The Pathogenicity of Fusarium Spp. to Wheat Stem Sawfly

Total Page:16

File Type:pdf, Size:1020Kb

The Pathogenicity of Fusarium Spp. to Wheat Stem Sawfly THE PATHOGENICITY OF FUSARIUM SPP. TO WHEAT STEM SAWFLY, Cephus cinctus NORTON (HYMENOPTERA: CEPHIDAE) by Zhitan Sun A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Sciences MONTANA STATE UNIVERSITY Bozeman, Montana February 2008 ©COPYRIGHT by Zhitan Sun 2008 All Rights Reserved ii APPROVAL of a dissertation submitted by Zhitan Sun This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. David K. Weaver (Chairperson, Graduate Committee) Dr. Alan T. Dyer (Co-chairperson, Graduate Committee) Approved for the Department of Plant Sciences and Plant Pathology Dr. John E. Sherwood Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microform along with the non- exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Zhitan Sun February 2008 iv ACKNOWLEDGEMENTS I am indebted to my graduate committee, David K. Weaver, William E. Grey, Alan T. Dyer, Wendell L. Morrill, and Robert C. Maher, for the mentoring and support through this program. I am grateful to Bob Johnston, Andy Hogg, Megan Hofland, Norma Irish, Kevin Delaney, Oscar Perez, Micaela Buteler, Godshen Robert, Robert Peterson, Jeanie Peterson, and Jenny Marquez for their technical assistance. I am thankful to my parents, Jinsheng Sun and Fenglan Meng, for their encouragement and support during my graduate studies. I would like to acknowledge Dave Carlson, Steve Keel, John van Dyke, and Ross Depner for allowing us to collect wheat samples from their farms. I would also like to acknowledge funding from these sources: the Montana Wheat and Barley Committee, the Montana Agricultural Experiment Station, the USDA- CSREES Special Research Grants Program, and the Montana Board of Research and Commercialization Technology. v TABLE OF CONTENTS 1. INTRODUCTION.........................................................................................................1 Wheat Stem Sawfly Damage........................................................................................1 Wheat Stem Sawfly Description........................................... .........................................3 Wheat Stem Sawfly Life Cycle......................................................................................4 Wheat Stem Sawfly Control Methods...........................................................................8 Resistant Cultivars...................................................................................................9 Cultural Control.....................................................................................................11 Trap Crops.......................................................................................................11 Crop Rotation...................................................................................................12 Delayed Seeding..............................................................................................12 Tillage..............................................................................................................12 Swathing..........................................................................................................13 Burning............................................................................................................13 Sheep Grazing ................................................................................................14 Chemical Control...................................................................................................14 Biological Control..................................................................................................15 Parasitoids and Predators.................................................................................15 Pheromone Traps.............................................................................................19 Plant Semiochemicals......................................................................................20 Fusarium Species.............................................................................................21 Research Goals..............................................................................................................27 References....................................................................................................................28 2. INCIDENCE OF FUSARIUM COLONIZATION IN THE OVERWINTERING MORTALITY OF LARVAL WHEAT STEM SAWFLIES, Cephus cinctus NORTON............................................................................................41 Abstract........................................................................................................................41 Introduction..................................................................................................................41 Materials and Methods.................................................................................................44 Sawfy Larvae in Diapause......................................................................................44 Emergence Experiments.........................................................................................44 Field Surveys..........................................................................................................46 Fungal Isolation and Identification.........................................................................46 Statistical Analysis..................................................................................................47 Results..........................................................................................................................47 Discussion....................................................................................................................53 Acknowledgements......................................................................................................56 References....................................................................................................................57 