I SPY Section 4

Total Page:16

File Type:pdf, Size:1020Kb

I SPY Section 4 This document is part of a larger publication “I Spy – Insects of Southern Australian Broadacre Farming Systems Identification Manual and Educational Resource” (ISBN 978-0-6482692-1-2) produced under the National Invertebrate Pest Initiative (NIPI) and is subject to the disclaimers and copyright of the full version from which it was extracted. The remaining sections and the full version of this publication, as well as updates and other legal information, can be found at https://grdc.com.au/ by searching for “I SPY”. 2018 © The development of this edition of I SPY has been possible due to the financial support from: Insects of Southern Australian Broadacre Farming Systems Identification Manual and Education Resource Education Resource Manual and Identification Systems Farming Insects Broadacre of Southern Australian SECTION 4 Common Pest, Beneficial and Exotic Species Moths & Butterflies . 2 Armyworms . 4 Legend Cutworms . 7 Budworms . 11 Crop type Diamondback moth . 13 Lucerne seed web moth . 15 Cereals Beetles . 17 Cockchafers . 19 Canola (& Brassicas) True wireworms . 24 False wireworms . 26 Pulses & legumes Weevils . 28 Ladybird beetles . 31 Pasture Carabid beetles (or Ground beetles) . 33 Bugs . 35 Monitoring type Figure 4.1 An example of an aphid lifecycle (Aphis sp.) . 37 Figure 4.2 Persistent versus non-persistent transmission of viruses . 38 Observation Table 4.1 Some aphids known to transmit viruses in pulse crops . 38 Cereal aphids - Corn aphid, Oat aphid & Russian wheat aphid . 39 Sweep net Canola aphids - Cabbage aphid, Turnip aphid & Green peach aphid . 42 Pulse aphids - Blue green aphid, Pea aphid, Cow-pea aphid & Yellow sticky trap Green peach aphid . 45 Sunn pest . 47 Yellow pan trap Damsel bugs (or Nabids) . 49 Predatory bugs - Predatory shield bugs and Assassin bugs . 51 Digging Education Resource Manual and Identification Systems Farming Insects Broadacre of Southern Australian Flies . 52 Gall midges or Gall gnats - Hessian fly & Barley stem gall midge . 54 Pitfall trap Exotic leaf miners . 56 Hoverflies . 59 Pheromone trap Earwigs . 61 Light trap European earwig & Native earwigs . 62 Springtails . 65 Lucerne flea . 65 Insect status pest = blue Slugs & Snails . 67 Round snails - White Italian snail & Vineyard or common snail . 68 beneficial = green Conical snails - Small pointed snail & Pointed snail . 70 biosecurity = red Slugs - Reticulated or grey field slug & Black-keeled slug . 72 Mites . 74 F = Family Red legged earth mite . 75 SF = Superfamily Figure 4.3 Typical lifecycle of redlegged earth mites in southern Australia . 77 Blue oat mite . 78 Scale bar Balaustium mite & Bryobia mite or Clover mite . 80 10 mm 20 30 Predatory Mites . 82 adult Wasps, Bees & Ants . 83 Maximum size shown Wheat stem sawfly & European wheat stem sawfly . 84 for larva and adult Wasp parasitoids . 86 Egg parasitoids . 89 Lifecycle (starting August) Bees as pollinators . 91 A S O N D J F M A M J J Lacewings & Antlions . 92 Stage 1 Stage 2 Green lacewings & Brown lacewings . 92 Stage 3 Stage 4 Spiders . 94 © More information . 95 2018 1 SECTION 4 COMMON PEST, BENEFICIAL AND EXOTIC SPECIES MOTHS & BUTTERFLIES (Order Lepidoptera) Lepidoptera - scale (lepi); covering wing (ptera) In Australia there are about 20,800 lepidopteran species bodies, a small head covered in scales and large eyes . divided into over 80 families . Adults have a long, thin, coiled sucking tube (proboscis) which they use to feed on liquid sugar sources . They have Main characteristics multi-segmented antennae (comb-like in male moths, thread-like in female moths) . Moths usually shelter by Larva day and fly at night, unlike butterflies, which are mostly Larvae or grubs are generally elongated in form, active during the day . with three pairs of true (thoracic) legs directly behind the head . Larvae have a well-developed and Lifecycle hardened (sclerotised) head capsule and chewing Complete metamorphosis . Depending on the species, (mandibulate) mouthparts . On the front of the head females may lay a few or tens of thousands of eggs is a groove (suture) shaped like an inverted ‘V’ and a second (several hundred is typical) . Larvae develop through 4-7 suture (adfrontal) just under the ‘V’ . Most have ventral and instars (taking a few weeks or up to a few months) before anal prolegs as well as crochets (small hooks) on the base pupating . Pupation can occur on vegetation, in the soil of the prolegs . These hooks help the larva hold on to the or leaf litter and even inside wood . Many lepidopterans surface . Most larvae feed on foliage or stored products . have one or two generations per year, some breed continuously and others may take years to develop (e g. Adult (moths) Cossidae) . Adults have two pairs of large membranous wings that are completely covered with scales in regular, overlapping rows on both surfaces . They have hairy 2018 © Lepidopteran larva Side view of head Front view of head Eyespots 1st abdominal segment Cervical (neck) shield Anal proleg Hardened with (sclerotised) crotchets head capsule with Abdominal Spiracle ‘True’ leg chewing prolegs with (breathing mouthparts crochets hole) Various crochet (hook) patterns at the base of all abdominal and anal prolegs-soles on feet Source: Modified from Goodyer (1978) and CSIRO (1991) Insects of Southern Australian Broadacre Farming Systems Identification Manual and Education Resource Education Resource Manual and Identification Systems Farming Insects Broadacre of Southern Australian 2 SECTION 4 COMMON PEST, BENEFICIAL AND EXOTIC SPECIES Groups (families) relevant to broadacre Day moths (F: Agaristidae): These moths usually fly by cropping day and have visually striking colours of dark brown to black, yellow and orange . A common pest is the Cutworms, armyworms and native budworm pasture day moth, Apina calisto, usually seen in autumn . (F: Noctuidae): The larvae of this family are among For further information refer to Ute Guides, Southern the most damaging crop pests and are covered in this (p . 34)/Western (p . 33) . section on page 4-12 . Tiger moths (F: Arctiidae): Usually brightly coloured Looper caterpillars (F: Geometridae): Larvae have moths with markings of orange, red, black and/or white . a reduced number of prolegs (i e. two or three pairs Some larvae have a dense covering of tightly packed of prolegs towards their rear end) and move by a upright hairs and are known as woolly bears . They are characteristic looping action when walking . The brown not usually economic pests in broadacre agriculture but pasture looper, Ciampa arietaria is an example . This are occasionally seen in large numbers . looper undergoes one generation per year with the moths flying in autumn . Refer to Ute Guides, Southern Hawk moths (F: Sphingidae): Larvae have a characteristic (p . 36)/Western (p . 28) for more detail . Loopers are not spine that rises up from the rear . These are not economic just confined to the Geometridae family . A minor spring pests in broadacre agriculture but are occasionally seen pest of canola and pulses, Chrysodeixis spp . (Noctuidae) in large numbers on autumn weeds . also move with a characteristic looping action and have a reduced number of prolegs . For further information, Butterflies (various families): Two of the most widely refer to Ute Guides, Southern (p . 37)/ Western (p . 34) . known pest butterflies found in broadacre cropping are the cabbage white butterfly, Pieris rapae, and the grass Diamondback moth (F: Plutellidae): This is a pest of blue butterfly, Zizina labradus . For further information canola and is covered in this section on page 13 . refer to Ute Guides, Southern (pp . 42-44)/Western (p . 35,36) . Grass moths (F: Pyralidae): These are generally small moths (most <15 mm long) with characteristic ‘beak- like’ protrusions on their heads . Legs are usually long relative to the body . Larvae are often web-spinners creating shelters or joining plant and debris together . Lucerne seed web moth is covered in detail on page 15 . Other examples include pasture webworm, Education Resource Manual and Identification Systems Farming Insects Broadacre of Southern Australian Hednota spp , . and weed web moth, Achyra affinitalis . For further information refer to Ute Guides, Southern (pp . 30-33)/Western (pp . 