AP Biology: Chemistry B Mcgraw Hill AP Biology 2014-15 Contents

Total Page:16

File Type:pdf, Size:1020Kb

AP Biology: Chemistry B Mcgraw Hill AP Biology 2014-15 Contents AP Biology: Chemistry B McGraw Hill AP Biology 2014-15 Contents 1 Carbohydrate 1 1.1 Structure .................................................. 1 1.2 Monosaccharides ............................................. 2 1.2.1 Classification of monosaccharides ................................ 2 1.2.2 Ring-straight chain isomerism .................................. 3 1.2.3 Use in living organisms ...................................... 3 1.3 Disaccharides ............................................... 3 1.4 Nutrition .................................................. 4 1.4.1 Classification ........................................... 5 1.5 Metabolism ................................................ 5 1.5.1 Catabolism ............................................ 5 1.6 Carbohydrate chemistry .......................................... 5 1.7 See also .................................................. 6 1.8 References ................................................. 6 1.9 External links ............................................... 7 2 Lipid 8 2.1 Categories of lipids ............................................ 8 2.1.1 Fatty acids ............................................. 8 2.1.2 Glycerolipids ........................................... 9 2.1.3 Glycerophospholipids ....................................... 9 2.1.4 Sphingolipids ........................................... 9 2.1.5 Sterol lipids ............................................ 10 2.1.6 Prenol lipids ............................................ 10 2.1.7 Saccharolipids ........................................... 10 2.1.8 Polyketides ............................................ 10 2.2 Biological functions ............................................ 11 2.2.1 Membranes ............................................ 11 2.2.2 Energy storage .......................................... 11 2.2.3 Signaling ............................................. 12 i ii CONTENTS 2.2.4 Other functions .......................................... 12 2.3 Metabolism ................................................ 12 2.3.1 Biosynthesis ............................................ 12 2.3.2 Degradation ............................................ 13 2.4 Nutrition and health ............................................ 13 2.5 See also .................................................. 13 2.6 References ................................................. 13 2.6.1 Bibliography ........................................... 17 2.7 External links ............................................... 17 3 Protein 19 3.1 Biochemistry ............................................... 20 3.2 Synthesis .................................................. 20 3.2.1 Biosynthesis ............................................ 20 3.2.2 Chemical synthesis ........................................ 21 3.3 Structure .................................................. 21 3.3.1 Structure determination ...................................... 22 3.4 Cellular functions ............................................. 23 3.4.1 Enzymes ............................................. 23 3.4.2 Cell signaling and ligand binding ................................. 24 3.4.3 Structural proteins ......................................... 24 3.5 Methods of study ............................................. 24 3.5.1 Protein purification ........................................ 25 3.5.2 Cellular localization ........................................ 25 3.5.3 Proteomics ............................................ 26 3.5.4 Bioinformatics .......................................... 26 3.6 Nutrition .................................................. 27 3.7 History and etymology ........................................... 27 3.8 See also .................................................. 28 3.9 Footnotes ................................................. 28 3.10 References ................................................. 31 3.11 External links ............................................... 31 3.11.1 Databases and projects ...................................... 31 3.11.2 Tutorials and educational websites ................................ 32 4 Enzyme 33 4.1 Etymology and history ........................................... 33 4.2 Structures and mechanisms ........................................ 34 4.2.1 Specificity ............................................. 35 CONTENTS iii 4.2.2 Mechanisms ............................................ 36 4.2.3 Allosteric modulation ....................................... 36 4.3 Cofactors and coenzymes ......................................... 37 4.3.1 Cofactors ............................................. 