vi TABLE OF CONTENTS- CONTINUED 3. OVERWINTER COLONIZATION OF DIAPAUSING LARVAE OF WHEAT STEM SAWFLY (HYMENOPTERA: CEPHIDAE) WITHIN STEM HIBERNACULA BY FUSARIUM SPP. ISOLATES.................................................60 Abstract.........................................................................................................................60 Introduction...................................................................................................................61 Materials and Methods..................................................................................................63 Fusarium Inoculum ................................................................................................63 Collection of Larvae in Diapause...........................................................................63 Growth Chamber Experiments...............................................................................64 Field Experiments...................................................................................................65 Statistical Analysis..................................................................................................67 Results..........................................................................................................................68 Growth Chamber Experiments...............................................................................68 Field Experiments...................................................................................................72 Discussion.....................................................................................................................77 Acknowledgements.......................................................................................................81 References.....................................................................................................................82 4. FUSARIUM SPP. ISOLATES CAUSE MORTALITY OF LARVAL WHEAT STEM SAWFLIES (HYMENOPTERA: CEPHIDAE) IN GROWING WINTER WHEAT PLANTS......................................................................................85 Abstract.........................................................................................................................85 Introduction...................................................................................................................86 Materials and Methods..................................................................................................89 Fusarium Inoculum ................................................................................................89
Recommended publications
  • Unexpectedly High Levels of Parasitism of Wheat Stem Sawfly Larvae in Postcutting Diapause Chambers Author(S) :Tatyana A
    Unexpectedly High Levels of Parasitism of Wheat Stem Sawfly Larvae in Postcutting Diapause Chambers Author(s) :Tatyana A. Rand, Debra K. Waters, Thomas G. Shanower Source: The Canadian Entomologist, 143(5):455-459. 2011. Published By: Entomological Society of Canada URL: http://www.bioone.org/doi/full/10.4039/n11-023 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 455 Unexpectedly high levels of parasitism of wheat stem sawfly larvae in postcutting diapause chambers Tatyana A. Rand, Debra K. Waters, Thomas G. Shanower Abstract*We examined rates of late-season parasitism of larvae of the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), by native species of Bracon F. (Hymenop- tera: Braconidae) over 8 years in Montana and North Dakota, United States of America. We found that rates of parasitism of larvae in diapause chambers reached a maximum of 46%, exceeding the previously reported maximum of 2.5% in 75% of sites and years examined.
    [Show full text]
  • Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2001 Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary Jerome A. Hogsette USDA-ARS Róbert Farkas Szent Istvan University Csaba Thuróczy Systematic Parasitoid Laboratory Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons Hogsette, Jerome A.; Farkas, Róbert; and Thuróczy, Csaba, "Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary" (2001). Publications from USDA-ARS / UNL Faculty. 991. https://digitalcommons.unl.edu/usdaarsfacpub/991 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BIOLOGICAL CONTROL Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary 1 2 JEROME A. HOGSETTE, RO´ BERT FARKAS, AND CSABA THURO´ CZY Center for Medical, Agricultural and Veterinary Entomology, USDAÐARS, P.O. Box 14565, Gainesville, FL 32604 Environ. Entomol. 30(1): 107Ð111 (2001) ABSTRACT This Þeld survey, the second noting the occurrence and diversity of Þlth ßy pupal parasitoid fauna in Hungary, was performed on beef and dairy feedlots and swine facilities in the southern and eastern parts of the country.
    [Show full text]
  • DISPERSAL and SAMPLING of the WHEAT STEM SAWFLY, <I>
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 4-2016 DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, Cephus cintus NORTON, (HYMENOPTERA: CEPHIDAE) Christopher McCullough University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons McCullough, Christopher, "DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, Cephus cintus NORTON, (HYMENOPTERA: CEPHIDAE)" (2016). Dissertations and Student Research in Entomology. 41. http://digitalcommons.unl.edu/entomologydiss/41 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, CEPHUS CINTUS NORTON, (HYMENOPTERA: CEPHIDAE) By Christopher T. McCullough A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Entomology Under the Supervision of Professors Jeffery D. Bradshaw and Gary L. Hein Lincoln, Nebraska May 2016 DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, CEPHUS CINTUS NORTON, (HYMENOPTERA: CEPHIDAE) Christopher T. McCullough, M.S. University of Nebraska, 2016 Advisors: Jeffery D. Bradshaw and Gary L. Hein The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a serious insect pest of wheat, Triticum aestivum L., in the northern central Great Plains.
