Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
15 Foottit:15 Foottit
REDIA, XCII, 2009: 87-91 ROBERT G. FOOTTIT (*) - H. ERIC L. MAW (*) - KEITH S. PIKE (**) DNA BARCODES TO EXPLORE DIVERSITY IN APHIDS (HEMIPTERA APHIDIDAE AND ADELGIDAE) (*) Canadian National Collection of Insects, National Environmental Health Program, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada;[email protected] (**) Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Road, Prosser, WA 99350, U.S.A Foottit R.G., Maw H.E.L., Pike K.S. – DNA barcodes to explore diversity in aphids (Hemiptera Aphididae and Adelgidae). A tendency towards loss of taxonomically useful characters, and morphological plasticity due to host and environmental factors, complicates the identification of aphid species and the analysis of relationships. The presence of different morphological forms of a single species on different hosts and at different times of the year makes it difficult to consistently associate routinely collected field samples with particular species definitions. DNA barcoding has been proposed as a standardized approach to the characterization of life forms. We have tested the effectiveness of the standard 658-bp barcode fragment from the 5’ end of the mitochondrial cytochrome c oxidase 1 gene (COI) to differentiate among species of aphids and adelgids. Results are presented for a preliminary study on the application of DNA barcoding in which approximately 3600 specimens representing 568 species and 169 genera of the major subfamilies of aphids and the adelgids have been sequenced. Examples are provided where DNA barcoding has been used as a tool in recognizing the existence of cryptic new taxa, linking life stages on different hosts of adelgids, and as an aid in the delineation of species boundaries. -
High Tunnel Pest Management - Aphids
Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-225-21-PR March 2021 High Tunnel Pest Management - Aphids Nick Volesky, Vegetable IPM Associate • Zachary Schumm, Arthropod Diagnostician Winged Aphids Quick Facts • Aphids are small, pear-shaped insects with Thorax green; no abdominal Thorax darker piercing-sucking mouthparts that feed on plant dorsal markings; large (4 mm) than abdomen tissue. They can be found inside high tunnels all season long. • Various species of aphids have a broad host range and can vector several viruses. Potato Aphid Therefore, management in high tunnels can be Macrosipu euphorbiae challenging. • Monitor for aphids in high tunnels by visually inspecting plants for colonies and feeding symptoms. Irregular patch on No abdominal patch; dorsal abdomen; abdomen light to dark • Aphids can be managed in high tunnels through antennal tubercles green; small (<2 mm) cultural, mechanical, biological, and chemical swollen; medium to practices. large (> 3 mm) phids are a common pest that can be found on high Atunnel crops such as fruits, vegetables, ornamentals, Melon Cotton Aphid grasses, and weeds. Four aphid species commonly Aphis gossypii Green Peach Aphid found in Utah in high tunnels are green peach aphid Myzus persicae (Myzus persicae), melon aphid (Aphis gossypii), potato Wingless Aphids aphid (Macrosiphum euphorbiae), and cabbage aphid (Brevicoryne brassicae) (Fig. 1). Cornicles short (same as Cornicles longer than cauda); head flattened; small cauda; antennal insertions (2 mm), rounded body DESCRIPTION developed; medium to large (> 3mm) Aphids are small plant feeding insects in the order Hemiptera (the “true bugs”). Like all true bugs, aphids Melon Cotton Aphid have a piercing-sucking mouthpart (“proboscis”) that Aphis gossypii is used for feeding on plant structures. -
Biodiversity of the Natural Enemies of Aphids (Hemiptera: Aphididae) in Northwest Turkey