37 4.3.2 Coenzymes ............................................ 37 4.4 Thermodynamics ............................................. 37 4.5 Kinetics .................................................. 38 4.6 Inhibition ................................................. 39 4.7 Biological function ............................................. 41 4.8 Control of activity ............................................. 41 4.9 Involvement in disease ........................................... 42 4.10 Naming conventions ............................................ 42 4.11 Industrial applications ........................................... 43 4.12 See also .................................................. 43 4.13 References ................................................. 43 4.14 Further reading .............................................. 48 4.15 External links ............................................... 48 5 PH 49 5.1 History ................................................... 49 5.2 Definition and measurement ........................................ 49 5.2.1 pH ................................................. 49 5.2.2 p[H] ................................................ 50 5.2.3 pH indicators ........................................... 51 5.2.4 pOH ................................................ 51 5.2.5 Extremes of pH .......................................... 51 5.2.6 Non-aqueous solutions ...................................... 51 5.3 Applications ................................................ 52 5.3.1 pH in nature ............................................ 52 5.3.2 Seawater ............................................. 52 5.3.3 Living systems .......................................... 53 5.4 Calculations of pH ............................................. 53 5.4.1 Strong acids and bases ...................................... 54 5.4.2 Weak acids and bases ....................................... 54 5.4.3 General method .......................................... 55 5.5 References ................................................. 55 5.6 External links ............................................... 56 6 Chemical reaction 57 iv CONTENTS 6.1 History ................................................... 57 6.2 Equations ................................................. 58 6.3 Elementary reactions ........................................... 59 6.4 Chemical equilibrium ........................................... 59 6.5 Thermodynamics ............................................. 60 6.6 Kinetics .................................................. 60 6.7 Reaction types ............................................... 61 6.7.1 Four basic types .......................................... 61 6.7.2 Oxidation and reduction ..................................... 62 6.7.3 Complexation ........................................... 63 6.7.4 Acid-base reactions ........................................ 63 6.7.5 Precipitation ........................................... 63 6.7.6 Solid-state reactions ........................................ 64 6.7.7 Reactions at the solid|gas interface ................................ 64 6.7.8 Photochemical reactions ..................................... 64 6.8 Catalysis .................................................. 64 6.9 Reactions in organic chemistry ...................................... 65 6.9.1 Substitution ............................................ 65 6.9.2 Addition and elimination ..................................... 66 6.9.3 Other organic reaction mechanisms ................................ 67 6.10 Biochemical reactions ........................................... 68 6.11 Applications ................................................ 68 6.12 Monitoring ................................................. 68 6.13 See also .................................................. 68 6.14 References ................................................. 69 6.15 Bibliography ................................................ 70 6.16 Text and image sources, contributors, and licenses ............................ 71 6.16.1 Text ................................................ 71 6.16.2 Images .............................................. 76 6.16.3 Content license .......................................... 80 Chapter 1 Carbohydrate in plants and chitin in arthropods). The 5-carbon monosac- OH HO OH charide ribose is an important component of coenzymes (e.g., ATP, FAD, and NAD) and the backbone of the ge- O netic molecule known as RNA. The related deoxyribose O O HO OH is a component of DNA. Saccharides and their deriva- OH HO tives include many other important biomolecules that play OH key roles in the immune system, fertilization, preventing pathogenesis, blood clotting, and development.[7] Lactose is a disaccharide found in milk. It consists of a molecule In food science and in many informal contexts, the term of D-galactose and
