Development of a Four-Step Semi-Biosynthesis of the Anticancer Drug Paclitaxel and Its Analogues

Total Page:16

File Type:pdf, Size:1020Kb

Development of a Four-Step Semi-Biosynthesis of the Anticancer Drug Paclitaxel and Its Analogues DEVELOPMENT OF A FOUR-STEP SEMI-BIOSYNTHESIS OF THE ANTICANCER DRUG PACLITAXEL AND ITS ANALOGUES By Chelsea Thornburg A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Biochemistry and Molecular Biology ‒ Doctor of Philosophy 2015 ABSTRACT DEVELOPMENT OF A FOUR-STEP SEMI-BIOSYNTHESIS OF THE ANTICANCER DRUG PACLITAXEL AND ITS ANALOGUES By Chelsea Thornburg Paclitaxel (Taxol®) is a widely used chemotherapeutic drug with additional medical applications in drug-eluting stents as an anti-restenosis treatment. Paclitaxel is a structurally complex natural product with an excellent scaffold for designing analogs with pharmacological properties. To date, clinically approved analogs include docetaxel and cabazitaxel for the treatment of additional cancers. Currently, plant cell fermentation methods produce paclitaxel and large quantities of the precursors 10-deacetylbaccatin III (10-DAB) and baccatin III. The complexity of the semi-characterized ~19-step paclitaxel biosynthetic pathway limits bioengineering attempts. However, the availability of 10-DAB and baccatin III suggests a semi-biosynthetic pathway to paclitaxel starting with these precursors is feasible. We have designed a short, simple biosynthetic pathway, capable of making paclitaxel, analogs, and/or valuable precursors for the semi-synthesis of additional analogs of biological interest. The paclitaxel biosynthesis enzyme baccatin III: 3-amino-13-O-phenylpropanoyl CoA transferase (BAPT) and the bacterial (2R,3S)-phenylisoserinyl CoA ligase (PheAT) produce N-debenzoylpaclitaxel, N-debenzoyldocetaxel, or precursor analogs. The addition of the paclitaxel biosynthetic N-debenzoyltaxol-N-benzoyltransferase (NDTNBT) and the bacterial benzoate CoA ligase (BadA) produce paclitaxel or other N-acylated analogs. In this dissertation, BAPT and BadA are kinetically characterized. The substrate specificity of BadA was systematically investigated with a series of 24 substrates. Six crystal structures of BadA in complex with different substrates, including benzoyl AMP, are used to explain BadA reactivity and propose rational mutations (A227A, H333A, and I334A) that expand substrate specificity and provide insight into the BadA mechanism and connect with established acetylation regulatory mechanisms in bacteria. Major hurdles including solubility and substrate availability, were overcome in order to characterize BAPT activity in the proposed semi-biosynthetic pathway. BAPT was purified as a fusion protein with maltose binding protein and its (2R,3S)-phenylisoserinyl CoA substrate was biosynthesized. To our knowledge this is the first time (2R,3S)- phenylisoserinyl CoA has been isolated in quantitative yields high enough to allow for characterization of the Michaelis-Menten kinetic constants (kcat and KM) for BAPT. This dissertation also describes the combination of BAPT and a bacterial ligase (PheAT) to produce N-debenzoylpaclitaxel and N-debenzoyl-10-deacetylpaclitaxel, precursors of paclitaxel and docetaxel, respectively. Biosynthesis of a biologically active paclitaxel analog, N-2-furanyl-N-debenzoylpaclitaxel, using the aforementioned enzymes, is also demonstrated as proof-of-principle that this semi-biosynthetic pathway may shorten the number of steps required to make certain paclitaxel (and docetaxel) analogs of interest. Copyright by CHELSEA THORNBURG 2015 ACKNOWLEDGEMENTS I would like to acknowledge my advisor, Dr. Kevin Walker, for his support during my time here at Michigan State University. I also would like to acknowledge Dr. Dan Jones for all his advice and assistance in learning mass spectrometry. Dr. Jim Geiger kindly trusted me with his chromatography equipment and was a great collaborator for the BadA ligase crystallography work. The biochemistry and molecular biology (BMB) department has been a wonderful academic home. Faculty members were always willing to discuss any research problems I encountered along the way. The following professors sat down with me at some point and said helpful things: Bill Henry, Tom Sharkey, Honggao Yan, Kaillathe “Pappan” Padmanabhan, Charlie Hoogstraten, and Kristin Parent “KP”. I have to thank my family for all their love and support. My mom- Kristen