24Amino Acids, Peptides, and Proteins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biomolecules
CHAPTER 3 Biomolecules 3.1 Carbohydrates In the previous chapter you have learnt about the cell and 3.2 Fatty Acids and its organelles. Each organelle has distinct structure and Lipids therefore performs different function. For example, cell membrane is made up of lipids and proteins. Cell wall is 3.3 Amino Acids made up of carbohydrates. Chromosomes are made up of 3.4 Protein Structure protein and nucleic acid, i.e., DNA and ribosomes are made 3.5 Nucleic Acids up of protein and nucleic acids, i.e., RNA. These ingredients of cellular organelles are also called macromolecules or biomolecules. There are four major types of biomolecules— carbohydrates, proteins, lipids and nucleic acids. Apart from being structural entities of the cell, these biomolecules play important functions in cellular processes. In this chapter you will study the structure and functions of these biomolecules. 3.1 CARBOHYDRATES Carbohydrates are one of the most abundant classes of biomolecules in nature and found widely distributed in all life forms. Chemically, they are aldehyde and ketone derivatives of the polyhydric alcohols. Major role of carbohydrates in living organisms is to function as a primary source of energy. These molecules also serve as energy stores, 2021-22 Chapter 3 Carbohydrade Final 30.018.2018.indd 50 11/14/2019 10:11:16 AM 51 BIOMOLECULES metabolic intermediates, and one of the major components of bacterial and plant cell wall. Also, these are part of DNA and RNA, which you will study later in this chapter. The cell walls of bacteria and plants are made up of polymers of carbohydrates. -
Characterization of L-Serine Deaminases, Sdaa (PA2448) and Sdab 2 (PA5379), and Their Potential Role in Pseudomonas Aeruginosa 3 Pathogenesis 4 5 Sixto M
bioRxiv preprint doi: https://doi.org/10.1101/394957; this version posted August 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Characterization of L-serine deaminases, SdaA (PA2448) and SdaB 2 (PA5379), and their potential role in Pseudomonas aeruginosa 3 pathogenesis 4 5 Sixto M. Leal1,6, Elaine Newman2 and Kalai Mathee1,3,4,5 * 6 7 Author affiliations: 8 9 1Department of Biological Sciences, College of Arts Sciences and 10 Education, Florida International University, Miami, United States of 11 America 12 2Department of Biological Sciences, Concordia University, Montreal, 13 Canada 14 3Department of Molecular Microbiology and Infectious Diseases, Herbert 15 Wertheim College of Medicine, Florida International University, Miami, 16 United States of America 17 4Biomolecular Sciences Institute, Florida International University, Miami, 18 United States of America 19 20 Present address: 21 22 5Department of Human and Molecular Genetics, Herbert Wertheim 23 College of Medicine, Florida International University, Miami, United States 24 of America 25 6Case Western Reserve University, United States of America 26 27 28 *Correspondance: Kalai Mathee, MS, PhD, 29 [email protected] 30 31 Telephone : 1-305-348-0628 32 33 Keywords: Serine Catabolism, Central Metabolism, TCA Cycle, Pyruvate, 34 Leucine Responsive Regulatory Protein (LRP), One Carbon Metabolism 35 Running title: P. aeruginosa L-serine deaminases 36 Subject category: Pathogenicity and Virulence/Host Response 37 1 bioRxiv preprint doi: https://doi.org/10.1101/394957; this version posted August 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Insights Into the Molecular Basis for Substrate Binding and Specificity of the Wild-Type L-Arginine/Agmatine Antiporter Adic
Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC Hüseyin Ilgüa,b,1, Jean-Marc Jeckelmanna,b,1, Vytautas Gapsysc, Zöhre Ucuruma,b, Bert L. de Grootc, and Dimitrios Fotiadisa,b,2 aInstitute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland; bSwiss National Centre of Competence in Research TransCure, University of Bern, CH-3012 Bern, Switzerland; and cComputational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, D-37077 Goettingen, Germany Edited by Christopher Miller, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, and approved July 26, 2016 (received for review April 4, 2016) Pathogenic enterobacteria need to survive the extreme acidity of Arg-bound states (10). The two outward-open, substrate-free the stomach to successfully colonize the human gut. Enteric