    [Show full text]
  • ESA 2 0 14 9-12 March 2014 Des Moines, Iowa 2014 NCB-ESA Corporate Sponsors CONTENTS
    NCB ESA 2 0 14 9-12 March 2014 Des Moines, Iowa 2014 NCB-ESA Corporate Sponsors CONTENTS Meeting Logistics ....................................................1 2014 NCB-ESA Officers and Committees .................5 2014 Award Recipients ...........................................7 Sunday, 9 March 2014 At-a-Glance ..................................................18 Afternoon .....................................................19 Monday, 10 March 2014 At-a-Glance ..................................................23 Posters .........................................................25 Morning .......................................................30 Afternoon .....................................................35 Tuesday, 11 March 2014 At-a-Glance ..................................................45 Posters .........................................................47 Morning .......................................................51 Afternoon .....................................................55 Wednesday, 12 March 2014 At-a-Glance ..................................................60 Morning .......................................................61 Author Index ........................................................67 Scientific Name Index ...........................................77 Keyword Index ......................................................82 Common Name Index ...........................................83 Map of Meeting Facilities ..............inside back cover i MEETING LOGISTICS Registration All participants must register
    [Show full text]
  • Online Dictionary of Invertebrate Zoology Parasitology, Harold W
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Armand R. Maggenti Online Dictionary of Invertebrate Zoology Parasitology, Harold W. Manter Laboratory of September 2005 Online Dictionary of Invertebrate Zoology: P Mary Ann Basinger Maggenti University of California-Davis Armand R. Maggenti University of California, Davis Scott Gardner [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/onlinedictinvertzoology Part of the Zoology Commons Maggenti, Mary Ann Basinger; Maggenti, Armand R.; and Gardner, Scott, "Online Dictionary of Invertebrate Zoology: P" (2005). Armand R. Maggenti Online Dictionary of Invertebrate Zoology. 9. https://digitalcommons.unl.edu/onlinedictinvertzoology/9 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Armand R. Maggenti Online Dictionary of Invertebrate Zoology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Online Dictionary of Invertebrate Zoology 651 palaeartic region A zoogeographical region encompassing P Europe and northern Asia including Japan, the Middle and Near East and areas along the southern coast of the Medi- terranean Sea. palatal a. [L. palatum, palate] 1. Belonging to the outer lip. 2. P 1 In Mendel's laws, the first parental generation; parents of a (MOLL: Gastropoda) Referring to folds and lamellae of the given individual of the F 1 generation. shell. pachynema n. [Gr. pachys, thick; nema, thread] Thickened, palatal setae (ARTHRO: Insecta) In Culicidae, four small pe- paired chromosomes of meiosis prophase I, third stage; glike cibarial setae located on the anterior hard palate.
