Int. J. Mol. Sci. 2013, 14, 4982-5012; doi:10.3390/ijms14034982
OPEN ACCESS
International Journal of
Molecular Sciences
ISSN 1422-0067
Review
p53 and Ceramide as Collaborators in the Stress Response
Rouba Hage-Sleiman 1,2,*, Maria O. Esmerian 1,2, Hadile Kobeissy 2 and Ghassan Dbaibo 1,2
1
Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: [email protected] (M.O.E.); [email protected] (G.D.)
2
Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail: [email protected]
* Author to whom correspondence should be addressed; E-Mail: [email protected];
Tel.: +961-1-350-000 (ext. 4883).
Received: 26 December 2012; in revised form: 22 January 2013 / Accepted: 1 February 2013 / Published: 1 March 2013
Abstract: The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this “tumor suppressor lipid”, ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling. Furthermore, after highlighting the role and mechanism of action of p53 in apoptosis, we review the association of ceramide and p53 with respect to apoptosis.
Strikingly, the hypothesis for a direct interaction between ceramide and p53 is less favored.
Recent data suggest that ceramide can act either upstream or downstream of p53 protein through posttranscriptional regulation or through many potential mediators, respectively.
Keywords: ceramide; p53; apoptosis; sphingolipids; mitochondria; signaling; Bcl2 family; caspase
Int. J. Mol. Sci. 2013, 14
4983
1. Introduction
Ceramide is a key sphingolipid that acts as a second messenger for multiple extracellular stimuli to mediate many cellular processes. Ceramide signaling, conserved throughout evolution, was found to be involved in death signaling in many systems. Since yeast cells undergo a cell death mechanism that resembles apoptosis, the sphingomyelin pathway appears evolutionarily older than the caspase-mediated death programs described in higher organisms [1]. Most DNA damaging agents and genotoxic stressors induce apoptosis in p53-dependent pathways. However, in the absence of p53, programmed cell death proceeds and is partly mediated by the “tumor suppressor lipid”, ceramide. Nevertheless, many stimuli can cause p53-dependent ceramide accumulation leading to cell death. In this review, we intend to focus on the role of ceramide in signaling pathways of apoptosis and try to shed light on its relation with p53.
2. Ceramide Biosynthesis
Ceramide is an N-acylsphingosine consisting of a fatty acid bound to the amino group of the sphingoid base, sphingosine. In general, ceramides are usually found with mono-unsaturated or saturated fatty acids of various lengths that significantly alter their physical properties. Many natural ceramides are being isolated and might be of therapeutic importance such as cameroonemide A from the plant Helichrysum cameroonense [2] and ceramide/cerebroside from the stem bark of Ficus mucuso [3]. Ceramides with 16–24 carbon fatty acyl chains are the most commonly found in mammalian cellular membranes. Depending on the cell type and stimulus, ceramide is generated by three major pathways (Figure 1). First, in the cell membrane, sphingomyelin can be broken down to ceramide in a reaction catalyzed by sphingomyelinases (neutral, acidic, or alkaline). Second, the de novo synthesis of ceramide occurs by the condensation of palmitate and serine to form 3-keto-dihydrosphingosine that is further reduced to dihydrosphingosine. This pathway, generating ceramide from less complex molecules, is catalyzed by the enzyme serine palmitoyl transferase (SPT) and occurs in the endoplasmic reticulum (ER). Dihydrosphingosine is then acylated by the enzyme (dihydro) ceramide synthase (CerS) of which there are 6 isoforms (CerS1-6) to produce dihydroceramide [4]. In its turn, dihydroceramide is then converted to ceramide by the dihydroceramide desaturase enzyme and transported to the Golgi by either vesicular trafficking or by
the ceramide transfer protein CERT [5]. Endoplasmic reticulum–trans-Golgi membrane contacts are required for nonvesicular ceramide transport. These contact sites facilitate the transfer of newly synthesized ceramide from ER to sphingomyelin synthase (SMS) located at the trans-Golgi via CERT [5].
