Biomolecules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
P53 and Ceramide As Collaborators in the Stress Response
Int. J. Mol. Sci. 2013, 14, 4982-5012; doi:10.3390/ijms14034982 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review p53 and Ceramide as Collaborators in the Stress Response Rouba Hage-Sleiman 1,2,*, Maria O. Esmerian 1,2, Hadile Kobeissy 2 and Ghassan Dbaibo 1,2 1 Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: [email protected] (M.O.E.); [email protected] (G.D.) 2 Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +961-1-350-000 (ext. 4883). Received: 26 December 2012; in revised form: 22 January 2013 / Accepted: 1 February 2013 / Published: 1 March 2013 Abstract: The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this “tumor suppressor lipid”, ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling. -
Targeting Cancer Metabolism to Resensitize Chemotherapy: Potential Development of Cancer Chemosensitizers from Traditional Chinese Medicines
cancers Review Targeting Cancer Metabolism to Resensitize Chemotherapy: Potential Development of Cancer Chemosensitizers from Traditional Chinese Medicines Wei Guo, Hor-Yue Tan, Feiyu Chen, Ning Wang and Yibin Feng * School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 00000, China; [email protected] (W.G.); [email protected] (H.-Y.T.); [email protected] (F.C.); [email protected] (N.W.) * Correspondence: [email protected] Received: 22 December 2019; Accepted: 3 February 2020; Published: 10 February 2020 Abstract: Cancer is a common and complex disease with high incidence and mortality rates, which causes a severe public health problem worldwide. As one of the standard therapeutic approaches for cancer therapy, the prognosis and outcome of chemotherapy are still far from satisfactory due to the severe side effects and increasingly acquired resistance. The development of novel and effective treatment strategies to overcome chemoresistance is urgent for cancer therapy. Metabolic reprogramming is one of the hallmarks of cancer. Cancer cells could rewire metabolic pathways to facilitate tumorigenesis, tumor progression, and metastasis, as well as chemoresistance. The metabolic reprogramming may serve as a promising therapeutic strategy and rekindle the research enthusiasm for overcoming chemoresistance. This review focuses on emerging mechanisms underlying rewired metabolic pathways for cancer chemoresistance in terms of glucose and energy, lipid, amino acid, and nucleotide metabolisms, as well as other related metabolisms. In particular, we highlight the potential of traditional Chinese medicine as a chemosensitizer for cancer chemotherapy from the metabolic perspective. The perspectives of metabolic targeting to chemoresistance are also discussed. -
Správa O Činnosti Organizácie SAV Za Rok 2013
Ústav normálnej a patologickej fyziológie SAV Správa o činnosti organizácie SAV za rok 2013 Bratislava január 2014 Obsah osnovy Správy o činnosti organizácie SAV za rok 2013 1. Základné údaje o organizácii 2. Vedecká činnosť 3. Doktorandské štúdium, iná pedagogická činnosť a budovanie ľudských zdrojov pre vedu a techniku 4. Medzinárodná vedecká spolupráca 5. Vedná politika 6. Spolupráca s VŠ a inými subjektmi v oblasti vedy a techniky 7. Spolupráca s aplikačnou a hospodárskou sférou 8. Aktivity pre Národnú radu SR, vládu SR, ústredné orgány štátnej správy SR a iné organizácie 9. Vedecko-organizačné a popularizačné aktivity 10. Činnosť knižnično-informačného pracoviska 11. Aktivity v orgánoch SAV 12. Hospodárenie organizácie 13. Nadácie a fondy pri organizácii SAV 14. Iné významné činnosti organizácie SAV 15. Vyznamenania, ocenenia a ceny udelené pracovníkom organizácie SAV 16. Poskytovanie informácií v súlade so zákonom o slobodnom prístupe k informáciám 17. Problémy a podnety pre činnosť SAV PRÍLOHY A Zoznam zamestnancov a doktorandov organizácie k 31.12.2013 B Projekty riešené v organizácii C Publikačná činnosť organizácie D Údaje o pedagogickej činnosti organizácie E Medzinárodná mobilita organizácie Správa o činnosti organizácie SAV 1. Základné údaje o organizácii 1.1. Kontaktné údaje Názov: Ústav normálnej a patologickej fyziológie SAV Riaditeľ: RNDr. Oľga Pecháňová, DrSc. Zástupca riaditeľa: MUDr. Fedor Jagla, CSc. Vedecký tajomník: RNDr. Iveta Bernátová, DrSc. Predseda vedeckej rady: RNDr. Iveta Bernátová, DrSc. Členovia snemu SAV: MUDr. Fedor Jagla, CSc., MUDr. Igor Riečanský, PhD. Adresa: Sienkiewiczova 1, 813 71 Bratislava http://www.unpf.sav.sk Tel.: 02/32296063 Fax: E-mail: [email protected] Názvy a adresy detašovaných pracovísk: nie sú Vedúci detašovaných pracovísk: nie sú Typ organizácie: Rozpočtová od roku 1953 1.2. -
Environmental Influences on Endothelial Gene Expression
ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community. -
Acute and Chronic Complications