bacteria structures are at the reasonable and moderate resolutions of 3.2 Å circumvent the gastric acid barrier by activating extreme acid- (8) and 3.6 Å (9), respectively, and the only ones available of wild- resistance responses, such as the arginine-dependent acid resistance type AdiC (AdiC-wt). The two other structures are with bound system. In this response, L-arginine is decarboxylated to agmatine, Arg and at 3-Å resolution, and could only be obtained as a result thereby consuming one proton from the cytoplasm. In Escherichia of the introduction of specific point mutations: AdiC-N22A (10) coli,theL-arginine/agmatine antiporter AdiC facilitates the export and AdiC-N101A (11). The N101A mutation results in a defective of agmatine in exchange of L-arginine, thus providing substrates for AdiC protein unable to bind Arg and with a dramatically de- further removal of protons from the cytoplasm and balancing the creased turnover rate compared with wild-type (11). -
Separation of Isomers <Emphasis Type="Italic">L </Emphasis>-Alanine and Sarcosine in Urine by Electrospra
SHORT COMMUNICATION Separation of Isomers L-Alanine and Sarcosine in Urine by Electrospray Ionization and Tandem Differential Mobility Analysis-Mass Spectrometry Pablo Martínez-Lozanoa and Juan Rusb a Institute for Biomedical Technologies-National Research Council, Milan, Italy b SEADM, Valladolid, Spain Sarcosine, an isomer of L-alanine, has been proposed as a prostate cancer progression biomarker [1]. Both compounds are detected in urine, where the measured sarcosine/alanine ratio has been found to be higher in prostate biopsy-positive group versus controls. We present here preliminary evidence showing that urine samples spiked with sarcosine/alanine can be partially resolved in 3 min via tandem differential mobility analysis-mass spectrometry (DMA-MS). Based on the calibration curves obtained for two mobility peaks, we finally estimate their concentration ratio in urine. (J Am Soc Mass Spectrom 2010, 21, 1129–1132) © 2010 American Society for Mass Spectrometry rostate cancer is a leading cause of death among the tive-ion mode at the DMA entrance slit. Our nanospray male population. Sarcosine, an isomer of alanine, parameters were: capillary 360 m o.d., 50 m i.d., length Pwas recently proposed as a prostate cancer progres- 22 cm, driving pressure 75 mbar, and 3.8 kV. The ions sion biomarker [1]. In particular, the sarcosine/alanine entered the separation region propelled by an electric field ratio was found to be significantly higher in urine derived and against a counterflow gas (0.2 L/min). Sheath gas from biopsy-positive prostate cancer patients compared flow was kept constant, and the classification voltage was with biopsy-negative controls. -
CCA One Care Options Formulary
Commonwealth Care Alliance One Care Plan (Medicare-Medicaid Plan) 2021 List of Covered Drugs (Formulary) 30 Winter Street • Boston, MA 02108 PLEASE READ: THIS DOCUMENT CONTAINS INFORMATION ABOUT THE DRUGS WE COVER IN THIS PLAN For more recent information or other questions, contact Commonwealth Care Alliance Member Services at 1-866-610-2273 (TTY: call MassRelay at 711), 8 a.m. – 8 p.m., 7 days a week, or visit www.commonwealthonecare.org H0137_CF2021 Approved Formulary: ID 00021588 • Version 13 • Updated on 08/01/2021 One Care Plan | 2021 List of Covered Drugs (Formulary) Introduction This document is called the List of Covered Drugs (also known as the Drug List). It tells you which prescription drugs, over-the-counter drugs and items are covered by Commonwealth Care Alliance. The Drug List also tells you if there are any special rules or restrictions on any drugs covered by One Care. Key terms and their definitions appear in the last chapter of the Member Handbook. Table of Contents A. Disclaimers ........................................................................................................................ 4 B. Frequently Asked Questions (FAQ) .................................................................................. 5 What prescription drugs are on the List of Covered Drugs? (We call the List of Covered Drugs the “Drug List” for short.) ................................................................... 5 B2. Does the Drug List ever change? ............................................................................... 5 B3. What happens when there is a change to the Drug List? ........................................... 6 B4. Are there any restrictions or limits on drug coverage or any required actions to take to get certain drugs? .................................................................................................. 7 B5. How will you know if the drug you want has limitations or if there are required actions to take to get the drug? ................................................................................. -