Phytoparasitica https://doi.org/10.1007/s12600-019-00781-8 Biodiversity of the natural enemies of aphids (Hemiptera: Aphididae) in Northwest Turkey Şahin Kök & Željko Tomanović & Zorica Nedeljković & Derya Şenal & İsmail Kasap Received: 25 April 2019 /Accepted: 19 December 2019 # Springer Nature B.V. 2020 Abstract In the present study, the natural enemies of (Hymenoptera), as well as eight other generalist natural aphids (Hemiptera: Aphididae) and their host plants in- enemies. In these interactions, a total of 37 aphid-natural cluding herbaceous plants, shrubs and trees were enemy associations–including 19 associations of analysed to reveal their biodiversity and disclose Acyrthosiphon pisum (Harris) with natural enemies, 16 tritrophic associations in different habitats of the South associations of Therioaphis trifolii (Monell) with natural Marmara region of northwest Turkey. As a result of field enemies and two associations of Aphis craccivora Koch surveys, 58 natural enemy species associated with 43 with natural enemies–were detected on Medicago sativa aphids on 58 different host plants were identified in the L. during the sampling period. Similarly, 12 associations region between March of 2017 and November of 2018. of Myzus cerasi (Fabricius) with natural enemies were In 173 tritrophic natural enemy-aphid-host plant interac- revealed on Prunus avium (L.), along with five associa- tions including association records new for Europe and tions of Brevicoryne brassicae (Linnaeus) with natural Turkey, there were 21 representatives of the family enemies (including mostly parasitoid individuals) on Coccinellidae (Coleoptera), 14 of the family Syrphidae Brassica oleracea L. Also in the study, reduviids of the (Diptera) and 15 of the subfamily Aphidiinae species Zelus renardii (Kolenati) are reported for the first time as new potential aphid biocontrol agents in Turkey. -
Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 8-2017 Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions Kyle G. Koch University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons Koch, Kyle G., "Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions" (2017). Dissertations and Student Research in Entomology. 51. https://digitalcommons.unl.edu/entomologydiss/51 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ANALYSIS OF CEREAL APHID FEEDING BEHAVIOR AND TRANSCRIPTIONAL RESPONSES UNDERLYING SWITCHGRASS-APHID INTERACTIONS by Kyle Koch A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Entomology Under the Supervision of Professors Tiffany Heng-Moss and Jeff Bradshaw Lincoln, Nebraska August 2017 ANALYSIS OF CEREAL APHID FEEDING BEHAVIOR AND TRANSCRIPTIONAL RESPONSES UNDERLYING SWITCHGRASS-APHID INTERACTIONS Kyle Koch, Ph.D. University of Nebraska, 2017 Advisors: Tiffany Heng-Moss and Jeff Bradshaw Switchgrass, Panicum virgatum L., is a perennial warm-season grass that is a model species for the development of bioenergy crops. However, the sustainability of switchgrass as a bioenergy feedstock will require efforts directed at improved biomass yield under a variety of stress factors. -
Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture. -
The Phytophagous Insect Fauna of Scotch Thistle, Onopordum Acanthium L., in Southeastern Washington and Northwestern Idaho
Proceedings of the X International Symposium on Biological Control of Weeds 233 4-14 July 1999, Montana State University, Bozeman, Montana, USA Neal R. Spencer [ed.]. pp. 233-239 (2000) The Phytophagous Insect Fauna of Scotch Thistle, Onopordum acanthium L., in Southeastern Washington and Northwestern Idaho J. D. WATTS1 and G. L. PIPER Department of Entomology, Washington State University, Pullman, Washington 99164-6382, USA Abstract Scotch thistle, Onopordum acanthium L. (Asteraceae: Cardueae), a plant of Eurasian origin, has become an increasingly serious pasture, rangeland, wasteland, and roadside weed in the western United States. Prior to the implementation of a biological control agent acquisition and release program, a domestic survey was carried out at 16 sites in five southeastern Washington and northwestern Idaho counties between 1995-96 to ascertain the plant’s existing entomofauna. Thirty phytophagous insect