The third pathway is termed the salvage pathway. It contributes from 50% to 90% of sphingolipid biosynthesis, and occurs through the breakdown of complex sphingolipids and glycosphingolipids in acidic cellular compartments such as the late endosomes and lysosomes, to produce sphingosine. For instance, sphingomyelin can be converted to ceramide by acid sphingomyelinase, encoded by a distinct gene than that of neutral sphingomyelinase [6]. Furthermore, ceramide can be hydrolyzed by acid ceramidase to form sphingosine and a free fatty acid, both of which, and unlike ceramide, are able to leave the lysosome. Ceramide synthase family members probably trap free sphingosine released from the lysosome at the surface of the endoplasmic reticulum or in its associated membranes [3,4].
Int. J. Mol. Sci. 2013, 14
4984
Figure 1. Metabolic pathways of ceramide synthesis and degradation: Names of organelles (A to D) are underlined. Names of enzymes are written in italic. Black solid arrows are used to show metabolic conversions. Blue dashed arrows indicate protein-mediated transfers. Abbreviations: SPT: Serine Palmitoyltransferase; CerS: Ceramide synthase; CERT: ceramide transfer protein. SMS: sphingomyelin synthase; A-SMase: Acid Sphingomyelinase, N-SMase: Neutral sphingomyelinase; GCS: Glucosylceramide synthase.
C. Golgi
SM
SMS
SM
Ceramide
GCS
N-SMase
D. Lysosome SM
CERT
GlcCer
B. Endoplasmic
Reticulum
- Dihydroceramide
- Ceramide
A-SMase
Ceramide
Ceramidase
Desaturase
CerS
Dihydrosphingosine
SPT
Serine + Palmitoyl-CoA
Sphingosine
Sphingosine
Ceramidase
SMS
A. Plasma Membrane
- Ceramide
- SM
N-SMase
Additional studies revealed that variation in free Mg2+ causes sustained changes in membrane phospholipids and second messengers resulting in the activation of intracellular signal transcription molecules such as NF-κB, proto-oncogenes c-fos and c-jun, MAPK and MAPKK in vascular smooth muscle cells in vitro [7]. More importantly, variations in Mg2+ cause truncation of membrane fatty acids, significant activation of sphingomyelinase (SMase) and alterations in membrane sphingomyelin leading to the release of ceramides. Consequently, because of all these modifications, apoptotic caspases become activated and mitochondrial cytochrome c is released [8–10]. Furthermore, and contrary to sphingomyelinase, SMS directly regulates cellular ceramide and diacylglycerol (DAG) levels [11]. It was recently shown that Mg2+ deficiency upregulates SMS and p53 in diverse cardiovascular tissues and cells. Mg2+-deficient environments drive the de novo synthesis of ceramide via the activation of three enzymes in the sphingolipid pathway: SPT, SMS, and CerS. The lower the Mg2+ is, the greater is the synthesis of ceramide [12].
Although the cytoplasmic generated ceramide was described to play important roles in mediating signaling pathways, membrane ceramide share equivalent importance in mediating cellular pathways and functional processes. For instance, ceramide generated at the exoplasmic leaflet of the plasma membrane self-associates and mediates the formation of ceramide-rich platforms (CRPs) with diameters of 200 nm up to several microns. These macrodomains are thought to derive from
Int. J. Mol. Sci. 2013, 14
4985
sphingolipid and cholesterol-enriched rafts and seem to be active sites for protein oligomerization during transmembrane signaling [13]. However, some exceptions exist where membrane ceramide does not participate in signaling. For instance, in the breast cancer cell line MCF7, ceramide generation at the outer leaflet of the plasma membrane following the exogenous addition of bacterial sphingomyelinase does not induce cell death [14–16].
3. Ceramide and Cellular Signaling
Ceramide accumulates under specific conditions to play an important role in signaling pathways.