2354 Metabolism and Ecology of Purine Alkaloids Ana Luisa Anaya 1
[Frontiers in Bioscience 11, 2354-2370, September 1, 2006] Metabolism and Ecology of Purine Alkaloids Ana Luisa Anaya 1, Rocio Cruz-Ortega 1 and George R. Waller 2 1Departamento de Ecologia Funcional, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico. Mexico DF 04510, 2Department of Biochemistry and Molecular Biology, Oklahoma State University. Stillwater, OK 74078, USA TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Classification of alkaloids 4. The importance of purine in natural compounds 5. Purine alkaloids 5.1. Distribution of purine alkaloids in plants 5.2. Metabolism of purine alkaloids 6. Biosynthesis of caffeine 6.1. Purine ring methylation 6.2. Cultured cells 7. Catabolism of caffeine 8. Caffeine-free and low caffeine varieties of coffee 8.1. Patents 9. Ecological role of alkaloids 9.1. Herbivory 9.2. Allelopathy 9.2.1. Mechanism of action of caffeine and other purine alkaloids in plants 10. Perspective 11. Acknowledgements 12. References 1. ABSTRACT 2. INTRODUCTION In this review, the biosynthesis, catabolism, Alkaloids are one of the most diverse groups of ecological significance, and modes of action of purine secondary metabolites found in living organisms. They alkaloids particularly, caffeine, theobromine and have many distinct types of structure, metabolic pathways, theophylline in plants are discussed. In the biosynthesis of and ecological and pharmacological activities. Many caffeine, progress has been made in enzymology, the amino alkaloids have been used in medicine for centuries, and acid sequence of the enzymes, and in the genes encoding some are still important drugs. Alkaloids have, therefore, N-methyltransferases. In addition, caffeine-deficient plants been prominent in many scientific fields for years, and have been produced. -
Production of L-Asparaginase II by Escherichia Coli HOWARD CEDAR and JAMES H
JOURNAL OF BACTERIOLOGY, Dec. 1968, p. 2043-2048 Vol. 96, No. 6 Copyright @ 1968 American Society for Microbiology Printed in U.S.A. Production of L-Asparaginase II by Escherichia coli HOWARD CEDAR AND JAMES H. SCHWARTZ Department of Microbiology, New York University School ofMedicine, New York, New York 10016 Received for publication 30 July 1968 L-Asparaginase II was synthesized at constant rates by Escherichia coli under anaerobic conditions. The enzyme was produced optimally by bacteria grown between pH 7 and 8 at 37 C. Although some enzyme was formed aerobically, be- tween 100 and 1,000 times more asparaginase II was produced during anaerobic growth in media enriched with high concentrations of a variety of amino acids. Bacteria grown under these conditions should provide a rich starting material for the large-scale production of the enzyme. No single amino acid specifically induced the synthesis of the asparaginase, nor did L-asparagine, even when it was used as the only source of nitrogen. The enzyme was produced at lower rates in the presence of sugars; glucose was the most inhibitory. Deamidation of L-asparagine by extracts of the conditions which control the production of Escherichia coli was first reported in 1957 by asparaginase II. Tsuji (28). E. coli was later shown to produce two distinct asparaginases (L-asparagine amido- MATERIALS AND METHODS hydrolase, EC 3.5.1 .1) which differ in a number For most of the experiments, we used E. coli K-12 of properties, perhaps most significantly in wild type. We also used strain 22-64, which lacks their markedly different affinities for asparagine citrate synthase (10), and strain 309-1, which lacks (5, 24, 27). -
Sugars As the Source of Energized Carbon for Abiogenesis