Thornburg, my Papi- Mark Santas, my sisters- Caitlin Thornburg and Rhoda Brew-Appiah, my bro-in-law Matt Seidel, and my niece Madison are always there for me even though they have no idea what I do all day. My GREAT aunt Frankie and uncle Jim welcomed me into their home and are two of my favorite people. I am also grateful to the lovely Janelle and James Sabo (and the girls: Claire, Katherine, and Sophia) for welcoming me into their home for Thanksgiving these past few years. I also need to thank all the people I have lost during my doctoral program. My grandfather- Newton Thornburg, my grandmother- Cloteel Atkins, my dear friend Pam Movalson and her daughter, Christine. I miss you all. v TABLE OF CONTENTS LIST OF TABLES ...............................................................................................................x LIST OF FIGURES ........................................................................................................... xi KEY TO ABBREVIATIONS ......................................................................................... xvii Chapter 1. Clinical use and production of paclitaxel and analogs of clinical interest .........1 1.1 Introduction ...........................................................................................................1 1.1.1 Clinical uses of paclitaxel ............................................................................. 1 1.1.2 Clinical uses of paclitaxel analogs ................................................................ 3 1.1.3 A brief history of paclitaxel .......................................................................... 3 1.1.4 Paclitaxel mode of action .............................................................................. 5 1.1.5 Paclitaxel biosynthesis .................................................................................. 7 1.1.6 Paclitaxel production .................................................................................. 11 1.1.7 Semi-biosynthesis of paclitaxel, precursors, and analogs ........................... 14 REFERENCES ...............................................................................................................19 Chapter 2. Kinetically- and crystallographically-guided mutations of a benzoate CoA ligase (BadA) elucidate mechanism and expand substrate permissivity ...........................33 2.1 Introduction .........................................................................................................33 2.2 Experimental .......................................................................................................38 2.2.1 Materials ..................................................................................................... 38 2.2.2 Plasmids ...................................................................................................... 39 2.2.3 BadA protein expression and purification .................................................. 39 2.2.4 BadA kinetic assays .................................................................................... 40 2.2.5 BadA assay analysis by liquid chromatography mass spectrometry .......... 41 2.2.6 BadA mutations .......................................................................................... 42 2.2.7 Kinetic analysis ........................................................................................... 43 2.2.8 BadA crystal structures ............................................................................... 43 2.2.8.1 Crystallization of R. palustris benzoate: coenzyme A ligase (BadA) ......43 2.2.8.2 Co-crystallization to obtain the ligand bound structure ...........................44 2.2.8.3 Data processing and refinement of BadA ................................................44 2.2.9 Calculation of covalent van der Waals volumes and lengths ..................... 45 2.3 Results .................................................................................................................46 2.3.1 Solving the BadA structure ......................................................................... 46 2.3.1.1 Domain orientation ...................................................................................46 2.3.1.2 Features of the BadA active site ...............................................................47 2.3.2 Kinetic properties of BadA ......................................................................... 