Factor 3.103 The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers in metabolic engineering & synthetic biology; biocatalysis; fermentation & cell culture; natural products discovery & biosynthesis; bioenergy/biofuels/biochemicals; environmental microbiology; biotechnology methods; applied genomics & systems biotechnology; and food biotechnology & probiotics Editor-in-Chief Ramon Gonzalez, University of South Florida, Tampa FL, USA Editors Special Issue ^LJŶƚŚĞƚŝĐŝŽůŽŐLJ; July 2018 S. Bagley, Michigan Tech, Houghton, MI, USA R. H. Baltz, CognoGen Biotech. Consult., Sarasota, FL, USA Impact Factor 3.500 T. W. Jeffries, University of Wisconsin, Madison, WI, USA 3.000 T. D. Leathers, USDA ARS, Peoria, IL, USA 2.500 M. J. López López, University of Almeria, Almeria, Spain C. D. Maranas, Pennsylvania State Univ., Univ. Park, PA, USA 2.000 2.505 2.439 2.745 2.810 3.103 S. Park, UNIST, Ulsan, Korea 1.500 J. L. Revuelta, University of Salamanca, Salamanca, Spain 1.000 B. Shen, Scripps Research Institute, Jupiter, FL, USA 500 D. K. Solaiman, USDA ARS, Wyndmoor, PA, USA Y. Tang, University of California, Los Angeles, CA, USA E. J. Vandamme, Ghent University, Ghent, Belgium H. Zhao, University of Illinois, Urbana, IL, USA 10 Most Cited Articles Published in 2016 (Data from Web of Science: October 15, 2018) Senior Author(s) Title Citations L. Katz, R. Baltz Natural product discovery: past, present, and future 103 Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and R.
    [Show full text]
  • Methyltransferases of Gentamicin Biosynthesis
    Methyltransferases of gentamicin biosynthesis Sicong Lia,1, Junhong Guoa,1, Anna Revab, Fanglu Huangb, Binbin Xionga, Yuanzhen Liua, Zixin Denga,c, Peter F. Leadlayb,2, and Yuhui Suna,2 aKey Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People’s Republic of China; bDepartment of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom; and cState Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved December 26, 2017 (received for review June 30, 2017) Gentamicin C complex from Micromonospora echinospora re- G418 (5) to gentamicin components C2a, C2, and C1. The mains a globally important antibiotic, and there is revived in- full mechanistic details of the subsequent transamination and terest in the semisynthesis of analogs that might show improved dehydroxylation steps remain to be clarified, although the de- therapeutic properties. The complex consists of five compo- hydrogenase GenQ (20), phosphotransferase GenP, and the nents differing in their methylation pattern at one or more sites pyridoxal-dependent enzymes GenB1, GenB2, GenB3, and in the molecule. We show here, using specific gene deletion and GenB4 have all been implicated in this enigmatic process (20, 25, chemical complementation, that the gentamicin pathway up to 26). Finally, the terminal step in both branches of the pathway the branch point is defined by the selectivity of the methyl- involves the (partial) conversion of C1a into C2b and of C2 transferases GenN, GenD1, and GenK.