species in six orders and 17 families were found to be associated with the thistle. Hemiptera, Homoptera, and Coleoptera were the dominant ectophagous taxa, encompassing 50, 20, and 17% of all species found, respectively. The family Miridae contained 60% of the hemipteran fauna. Onopordum herbivores were polyphagous ectophages, and none of them reduced popula- tions of or caused appreciable damage to the plant. The only insect that consistently fed and reproduced on O. acanthium was the aphid Brachycaudus cardui (L.). A notable gap in resource use was the absence of endophages, particularly those attacking the capitula, stems, and roots. Consequently, the importation of a complex of nonindigenous, niche- specific natural enemies may prove to be a highly rewarding undertaking. Key Words: Onopordum, Scotch thistle, weed, biological control, entomofauna Scotch thistle, Onopordum acanthium L. -
And Their Aphid Partners (Homoptera: Aphididae) in Mashhad Region, Razavi Khorasan Province, with New Records of Aphids and Ant Species for Fauna of Iran
ISSN 0973-1555(Print) ISSN 2348-7372(Online) HALTERES, Volume 6, 4-12, 2015 ZOHREH SADAT MORTAZAVI, HUSSEIN SADEGHI, NIHAT AKTAC, ŁUKASZ DEPA AND LIDA FEKRAT Ants (Hymenoptera: Formicidae) and their aphid partners (Homoptera: Aphididae) in Mashhad region, Razavi Khorasan Province, with new records of aphids and ant species for Fauna of Iran Zohreh Sadat Mortazavi1, Hussein Sadeghi1*, Nihat Aktac2, Łukasz Depa3, Lida Fekrat1 1 Department of Plant Protection, Ferdowsi University of Mashhad, Iran 2 Department of Zoology, Faculty of Science, Trakya University, Turkey 3Department of Zoology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland (e-mail: *[email protected]) Abstract A survey of ant-aphid associations was conducted by collecting and identifying samples of ants and aphids found together on aphid host plants in Mashhad region, Razavi Khorasan province of Iran. As a result, a total of 21 ant species representing 13 genera and 3 subfamilies and 26 aphid species belonging to 13 genera from 37 host plant species were collected and identified. Among the recorded ant species, the genus Crematogaster with four species had the highest species richness. The three most frequent aphid attendant ants were Lepisiota nigra (Dalla Torre, 1893), Tapinoma erraticum (Latreille, 1798) and Crematogaster inermis Mayr, 1862 associated with 11, 10 and 9 aphid species, respectively. Eleven ant species were recorded from the colonies of one aphid species. Among the recorded ants, the species Crematogaster sordidula (Nylander, 1849) is new to Iranian ant fauna. This record increases the recorded ant-fauna of Iran to over 171 species. Among the identified aphid species, Aphis craccivora Koch, 1856 had the highest ant attraction. -
Dr. Frank G. Zalom
Award Category: Lifetime Achievement The Lifetime Achievement in IPM Award goes to an individual who has devoted his or her career to implementing IPM in a specific environment. The awardee must have devoted their career to enhancing integrated pest management in implementation, team building, and integration across pests, commodities, systems, and disciplines. New for the 9th International IPM Symposium The Lifetime Achievement winner will be invited to present his or other invited to present his or her own success story as the closing plenary speaker. At the same time, the winner will also be invited to publish one article on their success of their program in the Journal of IPM, with no fee for submission. Nominator Name: Steve Nadler Nominator Company/Affiliation: Department of Entomology and Nematology, University of California, Davis Nominator Title: Professor and Chair Nominator Phone: 530-752-2121 Nominator Email: [email protected] Nominee Name of Individual: Frank Zalom Nominee Affiliation (if applicable): University of California, Davis Nominee Title (if applicable): Distinguished Professor and IPM specialist, Department of Entomology and Nematology, University