Recommended publications
  • 3De8d416-B844-4E9a-B3fb-A2e883a4083f 11119
    Edinburgh Research Explorer Last rolls of the yoyo: Assessing the human canonical protein count Citation for published version: Southan, C 2017, 'Last rolls of the yoyo: Assessing the human canonical protein count', F1000Research, vol. 6, pp. 448+. https://doi.org/10.12688/f1000research.11119.1 Digital Object Identifier (DOI): 10.12688/f1000research.11119.1 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: F1000Research Publisher Rights Statement: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication). General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately
    [Show full text]
  • Study of Conditions for the Emergence of Cellular Communication Using Self-Adaptive Multi-Agent Systems Sebastien Maignan
    Study of conditions for the emergence of cellular communication using self-adaptive multi-agent systems Sebastien Maignan To cite this version: Sebastien Maignan. Study of conditions for the emergence of cellular communication using self- adaptive multi-agent systems. Artificial Intelligence [cs.AI]. Université Paul Sabatier - Toulouse III, 2018. English. NNT : 2018TOU30094. tel-02094368 HAL Id: tel-02094368 https://tel.archives-ouvertes.fr/tel-02094368 Submitted on 9 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par l'Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Sébastien Maignan Le 30 août 2018 Study of conditions for the emergence of cellular communication using self-adaptive multi-agent systems École doctorale et discipline ou spécialité ED MITT : Domaine STIC : Intelligence Artificielle Unité de recherche Institut de Recherche en Informatique de Toulouse Directrice(s) ou Directeur(s) de Thèse Pierre Glize, Carole Bernon Jury Marie BEURTON-AIMAR Maître de Conférences, HdR, Université de Bordeaux Rapporteur Vincent
    [Show full text]
  • Hans Renata – Strategic Redox Relay Enables a Scalable Synthesis Of
    Strategic Redox Relay Enables A Scalable Synthesis of Ouabagenin, A Bioactive Cardenolide A thesis presented by Hans Renata to The Scripps Research Institute Graduate Program in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry for The Scripps Research Institute La Jolla, California February 2013 UMI Number: 3569793 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3569793 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 © 2013 by Hans Renata All rights reserved ! ii! ACKNOWLEDGEMENTS To Phil, thank you for taking me under your wing, the past five years have been a wonderful learning experience. You truly are a fantastic teacher, both in and out of the fumehood and your unbridled enthusiasm, fearlessness and passion for chemistry are second to none. In the words of Kurt Cobain, I am “forever indebted to your priceless advice.” To the members of the Baran lab, in the words of Kurt Cobain, “Our little (?) group has always been and always will until the end.” See what I did there? Oh well, whatever, nevermind.
    [Show full text]
  • Peptide Chemistry up to Its Present State
    Appendix In this Appendix biographical sketches are compiled of many scientists who have made notable contributions to the development of peptide chemistry up to its present state. We have tried to consider names mainly connected with important events during the earlier periods of peptide history, but could not include all authors mentioned in the text of this book. This is particularly true for the more recent decades when the number of peptide chemists and biologists increased to such an extent that their enumeration would have gone beyond the scope of this Appendix. 250 Appendix Plate 8. Emil Abderhalden (1877-1950), Photo Plate 9. S. Akabori Leopoldina, Halle J Plate 10. Ernst Bayer Plate 11. Karel Blaha (1926-1988) Appendix 251 Plate 12. Max Brenner Plate 13. Hans Brockmann (1903-1988) Plate 14. Victor Bruckner (1900- 1980) Plate 15. Pehr V. Edman (1916- 1977) 252 Appendix Plate 16. Lyman C. Craig (1906-1974) Plate 17. Vittorio Erspamer Plate 18. Joseph S. Fruton, Biochemist and Historian Appendix 253 Plate 19. Rolf Geiger (1923-1988) Plate 20. Wolfgang Konig Plate 21. Dorothy Hodgkins Plate. 22. Franz Hofmeister (1850-1922), (Fischer, biograph. Lexikon) 254 Appendix Plate 23. The picture shows the late Professor 1.E. Jorpes (r.j and Professor V. Mutt during their favorite pastime in the archipelago on the Baltic near Stockholm Plate 24. Ephraim Katchalski (Katzir) Plate 25. Abraham Patchornik Appendix 255 Plate 26. P.G. Katsoyannis Plate 27. George W. Kenner (1922-1978) Plate 28. Edger Lederer (1908- 1988) Plate 29. Hennann Leuchs (1879-1945) 256 Appendix Plate 30. Choh Hao Li (1913-1987) Plate 31.