    [Show full text]
  • Musca Domestica L.) Management in Poultry
    The Pennsylvania State University The Graduate School Department of Entomology HOUSE FLY (MUSCA DOMESTICA L.) MANAGEMENT IN POULTRY PRODUCTION USING FUNGAL BIOPESTICIDES A Dissertation in Entomology by Naworaj Acharya 2015 Naworaj Acharya Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 The dissertation of Naworaj Acharya was reviewed and approved* by the following: Matthew B. Thomas Professor and Huck Scholar in Ecological Entomology Dissertation Co-Adviser Co-Chair of Committee Edwin G. Rajotte Professor of Entomology Dissertation Co-Adviser Co-Chair of Committee Mary Barbercheck Professor of Entomology Nina E. Jenkins Senior Research Associate Paul Patterson Professor of Poultry Science Gary Felton Professor of Entomology Head of the Department of Entomology *Signatures are on file in the Graduate School iii ABSTRACT House flies, Musca domestica L., are economically and medically important insect pests in poultry production facilities. Standard, chemical pesticide-based control options for flies are becoming increasingly difficult due to insecticide resistance and regulatory constraints. Biopesticides based on naturally occurring fungal pathogens could provide an alternative tool for integrated pest management (IPM) in poultry production. Here we addressed several issues related to field application, persistence and performance of fungal biopesticides against flies. We demonstrated that residual spray treatments of fungal biopesticides, Beauveria bassiana and Metarhizium anisopliae could sustainably suppress fly populations through lethal and sub-lethal impacts on reproductive output. The study developed a cost-effective field delivery system whereby teneral adult flies are targeted via the application of oil-formulated spores to the lower portions of basement walls where flies momentarily rest to harden themselves following emergence.
    [Show full text]
  • Chapter 9. Arthropods of Cereal Crops in Canadian Grasslands
    217 Chapter 9 Arthropods of Cereal Crops in Canadian Grasslands John Gavloski Manitoba Agriculture, Food and Rural Initiatives, Crops Knowledge Centre, 65 3rd Ave. NE, Carman, Manitoba, Canada R0G 0J0 Scott Meers Alberta Agriculture and Rural Development, 301 Horticultural Station Road East, S.S. #4, Brooks, Alberta, Canada T1R 1E6 Abstract. Cereal crops are a major aspect of the Canadian prairie landscape. This chapter focuses on insects of small grain cereals (wheat, oats, barley, and rye), but not on larger grains such as corn, which are less abundant on the Canadian prairies. Settlement of the Canadian prairies resulted in the replacement of vast amounts of native prairie plants with cereal crops. Many native insects adapted and flourished in this new habitat. Many alien insect species have also been accidentally introduced and are now pests of cereal crops. Other insects have been purposely introduced to regulate the populations of insect pests of cereal crops. Insect species are presented in feeding guilds in this chapter. Insects within a feeding guild feed on the same or a similar resource and may at times compete for this resource. Changes in cropping practices and varieties can also have an impact on the insect communities on cereal crops. Such interactions will also be described. Résumé. Les cultures de céréales occupent une place très importante dans le paysage des prairies canadiennes. Le présent chapitre porte principalement sur les insectes qui s’attaquent aux petites céréales (blé, avoine, orge et seigle), et non sur ceux qui se nourrissent de céréales à graines plus grosses — par exemple, le maïs — moins abondantes dans les prairies canadiennes.
    [Show full text]
  • 1 Pest Management of Wheat Stem Sawfly, Cephus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NDSU Libraries Institutional Repository PEST MANAGEMENT OF WHEAT STEM SAWFLY, CEPHUS CINCTUS NORTON (HYMENOPTERA: CEPHIDAE), IN WESTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Joseph Henry Stegmiller In Partial Fulfillment for the Degree of MASTER OF SCIENCE Major Department: Entomology November 2012 Fargo, North Dakota 1 North Dakota State University Graduate School Title PEST MANAGEMENT OF WHEAT STEM SAWFLY, CEPHUS CINCTUSNORTON (HYMENOPTERA: CEPHIDAE), IN WESTERN NORTH DAKOTA By Joseph Henry Stegmiller The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE ii SUPERVISORY COMMITTEE: Dr. Janet J. Knodel Chair Dr. David A. Rider Dr. Malcolm G. Butler Dr. David K. Weaver Approved: 11 Jan 2013 Dr. Frank Casey Date Department Chair ii ABSTRACT The wheat stem sawfly, Cephus cinctus Norton, is regarded as a major pest of dryland wheat in the Upper Great Plains. For peak emergence of wheat stem sawfly, the most accurate base was 0 C using air temperature, and then degree-day base of 0 C using soil temperatures. For Bracon cephi, the most accurate base temperature was the lower degree-day base using air (0 C) and soil (0 C) temperatures. The solid-stemmed varieties, Mott and Choteau, exhibited the highest stem solidity and also experienced the lowest percentage of wheat stem sawfly damaged stems. The hollow-stemmed varieties, Glenn, Reeder and Steele ND, had the lowest levels of solidity and usually the highest percentage of wheat stem sawfly damaged stems.