50 2.3.3 Substrate turnover by BadA ........................................................................ 50 2.3.3.1 Halogenated benzoates .............................................................................50 2.3.3.2 Benzoates with strongly electron-withdrawing substituents ....................52 2.3.3.3 Benzoates with strongly electron-donating substituents ..........................52 vi 2.3.3.4 Turnover of heteroaromatic carboxylates ................................................53 2.3.3.5 Turnover of non-aromatic carbocycle carboxylates .................................54 2.3.4 Rational Mutation of the BadA Active Site ................................................ 54 2.3.4.1 Ala227Gly-BadA mutant .........................................................................56 2.3.4.2 Ile334Ala-BadA mutant ...........................................................................56
Recommended publications
  • Biomolecules
    CHAPTER 3 Biomolecules 3.1 Carbohydrates In the previous chapter you have learnt about the cell and 3.2 Fatty Acids and its organelles. Each organelle has distinct structure and Lipids therefore performs different function. For example, cell membrane is made up of lipids and proteins. Cell wall is 3.3 Amino Acids made up of carbohydrates. Chromosomes are made up of 3.4 Protein Structure protein and nucleic acid, i.e., DNA and ribosomes are made 3.5 Nucleic Acids up of protein and nucleic acids, i.e., RNA. These ingredients of cellular organelles are also called macromolecules or biomolecules. There are four major types of biomolecules— carbohydrates, proteins, lipids and nucleic acids. Apart from being structural entities of the cell, these biomolecules play important functions in cellular processes. In this chapter you will study the structure and functions of these biomolecules. 3.1 CARBOHYDRATES Carbohydrates are one of the most abundant classes of biomolecules in nature and found widely distributed in all life forms. Chemically, they are aldehyde and ketone derivatives of the polyhydric alcohols. Major role of carbohydrates in living organisms is to function as a primary source of energy. These molecules also serve as energy stores, 2021-22 Chapter 3 Carbohydrade Final 30.018.2018.indd 50 11/14/2019 10:11:16 AM 51 BIOMOLECULES metabolic intermediates, and one of the major components of bacterial and plant cell wall. Also, these are part of DNA and RNA, which you will study later in this chapter. The cell walls of bacteria and plants are made up of polymers of carbohydrates.
    [Show full text]
  • Form of Taxadiene Synthase Involved in Paclitaxel
    Archives of Biochemistry and Biophysics Vol. 379, No. 1, July 1, pp. 137–146, 2000 doi:10.1006/abbi.2000.1865, available online at http://www.idealibrary.com on Heterologous Expression and Characterization of a “Pseudomature” Form of Taxadiene Synthase Involved in Paclitaxel (Taxol) Biosynthesis and Evaluation of a Potential Intermediate and Inhibitors of the Multistep Diterpene Cyclization Reaction1 David C. Williams,* Mark R. Wildung,* Alan Qingwu Jin,† Dolan Dalal,‡ John S. Oliver,‡ Robert M. Coates,† and Rodney Croteau2 *Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340; †Department of Chemistry, University of Illinois, 600 South Matthews Avenue, Urbana, Illinois 61801; and ‡Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912 Received February 23, 2000, and in revised form April 4, 2000 with kinetics comparable to the native enzyme. In ad- The diterpene cyclase taxadiene synthase from yew dition to the major product, taxa-4(5),11(12)-diene (Taxus) species transforms geranylgeranyl diphos- (94%), this enzyme produces a small amount of the phate to taxa-4(5),11(12)-diene as the first committed isomeric taxa-4(20),11(12)-diene (ϳϳ5%), and a product step in the biosynthesis of the anti-cancer drug Taxol. tentatively identified as verticillene (ϳϳ1%). Isotopi- Taxadiene synthase is translated as a preprotein bear- cally sensitive branching experiments utilizing (4R)- 2 ing an N-terminal targeting sequence for localization [4- H1]geranylgeranyl diphosphate confirmed that the to and processing in the plastids. Overexpression of two taxadiene isomers, and a third (taxa-3(4),11(12)- the full-length preprotein in Escherichia coli and pu- diene), are derived from the same intermediate tax- rification are compromised by host codon usage, inclu- enyl C4-carbocation.