    [Show full text]
  • Identification of a Thioesterase Bottleneck in the Pikromycin Pathway Through Full-Module Processing of Unnatural Pentaketides
    Article pubs.acs.org/JACS Identification of a Thioesterase Bottleneck in the Pikromycin Pathway through Full-Module Processing of Unnatural Pentaketides † ‡ † § † ‡ ⊥ ∥ Douglas A. Hansen, , Aaron A. Koch, , and David H. Sherman*, , , , † ‡ § ⊥ Life Sciences Institute, Department of Medicinal Chemistry, Cancer Biology Graduate Program, Department of Chemistry, and ∥ Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States *S Supporting Information ABSTRACT: Polyketide biosynthetic pathways have been engineered to generate natural product analogs for over two decades. However, manipulation of modular type I polyketide synthases (PKSs) to make unnatural metabolites commonly results in attenuated yields or entirely inactive pathways, and the mechanistic basis for compromised production is rarely elucidated since rate-limiting or inactive domain(s) remain unidentified. Accordingly, we synthesized and assayed a series of modified pikromycin (Pik) pentaketides that mimic early pathway engineering to probe the substrate tolerance of the PikAIII-TE module in vitro. Truncated pentaketides were processed with varying efficiencies to corresponding macrolactones, while pentaketides with epimerized chiral centers were poorly processed by PikAIII-TE and failed to generate 12-membered ring products. Isolation and identification of extended but prematurely offloaded shunt products suggested that the Pik thioesterase (TE) domain has limited substrate flexibility and functions as a gatekeeper in the processing of
    [Show full text]
  • Intricate SUMO-Based Control of the Homologous Recombination Machinery
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Intricate SUMO-based control of the homologous recombination machinery Nalini Dhingra and Xiaolan Zhao Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA The homologous recombination (HR) machinery plays regulation in mammalian cells and highlight their simi- multiple roles in genome maintenance. Best studied in larities and differences with those found in yeast. It is the context of DNA double-stranded break (DSB) repair, noteworthy that SUMO plays important roles in modulat- recombination enzymes can cleave, pair, and unwind ing protein recruitment to damaged chromatin and in oth- DNA molecules, and collaborate with regulatory proteins er DNA break repair pathways. As these topics have been to execute multiple DNA processing steps before generat- well covered in other reviews (Schwertman et al. 2016; ing specific repair products. HR proteins also help to cope Garvin and Morris 2017), they are not addressed here in or- with problems arising from DNA replication, modulating der to maintain the focus on the regulation of core HR impaired replication forks or filling DNA gaps. Given machinery. these important roles, it is not surprising that each HR step is subject to complex regulation to adjust repair effi- ciency and outcomes as well as to limit toxic intermedi- Overview of the SUMO pathway and the effects ates. Recent studies have revealed intricate regulation of of sumoylation all steps of HR by the protein modifier SUMO, which SUMO, a small protein of ∼100 residues, is highly con- has been increasingly recognized for its broad influence served among eukaryotes with several isoforms found in in nuclear functions.
    [Show full text]
  • Enantioselective, Convergent Synthesis of the Ineleganolide Core by a Tandem Annulation Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Enantioselective, convergent synthesis of the ineleganolide core by a tandem annulation Cite this: Chem. Sci.,2017,8,507 cascade† Robert A. Craig, II, Jennifer L. Roizen, Russell C. Smith, Amanda C. Jones, Scott C. Virgil and Brian M. Stoltz* An enantioselective and diastereoselective approach toward the synthesis of the polycyclic norditerpenoid ineleganolide is disclosed. A palladium-catalyzed enantioselective allylic alkylation is employed to stereoselectively construct the requisite chiral tertiary ether and facilitate the synthesis of a 1,3-cis- cyclopentenediol building block. Careful substrate design enabled the convergent assembly of the ineleganolide [6,7,5,5]-tetracyclic scaffold by a diastereoselective cyclopropanation–Cope rearrangement cascade under unusually mild conditions. Computational evaluation of ground state energies of late-stage synthetic intermediates was used to guide synthetic development and aid in the Creative Commons Attribution 3.0 Unported Licence. investigation of the conformational rigidity of these highly constrained and compact polycyclic structures. This work represents the first successful synthesis of the core structure of any member of the furanobutenolide-derived polycyclic norcembranoid diterpene family of natural products. Advanced Received 28th July 2016 synthetic manipulations generated a series of natural product-like compounds that were shown to Accepted 15th August 2016 possess selective secretory antagonism of either interleukin-5 or interleukin-17. This bioactivity stands in DOI: 10.1039/c6sc03347d contrast to the known antileukemic activity of ineleganolide and suggests the norcembranoid natural www.rsc.org/chemicalscience product core may serve as a useful scaffold for the development of diverse therapeutics. This article is licensed under a Introduction this rigid polycyclic scaffold is decorated with a network of nine stereogenic centers, eight of which are contiguous.