Uniwersytet Medyczny w Łodzi Medical University of Lodz https://publicum.umed.lodz.pl Higher Blood Glucose Variability is Associated with Increased Risk of Hypoglycemia Publikacja / Publication in Well or Poorly Controlled Type 1 or Type 2 Diabetes, Czupryniak Leszek, Borkowska Anna, Szymańska-Garbacz Elektra DOI wersji wydawcy / Published http://dx.doi.org/10.2337/db17-381-663 version DOI Adres publikacji w Repozytorium URL / Publication address in https://publicum.umed.lodz.pl/info/article/AML063ddbabfba14480a6e45b1d944e1ccd/ Repository Data opublikowania w Repozytorium 2020-08-31 / Deposited in Repository on Rodzaj licencji / Type of licence Other open licence Czupryniak Leszek, Borkowska Anna, Szymańska-Garbacz Elektra : Higher Blood Glucose Variability is Associated with Increased Risk of Hypoglycemia in Well or Cytuj tę wersję / Cite this version Poorly Controlled Type 1 or Type 2 Diabetes, Diabetes, vol. 66, no. Suppl. 1, 2017, pp. 103-104, DOI:10.2337/db17-381-663 COMPLICATIONS—HYPOGLYCEMIA COMPLICATIONS—HYPOGLYCEMIA an activating role of SAMSN1, L-triiodothyronine, IFNA4, JAK1 and mTORC1, and an inhibitory action of BDNF, POR, ESR1, CTNNB1 and ERG on the gene networks identified in our samples. Moderated Poster Discussion: Hypoglycemia—Novel Concepts Our study for the first time characterizes the transcriptional responses (Posters: 381-P to 386-P), see page 19. of the BBB compartment to recurrent hypoglycemia exposure and may help identify novel therapeutic targets to restore the impaired responses against 381‑P hypoglycemia in patients with type 1 diabetes. & Supported By: National Institutes of Health; JDRF Hypoglycemia‑Associated Autonomic Failure Is Associated with POSTERS Complications Coordinated miRNA‑mRNA Network Changes in the Ventromedial Acute and Chronic Hypothalamus & 383‑P RAHUL AGRAWAL, CASEY TAYLOR, ADRIANA VIEIRA-DE-ABREU, SIMON J. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
PDF (Ph.D.Thesis)
The biological and clinical characterisation and validation of novel biomarkers in colorectal cancer Seán Fitzgerald B.Sc., M.Sc. This thesis is submitted to Dublin City University for the degree of Ph.D. July 2015 Based on research carried out at School of Biotechnology, Dublin City University, Dublin 9, Ireland. Supervisors: Professor Richard O’Kennedy Dr. Gregor Kijanka External Supervisor: Professor Elaine Kay Department of Pathology, RCSI, Beaumont Hospital. i Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Ph.D. is entirely my own work, that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ____________ ID No.: ___________ Date: _______ ii Acknowledgements Firstly, I would like to express my sincere gratitude and appreciation to my supervisors Prof. Richard O’Kennedy, Prof. Elaine Kay and Dr. Gregor Kijanka. This thesis would not have been possible without the expert advice and guidance that I received from each of you, both on an academic and personal level. I am especially grateful to Dr. Gregor Kijanka for his endless guidance, wisdom and friendship throughout my PhD. I would like to thank all the members of the Applied Biochemistry Group and the School of Biotechnology in DCU for their help, support and friendship over the last few years. -
Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened. -
A Selective Inhibitor of Ceramide Synthase 1 Reveals a Novel Role in Fat Metabolism
ARTICLE DOI: 10.1038/s41467-018-05613-7 OPEN A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism Nigel Turner1, Xin Ying Lim2,3, Hamish D. Toop 4, Brenna Osborne 1, Amanda E. Brandon5, Elysha N. Taylor4, Corrine E. Fiveash1, Hemna Govindaraju1, Jonathan D. Teo3, Holly P. McEwen3, Timothy A. Couttas3, Stephen M. Butler4, Abhirup Das1, Greg M. Kowalski 6, Clinton R. Bruce6, Kyle L. Hoehn 7, Thomas Fath1,10, Carsten Schmitz-Peiffer8, Gregory J. Cooney5, Magdalene K. Montgomery1, Jonathan C. Morris 4 & Anthony S. Don3,9 1234567890():,; Specific forms of the lipid ceramide, synthesized by the ceramide synthase enzyme family, are believed to regulate metabolic physiology. Genetic mouse models have established C16 ceramide as a driver of insulin resistance in liver and adipose tissue. C18 ceramide, syn- thesized by ceramide synthase 1 (CerS1), is abundant in skeletal muscle and suggested to promote insulin resistance in humans. We herein describe the first isoform-specific ceramide synthase inhibitor, P053, which inhibits CerS1 with nanomolar potency. Lipidomic profiling shows that P053 is highly selective for CerS1. Daily P053 administration to mice fed a high- fat diet (HFD) increases fatty acid oxidation in skeletal muscle and impedes increases in muscle triglycerides and adiposity, but does not protect against HFD-induced insulin resis- tance. Our inhibitor therefore allowed us to define a role for CerS1 as an endogenous inhibitor of mitochondrial fatty acid oxidation in muscle and regulator of whole-body adiposity. 1 School of Medical Sciences, UNSW Sydney, Sydney 2052 NSW, Australia. 2 Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney 2052 NSW, Australia. -