    [Show full text]
  • A Generic Classification of the Nearctic Sawflies (Hymenoptera, Symphyta)
    THE UNIVERSITY OF ILLINOIS LIBRARY rL_L_ 5 - V. c_op- 2 CD 00 < ' sturn this book on or before the itest Date stamped below. A arge is made on all overdue oks. University of Illinois Library UL28: .952 &i;g4 1952 %Po S IQ";^ 'APR 1 1953 DFn 7 W54 '•> d ^r-. ''/./'ji. Lit]—H41 Digitized by tine Internet Arciiive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/genericclassific15ross ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XV No. 2 Published by the University of Illinois Under the Auspices of the Graduate School Ukbana, Illinois 1937 EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Harley Jones Van Cleave UNIVERSITY OF ILLINOIS 1000—7-37—11700 ,. PRESS A GENERIC CLASSIFICATION OF THE NEARCTIC SAWFLIES (HYMENOPTERA, SYMPHYTA) WITH SEVENTEEN PLATES BY Herbert H. Ross Contribution No. 188 from the Entomological Laboratories of the University of Illinois, in Cooperation with the Illinois State Natural History Survey CONTENTS Introduction 7 Methods 7 Materials 8 Morphology 9 Head and Appendages 9 Thorax and Appendages 22 Abdomen and Appendages 29 Phylogeny 33 The Superfamilies of Sawflies 33 Family Groupings 34 Hypothesis of Genealogy .... 35 Larval Characters 45 - Biology 46 Summary of Phylogeny 48 Taxonomy 50 Superfamily Tenthredinoidea 51 Superfamily Megalodontoidea 106 Superfamily Siricoidea 110 Superfamily Cephoidea 114 Bibliography 117 Plates 127 Index 162 ACKNOWLEDGMENT This monograph is an elaboration of a thesis sub- mitted in partial fulfillment for the degree of Doctor of Philosophy in Entomology in the Graduate School of the University of Illinois in 1933. The work was done under the direction of Dr.
    [Show full text]
  • Impacts of Dryland Farming Systems on Biodiversity, Plant
    IMPACTS OF DRYLAND FARMING SYSTEMS ON BIODIVERSITY, PLANT- INSECT INTERACTIONS, AND ECOSYSTEM SERVICES by Subodh Adhikari A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana January 2018 ©COPYRIGHT by Subodh Adhikari 2018 All Rights Reserved ii DEDICATION To my parents, my family, and Montana friends iii ACKNOWLEDGMENTS With my sincere gratitude, I would like to thank my major adviser, Dr. Fabián Menalled, for his support, advice, encouragement, and thoughtful guidance. I am very grateful for my co-adviser Dr. Laura Burkle, and committee members, Dr. Kevin O’Neill and Dr. David Weaver for their valuable insights and continuous guidance. Thank you to Drs. Tim Seipel, Judit Barroso, Zach Miller, and Casey Delphia for their various helps. Many thanks to Robert Quinn and Seth Goodman, Mark and Patti Gasvoda, J.R. Labuda, and Frank and Liz Maxwell for providing their farms to conduct my research. My field and lab work could not have been done without the help of Madison Nixon, Ali Thornton, Jesse Hunter, Ceci Welch, Chris Larson, Wyatt Holmes, Sam Leuthold, Andrew Thorson, Kyla Crisps, Megan Hofland, Norma Irish, Katelyn Thornton, Paramjit Gill and Lori Saulsbury. My warm gratitude goes to my labmates Sean McKenzie, Nar Ranabhat, Stephen Johnson, Erin Burns, Krista Elhert, and Tessa Scott for their help and friendship; Sean was exceptional for helping and guiding. Thank you to the Graduate School, College of Agriculture, Institute on Ecosystems, and LRES department (all awesome staffs) for providing various supports to my research.