24, 25 & 29) . © 2018 3 SECTION 4 COMMON PEST, BENEFICIAL AND EXOTIC SPECIES ARMYWORMS, CUTWORMS, BUDWORMS & SEMI-LOOPERS Lepidoptera: Noctuidae Key noctuid characteristics and biology Larvae Adults • have four pairs of abdominal prolegs; • are generally dull coloured moths but some have • have anal prolegs; metallic-looking markings on their wings; • crochet (soles of prolegs) arrangement is a row on one • generally have stout bodies covered in dense long side (mesoseries); scales; • usually have a stripe on cervical shield; • feed on nectar from flowers; • usually smooth, lacking obvious dense hairs; • mainly fly at night . • can vary widely in colour and this variation sometimes Many species are able to migrate long distances aided depends on the food source . Larvae are often green, by wind currents . This enables them to exploit abundant brown or yellow in colour and striped longitudinally; plant growth after rain . • mostly feed at night on a variety of crops . Most fully mature noctuid larvae burrow into the soil to pupate, although a few species pupate in a sparse cocoon under a leaf of the host plant . Depending on the species, pupation can take place over a short or long time before moths emerge . There are many noctuid species that lack some abdominal
Recommended publications
  • Improving Lettuce Insect Pest Management - NSW and QLD
    Improving lettuce insect pest management - NSW and QLD Dr Sandra McDougall NSW Department of Primary Industries Project Number: VG01028 VG01028 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetable industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the vegetable industry, Syngenta, Convenience Foods Pty Ltd, South Pacific Seeds, Organic Crop Protectants Pty Ltd and the NSW Department of Primary Industries. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 1227 0 Published and distributed by: Horticulture Australia Ltd Level 1 50 Carrington Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: [email protected] © Copyright 2006 FINAL REPORT VG01028 Improving lettuce pest management – NSW and SE Queensland 30 November 2005 Sandra McDougall et al. NSW Department of Primary Industries ISBN 0 7347 1691 5 Project No: VG 01028 Principal Investigator: Dr Sandra McDougall Contact Details: National Vegetable Industry Centre NSW DPI PMB, Yanco NSW 2703 (02) 6951 2728 (02) 6951 2692 fax 042 740 1466 mob [email protected] Project Team: NSW DPI: Sandra McDougall, Andrew Creek, and Tony Napier, QDPI: John Duff Report Completed: October 2005 Statement of purpose: This report is a summary of the research and extension work conducted by the project team on lettuce pest management.
    [Show full text]
  • 15 Foottit:15 Foottit
    REDIA, XCII, 2009: 87-91 ROBERT G. FOOTTIT (*) - H. ERIC L. MAW (*) - KEITH S. PIKE (**) DNA BARCODES TO EXPLORE DIVERSITY IN APHIDS (HEMIPTERA APHIDIDAE AND ADELGIDAE) (*) Canadian National Collection of Insects, National Environmental Health Program, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada;[email protected] (**) Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Road, Prosser, WA 99350, U.S.A Foottit R.G., Maw H.E.L., Pike K.S. – DNA barcodes to explore diversity in aphids (Hemiptera Aphididae and Adelgidae). A tendency towards loss of taxonomically useful characters, and morphological plasticity due to host and environmental factors, complicates the identification of aphid species and the analysis of relationships. The presence of different morphological forms of a single species on different hosts and at different times of the year makes it difficult to consistently associate routinely collected field samples with particular species definitions. DNA barcoding has been proposed as a standardized approach to the characterization of life forms. We have tested the effectiveness of the standard 658-bp barcode fragment from the 5’ end of the mitochondrial cytochrome c oxidase 1 gene (COI) to differentiate among species of aphids and adelgids. Results are presented for a preliminary study on the application of DNA barcoding in which approximately 3600 specimens representing 568 species and 169 genera of the major subfamilies of aphids and the adelgids have been sequenced. Examples are provided where DNA barcoding has been used as a tool in recognizing the existence of cryptic new taxa, linking life stages on different hosts of adelgids, and as an aid in the delineation of species boundaries.