of California, Davis Nominee Phone: 530-752-3687 Nominee Email: [email protected] Attachments: Please include the Nominee's Vita (Nominator you can either provide a direct link to nominee's Vita or send email to Janet Hurley at [email protected] with subject line "IPM Lifetime Achievement Award Vita include nominee name".) Summary of nominee’s accomplishments (500 words or less): Describe the goals of the nominee’s program being nominated; why was the program conducted? What condition does this activity address? (250 words or less): Describe the level of integration across pests, commodities, systems and/or disciplines that were involved. -
Mitteilungen Der Dgaae 22
Halle (Saale) 2020 Mitt. Dtsch. Ges. allg. angew. Ent. 22 Long-term monitoring of insects in agricultural landscapes Tim M Ziesche 1*, James Bell 2, Frank Ordon 1, Edgar Schliephake 1 & Torsten Will 1 1 Institut für Resistenzforschung und Stresstoleranz, Julius Kühn-Institut (JKI), Bundesforschungsinstitut für Kulturpflanzen 2 Rothamsted Research Zusammenfassung: Standardisierte Langzeitmonitoring-Programme sind von erheblicher Bedeu- tung in der Bewertung komplexer Wirkungsgefüge zwischen Landschaftsstrukturen und Insekten. Neben wertvollen Datensätzen zur Auswertung von Ursache-Wirkungsbeziehungen bilden sie ein wichtiges Instrument zur Früherkennung von Risiken oder grundlegenden Verschiebungen in Lebensgemeinschaften auf regionaler Ebene. Das Monitoring der Insektenvielfalt in Agrar- landschaften und die Etablierung bundesweiter Erfassungsdaten durch standardisierte Verfahren sind Teil des „Bundesprogramms Biologische Vielfalt“ – ‚Aktionsprogramm Insektenschutz‘. Bislang existieren jedoch nur wenige Informationen zu Langzeittrends wichtiger Indikatoren- gruppen oder Artengemeinschaften, welche umfassend den allgemeinen Rückgang der Insekten in Agrarlandschaften dokumentieren. In dieser Studie nutzen wir Daten einer stationären Saugfalle (12,2 m Höhe), welche 1985 errichtet wurde und verschiedene Ordnungen flugaktiver Insekten und Spinnen in hoher zeitlicher Auflösung sammelt. Die seither nahezu unveränderte Methode ermöglicht die Abbildung und Bewertung von Langzeittrends in ausgewählten Insektengruppen. Abstract: There is widespread -
Systematics, Distribution and Host Range of Diaeretiella Rapae (Mcintosh) (Hymenoptera: Braconidae, Aphidiinae)
International Journal of Research Studies in Biosciences (IJRSB) Volume 3, Issue 1, January 2015, PP 1-36 ISSN 2349-0357 (Print) & ISSN 2349-0365 (Online) www.arcjournals.org Systematics, Distribution and Host Range of Diaeretiella Rapae (Mcintosh) (Hymenoptera: Braconidae, Aphidiinae) Rajendra Singh Department of Zoology D.D.U. Gorakhpur University Gorakhpur, U.P., India [email protected] Garima Singh Department of Zoology Rajasthan University Jaipur, India [email protected] Abstract: Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae, Aphidiinae) was described as Aphidius rapae by McIntosh in 1855. In 1960, Starý described a new genus Diaeretiella and put the species under it. A number of synonymy of D. rapae is listed herein. D. rapae is a polyphagous and exclusive aphid parasitoid. It parasitises about 98 species of the aphids infesting more than 180 plant species belonging to 43 plant families distributed in 87 countries throughout the world. However, the main hosts consist of Brevicoryne brassicae (Linn.), Myzus persicae (Sulzer), Lipaphis erysimi (Kalt.) and Diuraphis noxia (Kurdjumov). The food plants mainly include oleiferous and vegetable brassicas and cereal crops.The parasitoid has been used as a biocontrol agent against D. noxia infesting cereal crops. Keywords: Diaeretiella rapae, systematic, distribution, host plants, aphids, cereal crops, brassica crops 1. INTRODUCTION Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae, Aphidiinae) is a highly polyphagous parasitic wasp parasitising exclusively aphids (Homoptera: Aphididae) throughout the world infesting hundreds of plant species, both cultivated and wild (Table 1). D. rapae was reported as the most effective natural enemy against the cabbage aphid, Brevicoryne brassicae (Linn.) [1] and it has been observed to cause as high as 72% parasitism in the Netherlands [2] and 76% parasitism in Kenya [3]. -