    [Show full text]
  • The Nextprot Knowledgebase in 2020
    D328–D334 Nucleic Acids Research, 2020, Vol. 48, Database issue Published online 14 November 2019 doi: 10.1093/nar/gkz995 The neXtProt knowledgebase in 2020: data, tools and usability improvements Monique Zahn-Zabal1, Pierre-Andre´ Michel1, Alain Gateau1,Fred´ eric´ Nikitin1, Mathieu Schaeffer1,2, Estelle Audot1, Pascale Gaudet 1, Paula D. Duek1, Daniel Teixeira1, Valentine Rech de Laval1,2,3, Kasun Samarasinghe1,2,AmosBairoch1,2 and Lydie Lane1,2,* 1CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland, 2Department of microbiology and molecular medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland and 3Haute ecole´ specialis´ ee´ de Suisse occidentale, Haute Ecole de Gestion de Geneve,` Carouge, Switzerland Received September 11, 2019; Revised October 10, 2019; Editorial Decision October 11, 2019; Accepted October 18, 2019 ABSTRACT post-translational modifications (PTMs), as well as peptide identified in mass spectrometry experiments and epitopes The neXtProt knowledgebase (https://www.nextprot. recognized by antibodies have been integrated from a num- org) is an integrative resource providing both data ber of resources. By doing so, neXtProt extends the contents on human protein and the tools to explore these. of UniProtKB/Swiss-Prot (2) to provide a more compre- In order to provide comprehensive and up-to-date hensive data set. data, we evaluate and add new data sets. We describe However, data alone is not sufficient for scientists to the incorporation of three new data sets that provide comprehend complex information rapidly. For this reason, expression, function, protein-protein binary interac- neXtProt organizes the information concerning an entry in tion, post-translational modifications (PTM) and vari- several views, with interactive viewers that allow the user to ant information.
    [Show full text]
  • Abstract Book
    Abstract book WELCOME Dear participants, welcome to the 2010 International PhD Students Cancer Conference here at the IFOM-IEO Campus in Milan! We have tried to organize this conference at our best, hoping it will be an excellent opportunity to discuss about science, to meet new and interesting people and to broad our knowledge. We are very glad to host such an international meeting, with students coming from institutes all across Europe; moreover, this year we are very pleased to host students from the National Centre for Biological Sciences, Bangalore, India. We do hope you will find this conference really exciting and that you will have a great time here in Milan! Thank you all for coming!! The Organizers FOR ORGANIZATION REASONS, YOU ARE KINDLY REQUESTED TO ALWAYS WEAR/SHOW THE CONFERENCE BADGE! THANK YOU VERY MUCH FOR YOUR COLLABORATION! Federica Castellucci: [email protected] Francesca Milanesi: [email protected] Gianmaria Sarra Ferraris: [email protected] Chiara Segrè: [email protected] Gianluca Varetti: [email protected] International PhD Student Cancer Conference International PhD Student Cancer Conference 19th – 21st May 2010 IFOM-IEO Campus, Milan, Italy This is the fourth annual conference that is hosted and organized by students from the European School of Molecular Medicine (SEMM). The Conference will cover many topics related to cancer, from basic biology to clinical aspects of the disease. All attendees will present their research, by either giving a talk or presenting a poster. This conference is an opportunity to introduce PhD students to top cancer research institutes across Europe.