    [Show full text]
  • Sugars As the Source of Energized Carbon for Abiogenesis
    Astrobiology Science Conference 2010 (2010) 5095.pdf SUGARS AS THE SOURCE OF ENERGIZED CARBON FOR ABIOGENESIS. A. L. Weber, SETI Institute, NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA, 94035-1000, [email protected] Abstract: As shown in Figure 1, abiogenesis has sev- eral requirements: (A) a source of organic substrates and chemical energy that drives the synthesis of (B) useful small molecules (ammonia, monomers, metabo- lites, energy molecules), and (C) a second synthetic processs that yields large replicating and catalytic polymers that control (D) the growth and maintenance of a primitive protocell. Furthermore, the required chemical energy must be sustained and effectively coupled to individual reactions to drive biosynthesis at a rate that counters chemical degradation. Energy coupling would have been especially difficult during the origin of life before the development of powerful enzyme catalysts with 3-D active sites. To solve this energy coupling problem we have investigated abio- genesis using sugar substrates whose energized carbon groups drive spontaneous synthetic self-transformation reactions that yield: biometabolites, catalytic mole- cules, energy-rich thioesters, amino acids, plausible alternative nucleobases and cell-like microstructures [1-8]. Recently, we demonstrated that sugars drive the synthesis of ammonia from nitrite [9]. The ability of sugars to drive ammonia synthesis provides a way to generate ammonia at microscopic sites of sugar-based origins processes, thereby eliminating the need for a planet-wide source of photochemically unstable am- monia. Figure 1. Major Synthetic Processes of Abiogenesis. [1] Weber A. L. (1998) Orig. Life Evol. Biosph., 28, 259-270. [2] Weber A.
    [Show full text]
  • Research in Your Backyard Developing Cures, Creating Jobs
    Research in Your Backyard Developing Cures, Creating Jobs PHARMACEUTICAL CLINICAL TRIALS IN ILLINOIS Dots show locations of clinical trials in the state. Executive Summary This report shows that biopharmaceutical research com- Quite often, biopharmaceutical companies hire local panies continue to be vitally important to the economy research institutions to conduct the tests and in Illinois, and patient health in Illinois, despite the recession. they help to bolster local economies in communities all over the state, including Chicago, Decatur, Joliet, Peoria, At a time when the state still faces significant economic Quincy, Rock Island, Rockford and Springfield. challenges, biopharmaceutical research companies are conducting or have conducted more than 4,300 clinical For patients, the trials offer another potential therapeutic trials of new medicines in collaboration with the state’s option. Clinical tests may provide a new avenue of care for clinical research centers, university medical schools and some chronic disease sufferers who are still searching for hospitals. Of the more than 4,300 clinical trials, 2,334 the medicines that are best for them. More than 470 of the target or have targeted the nation’s six most debilitating trials underway in Illinois are still recruiting patients. chronic diseases—asthma, cancer, diabetes, heart dis- ease, mental illnesses and stroke. Participants in clinical trials can: What are Clinical Trials? • Play an active role in their health care. • Gain access to new research treatments before they In the development of new medicines, clinical trials are are widely available. conducted to prove therapeutic safety and effectiveness and compile the evidence needed for the Food and Drug • Obtain expert medical care at leading health care Administration to approve treatments.
    [Show full text]
  • An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery
    An Overview of Biosynthesis Pathways – Inspiration for Pharmaceutical and Agrochemical Discovery Alan C. Spivey [email protected] 19th Oct 2019 Lessons in Synthesis - Azadirachtin • Azadirachtin is a potent insect anti-feedant from the Indian neem tree: – exact biogenesis unknown but certainly via steroid modification: O MeO C OAc O 2 H O OH O H O OH 12 O O C 11 O 14 OH oxidative 8 O H 7 cleavage highly hindered C-C bond HO OH AcO OH AcO OH for synthesis! H H of C ring H MeO2C O AcO H tirucallol azadirachtanin A azadirachtin (cf. lanosterol) (a limanoid = tetra-nor-triterpenoid) – Intense synhtetic efforts by the groups of Nicolaou, Watanabe, Ley and others since structural elucidation in 1987. –1st total synthesis achieved in 2007 by Ley following 22 yrs of effort – ~40 researchers and over 100 person-years of research! – 64-step synthesis – Veitch Angew. Chem. Int. Ed. 2007, 46, 7629 (DOI) & Veitch Angew. Chem. Int. Ed. 2007, 46, 7633 (DOI) – Review ‘The azadirachtin story’ see: Veitch Angew. Chem. Int. Ed. 2008, 47, 9402 (DOI) Format & Scope of Presentation • Metabolism & Biosynthesis – some definitions, 1° & 2° metabolites • Shikimate Metabolites – photosynthesis & glycolysis → shikimate formation → shikimate metabolites – Glyphosate – a non-selective herbicide • Alkaloids – acetylCoA & the citric acid cycle → -amino acids → alkaloids – Opioids – powerful pain killers • Fatty Acids and Polyketides –acetylCoA → malonylCoA → fatty acids, prostaglandins, polyketides, macrolide antibiotics – NSAIDs – anti-inflammatory’s • Isoprenoids/terpenes
    [Show full text]
  • Hans Renata – Strategic Redox Relay Enables a Scalable Synthesis Of
    Strategic Redox Relay Enables A Scalable Synthesis of Ouabagenin, A Bioactive Cardenolide A thesis presented by Hans Renata to The Scripps Research Institute Graduate Program in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry for The Scripps Research Institute La Jolla, California February 2013 UMI Number: 3569793 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3569793 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 © 2013 by Hans Renata All rights reserved ! ii! ACKNOWLEDGEMENTS To Phil, thank you for taking me under your wing, the past five years have been a wonderful learning experience. You truly are a fantastic teacher, both in and out of the fumehood and your unbridled enthusiasm, fearlessness and passion for chemistry are second to none. In the words of Kurt Cobain, I am “forever indebted to your priceless advice.” To the members of the Baran lab, in the words of Kurt Cobain, “Our little (?) group has always been and always will until the end.” See what I did there? Oh well, whatever, nevermind.
    [Show full text]
  • Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight
    Received: 26 November 2018 Revised: 29 January 2019 Accepted: 31 January 2019 DOI: 10.1002/rcm.8406 RESEARCH ARTICLE Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis for characterization of lignin oligomers using cationization techniques and 2,5‐dihydroxyacetophenone (DHAP) matrix Amber S. Bowman | Shardrack O. Asare | Bert C. Lynn Department of Chemistry, University of Rationale: Effective analytical techniques are needed to characterize lignin Kentucky, Lexington, KY 40506, USA products for the generation of renewable carbon sources. Application of matrix‐ Correspondence assisted laser desorption/ionization (MALDI) in lignin analysis is limited because of Bert C. Lynn, Department of Chemistry, UK Mass Spectrometry Facility, University of poor ionization efficiency. In this study, we explored the potential of cationization Kentucky, A053 ASTeCC Building, Lexington, along with a 2,5‐dihydroxyacetophenone (DHAP) matrix to characterize model KY 40506‐0286, USA. Email: [email protected] lignin oligomers. Funding information Methods: Synthesized lignin oligomers were analyzed using the developed MALDI National Science Foundation, Grant/Award method. Two matrix systems, DHAP and α‐cyano‐4‐hydroxycinnamic acid (CHCA), Number: OIA 1632854 and three cations (lithium, sodium, silver) were evaluated using a Bruker UltraFlextreme time‐of‐flight mass spectrometer. Instrumental parameters, cation concentration, matrix, sample concentrations, and sample spotting protocols were optimized for improved results. Results: The DHAP/Li+ combination was effective for dimer analysis as lithium adducts. Spectra from DHP and ferric chloride oligomers showed improved signal intensities up to decamers (m/z 1823 for the FeCl3 system) and provided insights into differences in the oligomerization mechanism. Spectra from a mixed DHP oligomer system containing H, G, and S units showed contributions from all monolignols within an oligomer level (e.g.