    [Show full text]
  • Narrow-Leaf Lupin, EM 8834-E
    Dryland Cropping Systems EM 8834-E • June 2003 $1.00 Narrow-leaf Lupin K. Kettel, B. Tuck, W.A. Payne, C. Chen, S. Machado, and R. Karow History As a crop species, lupin was important to many ancient civilizations and has been cultivated, mostly as a green manure, for at least 3,000 years. Its native range extends through the western parts of North and South America as well as around the Mediterranean, extending into eastern Africa. Of the more than 300 Lupinus species, only five are cultivated (L. albus, L. angustifolius, L. luteus, L. mutabilis, and L. cosentenii). In the 1920s, German plant breeders produced the first low-alkaloid lupin varieties. Like other legumes, lupin fixes atmospheric nitrogen and produces a high-protein seed that is used as a feed and food source throughout the world. In the past, lupin production in Oregon was limited to white lupin varieties (L. albus). White lupin has been grown in the Columbia Gorge region since the late 1980s. Research at the Oregon State University (OSU) Moro Research Station showed excellent yield potential. Although white lupin is well adapted to most growing conditions in Oregon, it has suffered from undetermined disease problems. In 1998, OSU researchers resumed lupin research in response to grower interest. After conferring with Australian researchers, Dr. William Payne became convinced that imported narrow-leaf lupin varieties (L. angustifolius) from Australia would provide resistance to the types of diseases that had troubled white lupin in the past. Because current Oregon lupin research has focused on narrow-leaf varieties, this publication will discuss the agronomic practices of growing the narrow-leaf varieties developed in Australia.
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Draft Pest Categorisation of Organisms Associated with Washed Ware Potatoes (Solanum Tuberosum) Imported from Other Australian States and Territories
    Nucleorhabdovirus Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories This page is intentionally left blank Contributing authors Bennington JMA Research Officer – Biosecurity and Regulation, Plant Biosecurity Hammond NE Research Officer – Biosecurity and Regulation, Plant Biosecurity Poole MC Research Officer – Biosecurity and Regulation, Plant Biosecurity Shan F Research Officer – Biosecurity and Regulation, Plant Biosecurity Wood CE Technical Officer – Biosecurity and Regulation, Plant Biosecurity Department of Agriculture and Food, Western Australia, December 2016 Document citation DAFWA 2016, Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories. Department of Agriculture and Food, Western Australia, South Perth. Copyright© Western Australian Agriculture Authority, 2016 Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Agriculture and Food resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever
    [Show full text]
  • Unexpectedly High Levels of Parasitism of Wheat Stem Sawfly Larvae in Postcutting Diapause Chambers Author(S) :Tatyana A
    Unexpectedly High Levels of Parasitism of Wheat Stem Sawfly Larvae in Postcutting Diapause Chambers Author(s) :Tatyana A. Rand, Debra K. Waters, Thomas G. Shanower Source: The Canadian Entomologist, 143(5):455-459. 2011. Published By: Entomological Society of Canada URL: http://www.bioone.org/doi/full/10.4039/n11-023 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 455 Unexpectedly high levels of parasitism of wheat stem sawfly larvae in postcutting diapause chambers Tatyana A. Rand, Debra K. Waters, Thomas G. Shanower Abstract*We examined rates of late-season parasitism of larvae of the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), by native species of Bracon F. (Hymenop- tera: Braconidae) over 8 years in Montana and North Dakota, United States of America. We found that rates of parasitism of larvae in diapause chambers reached a maximum of 46%, exceeding the previously reported maximum of 2.5% in 75% of sites and years examined.