Horticultural, Landscape, and Ornamental Crops
Section F Pests common to Douglas-fir, Horticultural, True Fir, Pine and Spruce Christmas tree (Common pests)—Conifer Landscape, and aphid Cinara occidentalis and Cinara abietis Ornamental Crops Pest description and crop damage C. abietis are large, dark aphids typically feeding on upper stems and tended by ants. May distort stems. C. occidentalis feed at the base of needles on 1 year IMPORTANT NOTICE REGARDING THE USE and older foliage, often in the lower portion of the tree and may be OF CHLORPYRIFOS: quite damaging. The State of Oregon has adopted new restrictive rules on See table: the use of chlorpyrifos-containing products in Oregon. Hosts and Symptoms of Major Aphid and Adelgid Pests of Please refer to Oregon Department of Agriculture Christmas Trees Permanent Chlorpyrifos Rule at https://www.oregon.gov/oda/programs/Pesticides/ Management—cultural control RegulatoryIssues/Documents/Documents/2020/ C. abietis is easily spotted and often controlled by squishing ChlorpyrifosRule.pdf colonies by hand or spot spraying. Minor outbreaks of both species may be kept in check with beneficial insect predators or spot treatments. Management—chemical control ♦ azadirachtin (AzaDirect and others)—Some formulations are OMRI-listed for organic use. ♦ bifenthrin (OnyxPro, Sniper and others)—Restricted use pesticide. (Group 3) Christmas Tree Plantation Pests ♦ chlorpyrifos (Lorsban Advanced, Warhawk and others)— RESTRICTED USE IN OREGON. (Group 1) Chal Landgren and Franki Porter ♦ Chromobacterium subtsugae (Grandevo)—OMRI-listed for Latest revision—March 2021 organic use. ♦ cyantraniliprole (Mainspring GNL)—(Group 28) ♦ cyclaniliprole (Group 28) + flonicamid (Group 29)—Pradia In all cases, follow the instructions on the pesticide label. The PNW ♦ dinotefuran (Safari 20 SG)— (Group 4) Insect Management Handbook has no legal status, whereas the ♦ flupyradifurone (Altus)—(Group 4) pesticide label is a legal document. -
A Primary Survey of Aphid Species on Almond and Peach, and Natural Enemies of Brachycaudus Amygdalinus in As-Sweida, Southern Syria 1 2 W
109 Archived at http://orgprints.org/13654/ A primary survey of aphid species on almond and peach, and natural enemies of Brachycaudus amygdalinus in As-Sweida, Southern Syria 1 2 W. Almatni and N. Khalil Abstract Syria is one of the biggest almond producer country in the world. Few arthropdes that live on almond are consider as pests. Aphids are one of the major pests their. In order to change the product to organic we should know more about the pests and their natural enemies in order to use better bio- and organic decisions. A field survey was done to aphids that attack Almond and Peach in Al-Arab mountain at As- Sweida governorate, between 2002 and 2006. Three species of aphids were considered as important pests on both trees. They are Brachycaudus amygdalinus and Brachycaudus helichrysi, which are aphids that feed on the young leaves causing stunted growth; and Pterochloroides persicae which is a species that attack the bark and excretes large quantities of honeydew. A survey of natural enemies of B. amygdalinus has been done in addition to study its population dynamics during the seasons of 2002, 2003 and 2004. 30 species of natural enemies were recorded includes 15 Coccinellidae, 4 of each Anthocoridae and Miridae, 3 of Syrphidae, one species of each of Chrysopidae and Chamaemyiidae, and one beetle, in addition to one parasitoid. Some Arachinids were also mentioned to prey on this aphid. Most numerous predator at the beginning of the season was Coccinella septempunctata followed later with Scymnus (Pullus) subvillosus and Hyppodamia variegate. Most numerous predatory bug was Orius horvathi.