    [Show full text]
  • Increase of Acceptability Period of Musca Domestic L., 1758 (Diptera
    2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 INCREASE OF ACCEPTABILITY PERIOD OF Musca domestic L., 1758 (DIPTERA: MUSCIDAE) PUPAE, IRRADIATED BY GAMMA RADIATION AS HOST OF THE PUPAL PARASITOID Spalangia endius, Walker, 1839 (HYMENOPTERA: PTEROMALIDAE) Natanael M. Itepan1, Sara E. D. Z. Itepan2 and Valter Arthur3 1 Instituto Federal de São Paulo – IFSP - Área de Física Rua Diácono Jair de Oliveira, 1005 - Santa Rosa. 13423204 Piracicaba, SP [email protected] 2 Faculdade de Filosofia Ciências e Letras de Ribeirão Preto – FFCLRP - USP Av. Bandeirantes, 3900 05508000 Ribeirão Preto, SP. [email protected] 3Centro de Energia Nuclear na Agricultura – CENA - USP LIARE Av. Centenário, 303 13400970 Piracicaba, SP [email protected] ABSTRACT This experiment was carried out in Biological Control of Domestic Fly "Eduardo Hiroshi Mizumoto" Laboratory at Entomology and Acarology Department (LEA/ESALQ/USP) and in Food Irradiation and Radioentomology Laboratory (LIARE/CENA/USP). The gamma radiation source used was a Co-60 irradiator model Gammabeam-650 of the Atomic Energy of Canada Ltd. whose activity in the beginning of the experiments was 9.8x1013 Bq. (2,644 Ci). The lots of pupae of Musca domestic L., 1758 and the parasitoid Spalangia endius Walker, 1839 had been kept in acclimatized room with 25 ± 2°C of temperature and 70 ± 5% of relative humidity. This experiment was designed to investigate if the non-viabilization M. domestic pupae, using gamma radiation, could build up the acceptability period as host of the pupal parasitoid S.
    [Show full text]
  • The Wheat Stem Sawfly – a Nursery Tale from the Shortgrass Prairie
    The wheat stem sawfly – a nursery tale from the shortgrass prairie Brian L. Beres, J. Robert Byers, and Hector A. Cárcamo Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, AB T1J 4B1 The wheat stem sawfly Cephus cinctus Norton (Hymenoptera: Cephidae; Fig. 1), is a major pest of spring wheat in the southern Canadian prairies and the northern plains of the United States (Weiss and Morrill 1992; Fig. 2). In the Canadian population, which is adapted to spring wheat, oviposition occurs in late June and early July when the female (Fig. 3) inserts an egg into the elongating internode of a wheat stem. Stems from which the head has yet not emerged (the boot stage) are preferred (Holmes and Peterson 1960). The larva (Fig. 4) feeds within the stem until the plant is nearly mature. It then girdles Fig. 1. Male wheat stem sawfly - a historical pest of the stem at ground level, plugs the pith cavity wheat that has resurged in the prairies and overwinters in the lower part of the stem (the (photo by H. Goulet). stub). In the spring the overwintered larvae pupate Fig. 2. Area within the Northern Great Plains of North America where the wheat stem sawfly has historically caused the most economic damage. 2005 (1) 1 stubs containing larvae were collected in the fall and immediately transplanted in the nursery. Although the first crop year of the nursery was 1959, a useful sawfly population was not established until 1965. The population of the nursery remained more or less stable from 1965 through 1991, but in 1992 a severe spring drought led to late crop emergence which resulted in a phenological asynchrony between the appropri- ate crop stage and sawfly oviposition.
    [Show full text]