    [Show full text]
  • The Genomics and Evolution of Mutualistic and Pathogenic Bacteria
    Symbiotic bacteria in animals • Oct 3 2006 • Nancy Moran • Professor, Ecology and Evolutionary Biology Reading: The gut flora as a forgotten organ by A. O’Hara and F Shanahan EMBO Reports. 2006 What is symbiosis? • Term typically used for a chronic association of members of more than one genetic lineage, without overt pathogenesis • Often for mutual benefit, which may be easy or difficult to observe – Exchange of nutrients or other metabolic products, protection, transport, structural integrity Microbes in animal evolution • Bacteria present by 3.9 bya, Archaea and Eukaryota by >2 bya – The Earth is populated by ecologically diverse microbes • Animals appear about 1 bya • Animals evolved in microbial soup – “Innate” immune system probably universal among animal phyla: pathogenic infection was a constant selection pressure – But animals also evolved codependence on microbes, some of which are required for normal development and reproduction evolutionary innovations through symbiosis: examples • Eukaryotic cell (mitochondria) • Photosynthesis in eukaryotes (plastids) • Colonization of land by plants (mycorrhizae) • Nitrogen fixation by plants (rhizobia) • Animal life at deep sea vents (chemoautotrophic life systems) • Use of many nutrient-limited niches by animal lineages Why do hosts and symbionts cooperate so often? • Persistent association allows both to increase their persistence and replication. –Coinheritance – Long-term infection • Intimate metabolic exchange generating immediate beneficial feedback Symbiosis- main variables • Route
    [Show full text]
  • Report-VIC-Croajingolong National Park-Appendix A
    Croajingolong National Park, Victoria, 2016 Appendix A: Fauna species lists Family Species Common name Mammals Acrobatidae Acrobates pygmaeus Feathertail Glider Balaenopteriae Megaptera novaeangliae # ~ Humpback Whale Burramyidae Cercartetus nanus ~ Eastern Pygmy Possum Canidae Vulpes vulpes ^ Fox Cervidae Cervus unicolor ^ Sambar Deer Dasyuridae Antechinus agilis Agile Antechinus Dasyuridae Antechinus mimetes Dusky Antechinus Dasyuridae Sminthopsis leucopus White-footed Dunnart Felidae Felis catus ^ Cat Leporidae Oryctolagus cuniculus ^ Rabbit Macropodidae Macropus giganteus Eastern Grey Kangaroo Macropodidae Macropus rufogriseus Red Necked Wallaby Macropodidae Wallabia bicolor Swamp Wallaby Miniopteridae Miniopterus schreibersii oceanensis ~ Eastern Bent-wing Bat Muridae Hydromys chrysogaster Water Rat Muridae Mus musculus ^ House Mouse Muridae Rattus fuscipes Bush Rat Muridae Rattus lutreolus Swamp Rat Otariidae Arctocephalus pusillus doriferus ~ Australian Fur-seal Otariidae Arctocephalus forsteri ~ New Zealand Fur Seal Peramelidae Isoodon obesulus Southern Brown Bandicoot Peramelidae Perameles nasuta Long-nosed Bandicoot Petauridae Petaurus australis Yellow Bellied Glider Petauridae Petaurus breviceps Sugar Glider Phalangeridae Trichosurus cunninghami Mountain Brushtail Possum Phalangeridae Trichosurus vulpecula Common Brushtail Possum Phascolarctidae Phascolarctos cinereus Koala Potoroidae Potorous sp. # ~ Long-nosed or Long-footed Potoroo Pseudocheiridae Petauroides volans Greater Glider Pseudocheiridae Pseudocheirus peregrinus
    [Show full text]
  • Nota Lepidopterologica
    ©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Nota lepid 10 (3) : 175-182 ; 31.X.1987 ISSN 0342-7536 Revisionary notes on the genus Achyra Guenée with a new synonym and the description of Achyra takowensis sp. n. (Lepidoptera : Pyralidae, Pyraustinae) (Studies on Pyralidae I) K. V. N. Maes Museum voor Dierkunde, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium Abstract The nomenclature and the diagnostic characters of the genus Achyra Guenée are discussed. Besides the known synonyms Eurycreon Lederer and Tritaea Meyrick, Dosara Waeker is also considered as a new synonym for the genus. The following species are placed under Achyra : afflm talis (Lederer) with its synonym us talis (Walker) ; bifidalis (Fabricius) with its synonyms evanidalis (Berg), inornatalis (Walker), obsoletalis (Berg) and stolidalis (Schaus) ; brasiliensis (Capps) ; coela- talis (Walker) comb. n. ; eneanalis (Schaus) ; llaguenalis Munroe ; massalis (Walker) comb. n. ; nudalis (Hübner) with its synonym interpunctalis (Hübner) ; occidentalis piuralis (Capps) ; protealis (Warren) ; rantalis (Guenée) (Packard) ; with its synonyms caffrei (Flint & Mallock), collucidalis (Möschler), communis (Grote), crinisalis (Walker), crinitalis (Lederer), diotimetalis (Walker), intrac- tella (Walker), licealis (Walker), murcialis (Walker), nestusalis (Walker), posticata (Grote & Robinson), similalis auct., nee Guenée siriusalis (Walker) and subfulvalis (Herrich-Schaffer) -, similalis (Guenée) with its synonyms ferruginea (Warren) and garalis (Schaus). A new species from Taiwan A. takowensis sp. n. is described. Foreword This paper is the first in a series on the systematics of the Pyralidae, especially the Pyraustinae, of the world. Previously, a study was made on the usefulness of different morphological structures including tympanal organs. The des- cription, preparation technique and a list of references of the latter are given in Maes, 1985.