    [Show full text]
  • Plant Sulphur Metabolism Is Stimulated by Photorespiration
    ARTICLE https://doi.org/10.1038/s42003-019-0616-y OPEN Plant sulphur metabolism is stimulated by photorespiration Cyril Abadie1,2 & Guillaume Tcherkez 1* 1234567890():,; Intense efforts have been devoted to describe the biochemical pathway of plant sulphur (S) assimilation from sulphate. However, essential information on metabolic regulation of S assimilation is still lacking, such as possible interactions between S assimilation, photo- synthesis and photorespiration. In particular, does S assimilation scale with photosynthesis thus ensuring sufficient S provision for amino acids synthesis? This lack of knowledge is problematic because optimization of photosynthesis is a common target of crop breeding and furthermore, photosynthesis is stimulated by the inexorable increase in atmospheric CO2. Here, we used high-resolution 33S and 13C tracing technology with NMR and LC-MS to access direct measurement of metabolic fluxes in S assimilation, when photosynthesis and photorespiration are varied via the gaseous composition of the atmosphere (CO2,O2). We show that S assimilation is stimulated by photorespiratory metabolism and therefore, large photosynthetic fluxes appear to be detrimental to plant cell sulphur nutrition. 1 Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. 2Present address: IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, 49071 Angers, Beaucouzé, France. *email: guillaume. [email protected] COMMUNICATIONS BIOLOGY
    [Show full text]
  • Development of a Four-Step Semi-Biosynthesis of the Anticancer Drug Paclitaxel and Its Analogues
    DEVELOPMENT OF A FOUR-STEP SEMI-BIOSYNTHESIS OF THE ANTICANCER DRUG PACLITAXEL AND ITS ANALOGUES By Chelsea Thornburg A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Biochemistry and Molecular Biology ‒ Doctor of Philosophy 2015 ABSTRACT DEVELOPMENT OF A FOUR-STEP SEMI-BIOSYNTHESIS OF THE ANTICANCER DRUG PACLITAXEL AND ITS ANALOGUES By Chelsea Thornburg Paclitaxel (Taxol®) is a widely used chemotherapeutic drug with additional medical applications in drug-eluting stents as an anti-restenosis treatment. Paclitaxel is a structurally complex natural product with an excellent scaffold for designing analogs with pharmacological properties. To date, clinically approved analogs include docetaxel and cabazitaxel for the treatment of additional cancers. Currently, plant cell fermentation methods produce paclitaxel and large quantities of the precursors 10-deacetylbaccatin III (10-DAB) and baccatin III. The complexity of the semi-characterized ~19-step paclitaxel biosynthetic pathway limits bioengineering attempts. However, the availability of 10-DAB and baccatin III suggests a semi-biosynthetic pathway to paclitaxel starting with these precursors is feasible. We have designed a short, simple biosynthetic pathway, capable of making paclitaxel, analogs, and/or valuable precursors for the semi-synthesis of additional analogs of biological interest. The paclitaxel biosynthesis enzyme baccatin III: 3-amino-13-O-phenylpropanoyl CoA transferase (BAPT) and the bacterial (2R,3S)-phenylisoserinyl CoA ligase (PheAT) produce N-debenzoylpaclitaxel, N-debenzoyldocetaxel, or precursor analogs. The addition of the paclitaxel biosynthetic N-debenzoyltaxol-N-benzoyltransferase (NDTNBT) and the bacterial benzoate CoA ligase (BadA) produce paclitaxel or other N-acylated analogs. In this dissertation, BAPT and BadA are kinetically characterized.
    [Show full text]
  • Fusing Catalase to an Alkane-Producing Enzyme
    Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2 Carl Andre1, Sung Won Kim, Xiao-Hong Yu, and John Shanklin2 Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973 Edited by Rodney B. Croteau, Washington State University, Pullman, WA, and approved December 31, 2012 (received for review October 29, 2012) Biologically produced alkanes represent potential renewable alter- enzyme was determined as part of a structural genomics effort natives to petroleum-derived chemicals. A cyanobacterial pathway (Protein Data Bank 2OC5, Joint Center for Structural Genom- consisting of acyl–Acyl Carrier Protein reductase and an aldehyde- ics). ADO converts aldehydes to n-1 alkanes with the aldehyde C1 deformylating oxygenase (ADO) converts acyl–Acyl Carrier Pro- released as formic acid (8, 9). Electrons required for the reaction teins into corresponding n-1 alkanes via aldehyde intermediates can be provided by NADPH via ferredoxin-NADP reductase in an oxygen-dependent manner (Km for O2,84± 9 μM). In vitro, (FNR), and ferredoxin (Fd) (7), or via the chemical mediator ADO turned over only three times, but addition of more ADO to phenazine methosulfate (PMS) (10). A proposed reaction scheme exhausted assays resulted in additional product formation. While for ADO (adapted from ref. 9) is depicted below where R evaluating the peroxide shunt to drive ADO catalysis, we discov- represents Acyl: ered that ADO is inhibited by hydrogen peroxide (H2O2) with an apparent Ki of 16 ± 6 μM and that H2O2 inhibition is of mixed-type with respect to O2. Supplementing exhausted assays with catalase (CAT) restored ADO activity, demonstrating that inhibition was reversible and dependent on H2O2, which originated from poor coupling of reductant consumption with alkane formation.
    [Show full text]