    [Show full text]
  • Peptide Chemistry up to Its Present State
    Appendix In this Appendix biographical sketches are compiled of many scientists who have made notable contributions to the development of peptide chemistry up to its present state. We have tried to consider names mainly connected with important events during the earlier periods of peptide history, but could not include all authors mentioned in the text of this book. This is particularly true for the more recent decades when the number of peptide chemists and biologists increased to such an extent that their enumeration would have gone beyond the scope of this Appendix. 250 Appendix Plate 8. Emil Abderhalden (1877-1950), Photo Plate 9. S. Akabori Leopoldina, Halle J Plate 10. Ernst Bayer Plate 11. Karel Blaha (1926-1988) Appendix 251 Plate 12. Max Brenner Plate 13. Hans Brockmann (1903-1988) Plate 14. Victor Bruckner (1900- 1980) Plate 15. Pehr V. Edman (1916- 1977) 252 Appendix Plate 16. Lyman C. Craig (1906-1974) Plate 17. Vittorio Erspamer Plate 18. Joseph S. Fruton, Biochemist and Historian Appendix 253 Plate 19. Rolf Geiger (1923-1988) Plate 20. Wolfgang Konig Plate 21. Dorothy Hodgkins Plate. 22. Franz Hofmeister (1850-1922), (Fischer, biograph. Lexikon) 254 Appendix Plate 23. The picture shows the late Professor 1.E. Jorpes (r.j and Professor V. Mutt during their favorite pastime in the archipelago on the Baltic near Stockholm Plate 24. Ephraim Katchalski (Katzir) Plate 25. Abraham Patchornik Appendix 255 Plate 26. P.G. Katsoyannis Plate 27. George W. Kenner (1922-1978) Plate 28. Edger Lederer (1908- 1988) Plate 29. Hennann Leuchs (1879-1945) 256 Appendix Plate 30. Choh Hao Li (1913-1987) Plate 31.
    [Show full text]
  • Chemotherapy for Metastatic Breast Cancer (MBC)
    Clinical Conversations Between an Oncology Nurse and Oncology Pharmacist During the Treatment of Patients With Breast Cancer: A Focus on Oral Chemotherapeutic Formulations © 2020. All rights reserved. No part of this report may be reproduced or distributed without the expressed written permission of PTCE. Faculty Information Chair Danielle Roman, PharmD, BCOP Manager, Clinical Pharmacy Services Allegheny Health Network Pittsburgh, Pennsylvania Allison Butts, PharmD, BCOP Kandra Horne, DNP, APRN, WHNP-BC Clinical Coordinator, Oncology Pharmacy Women’s Health Care Nurse Practitioner UK HealthCare Breast and GYN Oncology: Medical Oncology Assistant Adjunct Professor Winship Cancer Institute: Emory Healthcare UK College of Pharmacy Atlanta, Georgia Lexington, Kentucky This activity is supported by an educational grant from Athenex. Educational Objectives At the completion of this activity, participants will be able to: • Distinguish optimized treatment approaches for breast cancer based on disease- and patient-specific factors and potential places in therapy for oral formulations • Analyze the results of recent clinical trials with recently approved and emerging treatment options to inform the appropriate management of adverse effects and adherence for patients with breast cancer • Examine the benefits of multidisciplinary care across multiple practice environments for patients with breast cancer to optimize patient outcomes Evolving Oral Chemotherapeutic Opportunities in Breast Cancer Care Danielle Roman, PharmD, BCOP Manager, Clinical Pharmacy
    [Show full text]
  • Identification of a Thioesterase Bottleneck in the Pikromycin Pathway Through Full-Module Processing of Unnatural Pentaketides
    Article pubs.acs.org/JACS Identification of a Thioesterase Bottleneck in the Pikromycin Pathway through Full-Module Processing of Unnatural Pentaketides † ‡ † § † ‡ ⊥ ∥ Douglas A. Hansen, , Aaron A. Koch, , and David H. Sherman*, , , , † ‡ § ⊥ Life Sciences Institute, Department of Medicinal Chemistry, Cancer Biology Graduate Program, Department of Chemistry, and ∥ Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States *S Supporting Information ABSTRACT: Polyketide biosynthetic pathways have been engineered to generate natural product analogs for over two decades. However, manipulation of modular type I polyketide synthases (PKSs) to make unnatural metabolites commonly results in attenuated yields or entirely inactive pathways, and the mechanistic basis for compromised production is rarely elucidated since rate-limiting or inactive domain(s) remain