Astrobiology Science Conference 2010 (2010) 5095.pdf SUGARS AS THE SOURCE OF ENERGIZED CARBON FOR ABIOGENESIS. A. L. Weber, SETI Institute, NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA, 94035-1000, [email protected] Abstract: As shown in Figure 1, abiogenesis has sev- eral requirements: (A) a source of organic substrates and chemical energy that drives the synthesis of (B) useful small molecules (ammonia, monomers, metabo- lites, energy molecules), and (C) a second synthetic processs that yields large replicating and catalytic polymers that control (D) the growth and maintenance of a primitive protocell. Furthermore, the required chemical energy must be sustained and effectively coupled to individual reactions to drive biosynthesis at a rate that counters chemical degradation. Energy coupling would have been especially difficult during the origin of life before the development of powerful enzyme catalysts with 3-D active sites. To solve this energy coupling problem we have investigated abio- genesis using sugar substrates whose energized carbon groups drive spontaneous synthetic self-transformation reactions that yield: biometabolites, catalytic mole- cules, energy-rich thioesters, amino acids, plausible alternative nucleobases and cell-like microstructures [1-8]. Recently, we demonstrated that sugars drive the synthesis of ammonia from nitrite [9]. The ability of sugars to drive ammonia synthesis provides a way to generate ammonia at microscopic sites of sugar-based origins processes, thereby eliminating the need for a planet-wide source of photochemically unstable am- monia. Figure 1. Major Synthetic Processes of Abiogenesis. [1] Weber A. L. (1998) Orig. Life Evol. Biosph., 28, 259-270. [2] Weber A. -
Beta Alanine
PERFORMANCE ENHANCERS FACTS AND BOTTOM LINE BETA ALANINE What is it? B-alanine is a naturally occurring amino acid (a non-essential amino acid) not used by the body to make muscle tissue. Rather, research has shown that B-alanine works by increasing the muscle content of an important compound – carnosine. In fact, the production of carnosine is limited by the availability of B-alanine. Carnosine is highly concentrated in muscle tissue where its role is primarily to soak up hydrogen ions. Does it work? B-alanine is one of the few dietary supplements that actually have good scientific evidence that it can possibly enhance performance. How does it work? When you exercise intensely the body produces hydrogen ions. The longer you exercise the more hydrogen ions you produce and this reduces the pH level in your muscles. Muscles work best in a very specific pH range and when the pH drops below that level then muscular performance also starts to decrease. Anything that helps to prevent or delay that drop in pH will help delay muscle fatigue. This is where B-alanine has proven to be very helpful. Beta-alanine increases the levels of carnosine in your slow and fast twitch muscle fibers and carnosine is a buffer that basically soaks up hydrogen ions and so reduces the drop in pH. By keeping your hydrogen ion levels lower, B-alanine allows you to train harder and longer. The bottom line is that B-alanine works by increasing the hydrogen ion buffering abilities of your muscles. What benefits does it offer? B-alanine has been shown to increase muscle strength, increase muscle mass, increase anaerobic endurance, increase aerobic endurance and increase exercise capacity. -
Amino Acid Recognition by Aminoacyl-Trna Synthetases
www.nature.com/scientificreports OPEN The structural basis of the genetic code: amino acid recognition by aminoacyl‑tRNA synthetases Florian Kaiser1,2,4*, Sarah Krautwurst3,4, Sebastian Salentin1, V. Joachim Haupt1,2, Christoph Leberecht3, Sebastian Bittrich3, Dirk Labudde3 & Michael Schroeder1 Storage and directed transfer of information is the key requirement for the development of life. Yet any information stored on our genes is useless without its correct interpretation. The genetic code defnes the rule set to decode this information. Aminoacyl-tRNA synthetases are at the heart of this process. We extensively characterize how these enzymes distinguish all natural amino acids based on the computational analysis of crystallographic structure data. The results of this meta-analysis show that the correct read-out of genetic information is a delicate interplay between the composition of the binding site, non-covalent interactions, error correction mechanisms, and steric efects. One of the most profound open questions in biology is how the genetic code was established. While proteins are encoded by nucleic acid blueprints, decoding this