Indeed, ceramide is a topological cell-signaling lipid that forms functionally distinct endomembrane structures and vesicles termed “sphingosome” that organize into a specialized apical compartment in polarized cells [17]. In general, growth factors, chemical agents, and environmental stresses generate ceramide in order to mediate proliferation, membrane receptor functions, immune inflammatory responses, differentiation, cell adhesion, growth arrest, or apoptosis [6,12,18–20]. Furthermore, there is evidence that ceramide mediates another terminal cellular event, senescence [21]. Indeed, ceramide contributes to senescence by activating the growth suppressor pathway through retinoblastoma (Rb) dephosphorylation and the mitogenic pathway mediated by c-Fos and AP-1 [22]. Moreover, ceramide can regulate other cellular mechanisms such as phagocytosis and autophagy. First, permeable C(6)-ceramide increases the cellular levels of endogenous ceramides via a sphingosine-recycling pathway leading to enhanced phagocytosis by Kupffer cell [23]. Second, MCF7 cells deficient in autophagy protein that were sensitive to photodynamic therapy presented an increase in ceramide levels [24]. In some cases, inhibiting the ceramide apoptotic pathway may lead to autophagy. For example, prostate cancer cell lines overexpressing acid ceramidase (AC) are resistant to ceramide-induced apoptosis because of the conversion of ceramide to sphingosine and consequently to the antiapoptotic sphingosine 1-phosphate. These cells were also found to have increased lysosomal density and increased levels of autophagy [25].
In addition to all the previously described roles, ceramide is involved in vesicular transport systems.
Under normal physiological conditions, the binding of transferrin to its receptor generates ceramide at the cell surface through the activation of acid sphingomyelinase [26]. Ceramide self-assembles into domains that laterally sort transferrin receptors to clathrin-coated pits for endocytosis [26]. It was shown that in the absence of ceramide, lipid rafts take over to complete some mechanims. Under abnormal conditions where ceramide cannot be generated, transferrin/transferrin receptor complex translocates to the lipid rafts of the plasma membrane where it internalizes by clathrin-independent pathway [26]. Furthermore, in a recent study by Castro et al., it was shown that ligand-bound Fas receptors oligomerize in lipid rafts independent of ceramide [27].
3.1. Ceramide and Hypoxia/Hyperoxia
Both hypoxia and hyperoxia are common stressors to which human and animal cells are exposed in the course of diseases and their treatment. Many studies were conducted to determine the effects of hypoxia or hyperoxia on ceramide. First, it was shown that upon exposure to chronic hypoxia, the myocardial mass was increased in a rat and mouse models of cyanotic congenital heart disease due to compensatory cardiac proliferation in the right ventricle (RV) [28,29]. This phenotype was
Int. J. Mol. Sci. 2013, 14
4986
associated with the absence of apoptosis, the relative decrease in total ceramide, specifically N-palmitoyl-D-erythro-sphingosine (C16-Cer) levels [30], and the significant increase of the precursor dihydro-N-palmitoyl-D-erythro-sphinganine (DHC16) in the RV. These findings suggested that dihydroceramide, and not only ceramide, plays a role in the RV adaptive response to hypoxia manifested by the survival of rat and mouse cardiomyocytes [29]. Studies in cultured cells exposed to hypoxia yielded different results compared to animal models. In a recent study done on H-SY5Y neuroblastoma cells, it was shown that hypoxia increased the ceramide concentration through de novo pathway and subsequently apoptosis was induced, with DNA fragmentation and ADP-ribose polymerase (PARP) cleavage [31]. In another study, the effect of hyperoxia was investigated on neonatal rat lung. It was shown that exposure to short term hyperoxia (3 days) induced apoptosis despite the increase in Bcl-2 through de novo synthesis of ceramide and overexpression of Bax. After 7 days of hyperoxia, animals adapted and survived the high oxygen levels by returning ceramide to baseline levels and reducing Bax and Bcl-2. However, prolonged hyperoxia (14 days) resulted in acute lung injury and absence of apoptosis despite the rise observed in Bax and ceramide levels probably because of a concomitant increase in the expression of Bcl-2 [32].