    [Show full text]
  • Enzymes Are Manufactured and Used by Bacteria in Order to Digest Waste
    Website: www.fermentor.co.in Food Beverages Textile Leather Agriculture Bio Pharma Effluent Treatment Enzyme : INTRODUCTION Protecting ecology is our duty. We are thus protecting our future generation. Waste water treatment has assumed great significance in today’s context where protecting the environment is a prime concern. The main objective of waste water treatment is to treat the effluent before it is discharged so that the environment is not polluted. Waste water treatment in general refers to treatment of suspended and floatable material, treatment of biodegradable organics and the elimination of pathogenic organisms. The contaminants in waste water are removed by physical chemical and biological means. These organisms are effectively removed by an enzyme called ENVIRO NZYME. ROLE OF AN ENZYME? An enzyme is a chemical catalyst that breaks up long, complex waste molecules (Hydrolytic reaction) into smaller pieces, which can then be digested directly by the bacteria. Enzymes are manufactured and used by bacteria in order to digest waste. ENVIRO NZYME – G a dry free flowing powder is a concentrated source of hydrolytic enzymes and eight strains of natural bacteria that are genetically capable of producing concentrations of enzymes in waste treatment systems under aerobic and anaerobic conditions. ENVIRO NZYME –G is used for reducing the BOD, COD levels as well as reducing the sludge volumes odour and colour in the effluent and sewage treatment plants. APPLICATION: This product finds application in industries like Agro Breweries &
    [Show full text]
  • The Role of Sumoylation of DNA Topoisomerase Iiα C-Terminal Domain in the Regulation of Mitotic Kinases In
    SUMOylation at the centromere: The role of SUMOylation of DNA topoisomerase IIα C-terminal domain in the regulation of mitotic kinases in cell cycle progression. By Makoto Michael Yoshida Submitted to the graduate degree program in the Department of Molecular Biosciences and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________________ Chairperson: Yoshiaki Azuma, Ph.D. ________________________________________ Roberto De Guzman, Ph.D. ________________________________________ Kristi Neufeld, Ph.D. _________________________________________ Berl Oakley, Ph.D. _________________________________________ Blake Peterson, Ph.D. Date Defended: July 12, 2016 The Dissertation Committee for Makoto Michael Yoshida certifies that this is the approved version of the following dissertation: SUMOylation at the centromere: The role of SUMOylation of DNA topoisomerase IIα C-terminal domain in the regulation of mitotic kinases in cell cycle progression. ________________________________________ Chairperson: Yoshiaki Azuma, Ph.D. Date approved: July 12, 2016 ii ABSTRACT In many model systems, SUMOylation is required for proper mitosis; in particular, chromosome segregation during anaphase. It was previously shown that interruption of SUMOylation through the addition of the dominant negative E2 SUMO conjugating enzyme Ubc9 in mitosis causes abnormal chromosome segregation in Xenopus laevis egg extract (XEE) cell-free assays, and DNA topoisomerase IIα (TOP2A) was identified as a substrate for SUMOylation at the mitotic centromeres. TOP2A is SUMOylated at K660 and multiple sites in the C-terminal domain (CTD). We sought to understand the role of TOP2A SUMOylation at the mitotic centromeres by identifying specific binding proteins for SUMOylated TOP2A CTD. Through affinity isolation, we have identified Haspin, a histone H3 threonine 3 (H3T3) kinase, as a SUMOylated TOP2A CTD binding protein.
    [Show full text]
  • Subtiligase: a Tool for Semisynthesis of Proteins THOMAS K
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 12544-12548, December 1994 Biochemistry Subtiligase: A tool for semisynthesis of proteins THOMAS K. CHANG*t, DAVID Y. JACKSON*, JOHN P. BURNIERt, AND JAMES A. WELLS*§ Departments of *Protein Engineering and tBioOrganic Chemistry, Genentech, Inc., 460 Point San Bruno Boulevard, South San Francisco, CA 94080 Communicated by Harry B. Gray, August 1, 1994 ABSTRACT A variant of subtilisin BPN', which we call phenylalanylamide (glc-F-amide) were synthesized as de- subtiligase, has been used to ligate esterified peptides site- scribed (15). For ligations onto immobilized supports, pep- specifically onto the N termini of proteins or peptides in tides were synthesized on 96-well (---0.17 nmol per well) aqueous solution and in high yield. We have produced biotin- CovaLink ELISA plates (Nunc) by using N-(9-fluorenyl- ylated or heavy-atom derivatives ofmethionyl-extended human methoxycarbonyl) (Fmoc)-protected amino acids and dicyc- growth hormone (Met-hGH) by ligating it onto synthetic pep- lohexylcarbodiimide (DCC) activation in dimethyl sulfoxide tides containing biotin or mercury. Polyethylene glycol (PEG)- (DMSO). The plates were washed with 5% piperidine in modified atrial natriuretic peptide (ANP) was produced by methanol to neutralize the amino linkers and incubated with ligating ANP onto peptides containing sites for PEG modifi'ca- 100 /,u of DMSO containing 1 mM Fmoc-Ala and 0.5 mM tion. We have established the N-terminal sequence require- DCC for 10 min at 25°C. The plates were washed with DMSO, ments for efficient ligation onto proteins, using either synthetic and the Fmoc protecting groups were removed with 5% substrates or pools of ifiamentous phage containing Met-hGH piperidine in methanol.
    [Show full text]