information in turn requires proteins. Te emergence of this self-referencing system poses a chicken-or-egg dilemma and its origin is still heavily debated 1,2. Aminoacyl-tRNA synthetases (aaRSs) implement the correct assignment of amino acids to their codons and are thus inherently connected to the emergence of genetic coding. Tese enzymes link tRNA molecules with their amino acid cargo and are consequently vital for protein biosynthesis. Beside the correct recognition of tRNA features3, highly specifc non-covalent interactions in the binding sites of aaRSs are required to correctly detect the designated amino acid4–7 and to prevent errors in biosynthesis5,8. -
Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents
Novel “Add-On” Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents Haojun Chen*1,2, Orit Jacobson*2, Gang Niu2, Ido D. Weiss3, Dale O. Kiesewetter2, Yi Liu2, Ying Ma2, Hua Wu1, and Xiaoyuan Chen2 1Department of Nuclear Medicine, Xiamen Cancer Hospital of the First Affiliated Hospital of Xiamen University, Xiamen, China; 2Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; and 3Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland One of the major design considerations for a drug is its The goal of drug development is to achieve high activity and pharmacokinetics in the blood. A drug with a short half-life in specificity for a desired biologic target. However, many potential the blood is less available at a target organ. Such a limitation pharmaceuticals that meet these criteria fail as therapeutics because dictates treatment with either high doses or more frequent doses, of unfavorable pharmacokinetics, in particular, rapid blood clearance, both of which may increase the likelihood of undesirable side effects. To address the need for additional methods to improve which prevents the achievement of therapeutic concentrations. For the blood half-life of drugs and molecular imaging agents, we some drugs, the administration of large or frequently repeated doses developed an “add-on” molecule that contains 3 groups: a trun- is required to achieve and maintain therapeutic levels (1) but can, in cated Evans blue dye molecule that binds to albumin with a low turn, increase the probability of undesired side effects. -
Downloaded from the National This Genus-Wide Comparative Analysis Determined That Center for Biotechnology Information Database (NCBI) Gastric Helicobacter Spp
Mannion et al. BMC Genomics (2018) 19:830 https://doi.org/10.1186/s12864-018-5171-2 RESEARCHARTICLE Open Access Comparative genomics analysis to differentiate metabolic and virulence gene potential in gastric versus enterohepatic Helicobacter species Anthony Mannion*, Zeli Shen and James G. Fox Abstract Background: The genus Helicobacter are gram-negative, microaerobic, flagellated, mucus-inhabiting bacteria associated with gastrointestinal inflammation and classified as gastric or enterohepatic Helicobacter species (EHS) according to host species and colonization niche. While there are over 30 official species, little is known about the physiology and pathogenic mechanisms of EHS, which account for most in the genus, as well as what genetic factors differentiate gastric versus EHS, given they inhabit different hosts and colonization niches. The objective of this study was to perform a whole-genus comparative analysis of over 100 gastric versus EHS genomes in order to identify genetic determinants that distinguish these Helicobacter species and provide insights about their evolution/ adaptation to different hosts, colonization niches, and mechanisms of virulence. Results: Whole-genome phylogeny organized Helicobacter species according to their presumed gastric or EHS classification. Analysis of orthologs revealed substantial heterogeneity in physiological and virulence-related genes between gastric and EHS genomes. Metabolic reconstruction predicted that unlike gastric species, EHS appear asaccharolytic and dependent on amino/organic acids to fuel metabolism. Additionally, gastric species lack de novo biosynthetic pathways for several amino acids and purines found in EHS and instead rely on environmental uptake/ salvage pathways. Comparison of virulence factor genes between gastric and EHS genomes identified overlapping yet distinct profiles and included canonical cytotoxins, outer membrane proteins, secretion systems, and survival factors.