3.2. Ceramide Accumulation and Cell Death
Apoptosis occurs through either an intrinsic mitochondrial or an extrinsic death receptor pathway [33]. In the mitochondrial pathway, mitochondria are targeted either directly or through transduction by proapoptotic members of the Bcl-2 family, such as Bax and Bak. The mitochondria then release the apoptogenic protein cytochrome c leading to caspase activation and apoptosis. In the death receptor pathway, following the ligand binding, the receptors (Fas and tumor necrosis factor TNF) located at the cellular membrane recruit adaptor proteins such as Fas-Associated Death Domain (FADD) that then recruit pro-caspases, e.g., procaspase 8, which become activated upon clustering to initiate a caspase cascade. A crosstalk between both pathways is mediated via Bid, which becomes cleaved by apical caspases to target the mitochondria, and probably other still unknown factors [34].
The involvement of ceramide in apoptotic pathways has been widely studied. Sphingomyelin (SM), an immediate precursor to ceramide, is an important participant in key signal transduction pathways [35]. SM is localized mostly in the outer leaflet of the plasma membrane. Additionally, since SM gets synthesized in the cis and medial Golgi apparatus, the signaling pool of SM resides also in the inner leaflet of the plasma membrane or on the cytoplasmic face of a subcellular fraction (such as Golgi or endosomes) [36]. Indeed, many signaling lipid-regulated enzymes and lipases are associated with the inner leaflet of the plasma membrane; these include the ceramide-activated protein kinase C zeta (PKCz) [37] and ceramide-activated protein phosphatase (CAPP), as well as phospholipases C and A2 [35]. The exogenous use of bacterial sphingomyelinase allowed the examination of the role of outer leaflet sphingomyelin in inducing apoptotic signaling. Under these conditions, it was found that the generated ceramide was not enough to induce apoptotic responses [27]. The outer leaflet plasma membrane ceramide is associated with inhibition of PKC-induced nuclear factor-κB (NF-κB) activation [38], and of platelet-derived growth factor-induced phosphatidyl 3-kinase activity [39]. Thus, ceramide action appears to be compartmentalized. Indeed, when ceramide was generated endogenously by targeting bacterial sphingomyelinase to the mitochondria in MCF7 cells, it led to
Int. J. Mol. Sci. 2013, 14
4987
apoptosis marked with the death substrate poly (ADP-ribosyl) polymerase (PARP) cleavage [14]. However, when it was targeted to other compartments of the cell, no apoptosis was observed [14]. In this case, bacterial sphingomyelinase acts on both the inner and outer mitochondrial membrane pool of SM and the ceramide generated in either mitochondrial membrane can flip-flop from one leaflet to the other [7]. Furthermore, mitochondrial ceramide generation induces intrinsic apoptosis mediated by cytochrome c release. However, all these apoptotic events can be prevented by overexpression of Bcl-2s [14].