Investigation of Adiposity Phenotypes in AA Associated with GALNT10 & Related Pathway Genes
Investigation of Adiposity Phenotypes in AA Associated With GALNT10 & Related Pathway Genes By Mary E. Stromberg A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY In Molecular Genetics and Genomics December 2018 Winston-Salem, North Carolina Approved by: Donald W. Bowden, Ph.D., Advisor Maggie C.Y. Ng, Ph.D., Advisor Timothy D. Howard, Ph.D., Chair Swapan Das, Ph.D. John P. Parks, Ph.D. Acknowledgements I would first like to thank my mentors, Dr. Bowden and Dr. Ng, for guiding my learning and growth during my years at Wake Forest University School of Medicine. Thank you Dr. Ng for spending so much time ensuring that I learn every detail of every protocol, and supporting me through personal difficulties over the years. Thank you Dr. Bowden for your guidance in making me a better scientist and person. I would like to thank my committee for their patience and the countless meetings we have had in discussing this project. I would like to say thank you to the members of our lab as well as the Parks lab for their support and friendship as well as their contributions to my project. Special thanks to Dean Godwin for his support and understanding. The umbrella program here at WFU has given me the chance to meet some of the best friends I could have wished for. I would like to also thank those who have taught me along the way and helped me to get to this point of my life, with special thanks to the late Dr. -
Effects of Ceramide Synthase 2 Deletion on the Infectivity of HIV-1
Effects of ceramide synthase 2 deletion on the infectivity of HIV-1 Eric Barklis1*, Ayna Alfadhli1, Jennifer E. Kyle2, Lisa M. Bramer3, Kent J. Bloodsworth2, Robin Lid Barklis1, Hans C. Leier1, R. Max Petty1, Iris D. Zelnik4, Thomas O. Metz2, Anthony H. Futerman4, Fikadu G. Tafesse1* 1Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA 2Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA 3Computing and Analytics Division, National Security Directorate PNNL, Richland, WA, USA 4Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel * Corresponding authors: Eric Barklis and Fikadu G. Tafesse Email: [email protected], [email protected] Running title: Ceramide synthase 2 effects on HIV-1 Env Keywords: ceramide, ceramide synthase, sphingolipid, human immunodeficiency virus (HIV), fusion protein 1 ABSTRACT The lipid composition of human immunodefiency virus 1 (HIV-1) virions is enriched in sphingomyelin, but the roles that sphingomyelin or other sphingolipids might play in the HIV-1 replication pathway have not been elucidated. In human cells, sphingolipid levels are regulated by ceramide synthase (CerS) enzymes that lead to the production of ceramides, which can be converted to sphingomyelins, hexosylceramides, and other sphingolipids. In many cell types, CerS2, which catalyzes the synthesis of very long chain ceramides, is the major CerS. We have examined how CerS2 deficiency affects the assembly and infectivity of HIV-1. As expected, we observed that very long chain ceramide, hexosylceramide, and sphingomyelin levels were reduced in CerS2 knockout cells. CerS2 deficiency did not affect HIV-1 assembly or the incorporation of the HIV-1 envelope (Env) protein into virus particles, but it reduced the infectivites of viruses produced in the CerS2-deficient cells. -
Sphingolipids
Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency Stefka D. Spassievaa,1, Xiaojie Jib,c,1, Ye Liub, Kenneth Gabled, Jacek Bielawskie, Teresa M. Dunnd, Erhard Bieberichf, and Lihong Zhaob,2 aDepartment of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843; bThe Jackson Laboratory, Bar Harbor, ME 04609; cGraduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469; dDepartment of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; eDepartment of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425; and fDepartment of Neuroscience and Regenerative Medicine, Medical College of Georgia/Augusta University, Augusta, GA 30912 Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved April 13, 2016 (received for review December 7, 2015) Sphingolipids exhibit extreme functional and chemical diversity suggested to cause apoptosis in certain cancer cells, whereas that is in part determined by their hydrophobic moiety, ceramide. ceramide with a C16 fatty acyl chain (C16 ceramide) has been In mammals, the fatty acyl chain length variation of ceramides is considered prosurvival (10–12). The ceramide profile changes in determined by six (dihydro)ceramide synthase (CerS) isoforms. aging and neurodegenerative brains, but whether these alterations Previously, we and others