    [Show full text]
  • Assessing the Invertebrate Fauna Trajectories in Remediation Sites of Winstone Aggregates Hunua Quarry in Auckland
    ISSN: 1179-7738 ISBN: 978-0-86476-417-1 Lincoln University Wildlife Management Report No. 59 Assessing the invertebrate fauna trajectories in remediation sites of Winstone Aggregates Hunua quarry in Auckland by Kate Curtis1, Mike Bowie1, Keith Barber2, Stephane Boyer3 , John Marris4 & Brian Patrick5 1Department of Ecology, Lincoln University, PO Box 85084, Lincoln 7647 2Winstone Aggregates, Hunua Gorge Road, Red Hill 2110, Auckland 3Department of Nature Sciences, Unitec Institute of Technology, PO Box 92025, Auckland 1142. 4Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln 7647. 5Consultant Ecologist, Wildlands, PO Box 33499, Christchurch. Prepared for: Winstone Aggregates April 2016 Table of Contents Abstract……………………………………………………………………………………....................... 2 Introduction…………………………………………………………………………………………………… 2 Methodology…………………………………………………………………………………………………. 4 Results…………………………………………………………………………………………………………… 8 Discussion……………………………………………………………………………………………………. 31 Conclusion…………………………………………………………………………………………………… 37 Recommendations………………………………………………………………………………………. 38 Acknowlegdements……………………………………………………………………………………… 38 References…………………………………………………………………………………………………… 39 Appendix……………………………………………………………………………………………………… 43 1 Abstract This study monitored the invertebrates in restoration plantings in the Winstone Aggregates Hunua Quarry. This was to assess the re-establishment of invertebrates in the restoration planting sites and compare them with unplanted control and mature sites. This study follows on from
    [Show full text]
  • DISPERSAL and SAMPLING of the WHEAT STEM SAWFLY, <I>
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 4-2016 DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, Cephus cintus NORTON, (HYMENOPTERA: CEPHIDAE) Christopher McCullough University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons McCullough, Christopher, "DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, Cephus cintus NORTON, (HYMENOPTERA: CEPHIDAE)" (2016). Dissertations and Student Research in Entomology. 41. http://digitalcommons.unl.edu/entomologydiss/41 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, CEPHUS CINTUS NORTON, (HYMENOPTERA: CEPHIDAE) By Christopher T. McCullough A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Entomology Under the Supervision of Professors Jeffery D. Bradshaw and Gary L. Hein Lincoln, Nebraska May 2016 DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, CEPHUS CINTUS NORTON, (HYMENOPTERA: CEPHIDAE) Christopher T. McCullough, M.S. University of Nebraska, 2016 Advisors: Jeffery D. Bradshaw and Gary L. Hein The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a serious insect pest of wheat, Triticum aestivum L., in the northern central Great Plains.
    [Show full text]
  • Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 8-2017 Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions Kyle G. Koch University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons Koch, Kyle G., "Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions" (2017). Dissertations and Student Research in Entomology. 51. https://digitalcommons.unl.edu/entomologydiss/51 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ANALYSIS OF CEREAL APHID FEEDING BEHAVIOR AND TRANSCRIPTIONAL RESPONSES UNDERLYING SWITCHGRASS-APHID INTERACTIONS by Kyle Koch A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Entomology Under the Supervision of Professors Tiffany Heng-Moss and Jeff Bradshaw Lincoln, Nebraska August 2017 ANALYSIS OF CEREAL APHID FEEDING BEHAVIOR AND TRANSCRIPTIONAL RESPONSES UNDERLYING SWITCHGRASS-APHID INTERACTIONS Kyle Koch, Ph.D. University of Nebraska, 2017 Advisors: Tiffany Heng-Moss and Jeff Bradshaw Switchgrass, Panicum virgatum L., is a perennial warm-season grass that is a model species for the development of bioenergy crops. However, the sustainability of switchgrass as a bioenergy feedstock will require efforts directed at improved biomass yield under a variety of stress factors.
    [Show full text]