Under the same concept of implication of ceramide in cell death, several recent studies have shown that the biosynthetic pathway for ceramide generation differs depending on the type of cell and stimulus. Furthermore, depending on other cellular conditions, the generated ceramide can play dual functions inducing apoptosis or resulting in prosurvival according to its context of expression and to the cell type. For example, ionizing radiation (IR) induces de novo synthesis of ceramide and triggers HeLa cell apoptosis by specifically activating ceramide synthase isoforms 5 and 6 that preferentially generate C16 ceramide [40]. In these same cells, ceramide synthase 2 plays a protective role through the generation of C24 ceramides [40]. In another study using human monocytes U937, C16 ceramide was also shown to play an apoptotic role. Apoptosis was triggered by incubating these cells with palmitate. This resulted in an increase in cellular C16 ceramide and sphingomyelin, a decrease in reduced glutathione, and increase in reactive oxygen species (ROS) [41]. C16 ceramide was also described as crucial to induce the mitochondrial-mediated apoptosis observed in the adipose triglyceride lipase (Atgl−/−) null macrophages [42]. Contrary to these two previous studies, in squamous cell carcinomas (HNSCCs), C16 ceramide generated by CerS6 plays prosurvival antiapoptotic roles via ATF6/CHOP in response to endoplasmic reticulum-stress-induced apoptosis [43]. Similarly, C18 ceramide de novo synthesized by ceramide synthase 1 mediates the protective apoptotic response in human head and neck cancer instead of C16 ceramides in response to ER-stress and chemotherapy [44]. It was further shown that CerS1 gets cleaved and translocated from the endoplasmic reticulum to the Golgi apparatus with the help of protein kinase C in order to generate these ceramides [45]. All these findings shed light on the significance of the species of ceramide that is generated mediating a different cellular response according to the cell and stimulus types respectively.
In addition to de novo synthesis, ceramide can be generated by the sphingomyelinase pathways in response to apoptotic stimuli. This was shown in mitochondria of aged hearts where ceramide accumulated via the hydrolysis of sphingomyelin by neutral sphingomyelinase (N-SMase) [46]. In other cases, both pathways can be used simultaneously. For instance, in melanoma, interleukin-24 induces an ER stress triggered apoptotic response via the de novo synthesis of ceramide and acid sphingomyelinase (A-SMase) activity. In this context, activated protein phosphatase 2A (PP2A) was described to act downstream of the generated ceramide (Figure 2) contributing to apoptosis by dephosphorylation of antiapoptotic Bcl-2 and the Bcl-2 kinase PKCα [47].
Ceramide accumulation is often accompanied by ROS generation. In addition, ceramide can induce cell death through both caspase-dependent and caspase-independent mechanisms as described in mesenchymal stem cells derived from human adipose tissue (hASCs) [48]. Changes in endogenous levels of ceramide occur in the first stages of apoptosis such as activation of the initiator caspases, caspase 8, 9, and 10, and usually prior to the activation of the executioner caspases such as caspase 3, 6, and 7 [14]. Indeed, upon mitochondrial ceramide accumulation, cytosolic cytochrome c gets
Int. J. Mol. Sci. 2013, 14
4988
released from the mitochondria through ceramide channels [49]. In the cytosol, it forms a complex with Apaf-1 and procaspase 9, resulting in activation of caspase 9, which then activates other caspases (Figure 2), such as caspase 3, to control the execution of programmed cell death [14].
Figure 2. Mitochondrial apoptotic pathway involving p53 and ceramide in response to
stress: Ceramide activates protein phosphatase 2A (PP2A) which dephosphorylates Bcl-2 and inhibits its antiapoptotic activity. Ceramide generated in the endoplasmic reticulum translocates to the mitochondria. Additionally, another pool of ceramide can be generated in the mitochondria. On the other hand, nuclear p53 activates the transcription of proapoptotic genes (Puma, Noxa, Bax and Bak). Bak elevates the activity of ceramide synthase in the mitochondrial outer membrane. Mitochondrial ceramides form large stable barrel-like channels either alone or with Bax. These channels are used to release cytochrome c to the cytoplasm resulting in activation of caspases and execution of apoptosis. Cytoplasmic p53 interacts with Bcl-xL in the mitochondria preventing it from
disassembling ceramide and Bax channels. Puma and Noxa bind to antiapoptotic Bcl-2 family proteins freeing Bax and/or Bak from them. Noxa is also involved in the mitochondrial p53 and ceramide-dependent apoptosis but the specific pathway is still unclear.
STRESS p53
Puma
Noxa
Bcl-xl
Bcl-2 p53
Bax
Bak
?
Bax Channel
?
Ceramide
PP2A
Ceramide Channel Activation
Caspases
APOPTOSIS