unidentified. Accordingly, we synthesized and assayed a series of modified pikromycin (Pik) pentaketides that mimic early pathway engineering to probe the substrate tolerance of the PikAIII-TE module in vitro. Truncated pentaketides were processed with varying efficiencies to corresponding macrolactones, while pentaketides with epimerized chiral centers were poorly processed by PikAIII-TE and failed to generate 12-membered ring products. Isolation and identification of extended but prematurely offloaded shunt products suggested that the Pik thioesterase (TE) domain has limited substrate flexibility and functions as a gatekeeper in the processing of
    [Show full text]
  • Recent Research Progress in Taxol Biosynthetic Pathway and Acylation Reactions Mediated by Taxus Acyltransferases
    molecules Review Recent Research Progress in Taxol Biosynthetic Pathway and Acylation Reactions Mediated by Taxus Acyltransferases Tao Wang 1, Lingyu Li 1,2, Weibing Zhuang 1, Fengjiao Zhang 1, Xiaochun Shu 1, Ning Wang 1 and Zhong Wang 1,* 1 Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; [email protected] (T.W.); [email protected] (L.L.); [email protected] (W.Z.); [email protected] (F.Z.); [email protected] (X.S.); [email protected] (N.W.) 2 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China * Correspondence: [email protected]; Tel.: +86-025-84347055 Abstract: AbstractsTaxol is one of the most effective anticancer drugs in the world that is widely used in the treatments of breast, lung and ovarian cancer. The elucidation of the taxol biosynthetic pathway is the key to solve the problem of taxol supply. So far, the taxol biosynthetic pathway has been reported to require an estimated 20 steps of enzymatic reactions, and sixteen enzymes in- volved in the taxol pathway have been well characterized, including a novel taxane-10β-hydroxylase (T10βOH) and a newly putative β-phenylalanyl-CoA ligase (PCL). Moreover, the source and for- mation of the taxane core and the details of the downstream synthetic pathway have been basically depicted, while the modification of the core taxane skeleton has not been fully reported, mainly concerning the developments from diol intermediates to 2-debenzoyltaxane.
    [Show full text]
  • Enantioselective, Convergent Synthesis of the Ineleganolide Core by a Tandem Annulation Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Enantioselective, convergent synthesis of the ineleganolide core by a tandem annulation Cite this: Chem. Sci.,2017,8,507 cascade† Robert A. Craig, II, Jennifer L. Roizen, Russell C. Smith, Amanda C. Jones, Scott C. Virgil and Brian M. Stoltz* An enantioselective and diastereoselective approach toward the synthesis of the polycyclic norditerpenoid ineleganolide is disclosed. A palladium-catalyzed enantioselective allylic alkylation is employed to stereoselectively construct the requisite chiral tertiary ether and facilitate the synthesis of a 1,3-cis- cyclopentenediol building block. Careful substrate design enabled the convergent assembly of the ineleganolide [6,7,5,5]-tetracyclic scaffold by a diastereoselective cyclopropanation–Cope rearrangement cascade under unusually mild conditions. Computational evaluation of ground state energies of late-stage synthetic intermediates was used to guide synthetic development and aid in the Creative Commons Attribution 3.0 Unported Licence. investigation of the conformational rigidity of these highly constrained and compact polycyclic structures. This work represents the first successful synthesis of the core structure of any member of the furanobutenolide-derived polycyclic norcembranoid diterpene family of natural products. Advanced Received 28th July 2016 synthetic manipulations generated a series of natural product-like compounds that were shown to Accepted 15th August 2016 possess selective secretory antagonism of either interleukin-5 or interleukin-17. This bioactivity stands in DOI: 10.1039/c6sc03347d contrast to the known antileukemic activity of ineleganolide and suggests the norcembranoid natural www.rsc.org/chemicalscience product core may serve as a useful scaffold for the development of diverse therapeutics. This article is licensed under a Introduction this rigid polycyclic scaffold is decorated with a network of nine stereogenic centers, eight of which are contiguous.
    [Show full text]