Unexpectedly High Levels of Parasitism of Wheat Stem Sawfly Larvae in Postcutting Diapause Chambers Author(S) :Tatyana A

Total Page:16

File Type:pdf, Size:1020Kb

Unexpectedly High Levels of Parasitism of Wheat Stem Sawfly Larvae in Postcutting Diapause Chambers Author(S) :Tatyana A Unexpectedly High Levels of Parasitism of Wheat Stem Sawfly Larvae in Postcutting Diapause Chambers Author(s) :Tatyana A. Rand, Debra K. Waters, Thomas G. Shanower Source: The Canadian Entomologist, 143(5):455-459. 2011. Published By: Entomological Society of Canada URL: http://www.bioone.org/doi/full/10.4039/n11-023 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 455 Unexpectedly high levels of parasitism of wheat stem sawfly larvae in postcutting diapause chambers Tatyana A. Rand, Debra K. Waters, Thomas G. Shanower Abstract*We examined rates of late-season parasitism of larvae of the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), by native species of Bracon F. (Hymenop- tera: Braconidae) over 8 years in Montana and North Dakota, United States of America. We found that rates of parasitism of larvae in diapause chambers reached a maximum of 46%, exceeding the previously reported maximum of 2.5% in 75% of sites and years examined. In contrast to previous work, our results demonstrate that C. cinctus larvae are suitable hosts for braconid parasitoids, even after the formation of diapause chambers, and suggest that parasitism rates may be underestimated if stems are sampled prior to harvest. Re´sume´*Nous examinons les taux de parasitisme en fin de saison chez les larves du ce`phe du ble´, Cephus cinctus Norton (Hymnenoptera: Cephidae), par les espe`ces indige`nes de Bracon F. (Hymenoptera: Braconidae) sur une pe´riode de 8 ans dans le Montana et le Dakota du Nord, E´ tats-Unis. Les taux de parasitisme des larves en diapause dans leur logette atteignent un maximum de 46 %, ce qui de´passe le maximum de 2,5 % enregistre´ ante´rieurement dans 75 % des sites et anne´es examine´s. Contrairement aux travaux pre´ce´dents, nos re´sultats de´montrent que les larves de C. cinctus sont des hoˆtes approprie´s pour les parasito¨ıdes braconide´s, meˆme apre`s la formation des logettes de diapause; il se peut que les taux de parasitisme aient e´te´ sous- estime´s par le pre´le`vement des tiges avant la pe´riode des re´coltes. [Traduit par la Re´daction] Introduction pressure on larvae of C. cinctus in wheat in some regions (Morrill 1997; Runyon et al. The wheat stem sawfly, Cephus cinctus Nor- 2001). Females of both Bracon species locate, ton (Hymenoptera: Cephidae), is the most paralyze, and then lay eggs on larvae of important pest of wheat, Triticum aestivum L. (Poaceae), in the northern Great Plains of C. cinctus within stems; the braconid larvae the United States of America (Morrill and develop as ectoparasitoids (Nelson and Kushnak 1999; Shanower and Waters 2006). Farstad 1953; Somsen and Luginbill 1956; Yield losses occur in part as a result of lodging Holmes et al. 1963). The location of a para- resulting from the girdling of stem bases by the sitoid reflects the position of a larvawhen it was stem-mining larvae. Larvae subsequently form initially parasitized. First-generation parasi- diapause chambers in the resultant stem stubs, toids develop rapidly and enter a short pupal in which they overwinter. Larvae of two native stage, adults emerge, and a complete or braconid wasps, Bracon cephi (Gahan) and partial second generation follows (Nelson Bracon lissogaster Muesebeck (Hymenoptera: and Farstad 1953; Somsen and Luginbill Braconidae), exert significant parasitism 1956). Second-generation adult parasitoids Received 15 February 2011. Accepted 28 April 2011. T.A. Rand,1 D.K. Waters, United States Department of Agriculture, Agricultural Research Service, Northern Plains Agricultural Research Laboratory, Sidney, MT 59270, United States of America T.G. Shanower, United States Department of Agriculture, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS 66502, United States of America 1Corresponding author (e-mail: [email protected]). doi: 10.4039/n11-023 Can. Entomol. 143: 455Á459 (2011) # 2011 Entomological Society of Canada 456 Can. Entomol. Vol. 143, 2011 are present from the middle of August through to break diapause. Samples were then removed late September (Nelson and Farstad 1953), from cold treatment and 50Á100 stubs were which is mostly after wheat harvest in the placed upright in 454 g plastic containers, northern Great Plains. covering the base of the stubs with a small The lack of late-season hosts on which amount of potting soil. Containers with stubs second-generation Bracon species can com- were placed inside sealable perforated 3.8 L plete development, and thereby increase in plastic bags (two containers per bag). These numbers, has been considered a major factor were maintained in the laboratory at 21Á25 8C limiting their success in controlling C. cinctus under fluorescent lighting with a 16L:8D (Holmes et al. 1963; Morrill et al. 1994). cycle, keeping the soil moist by spraying daily Holmes et al. (1963) observed that B. cephi with distilled water. rarely attacks C. cinctus successfully once it Stubs were monitored daily and emerging has formed overwintering chambers (this gen- C. cinctus and parasitoids were quantified and erally occurs when the moisture levels in the removed using an aspirator until emergence host plant drop below 50%, just prior to wheat ceased. Proportion parasitism was calculated harvest). Maximum rates of parasitism of as the number of Bracon spp. parasitoids C. cinctus by B. cephi in at least 600 stubs divided by the total number of emergent collected annually between 1953 and 1960 Bracon spp. and C. cinctus individuals com- near Lethbridge, Alberta, Canada, was 2.5% bined. We pooled parasitoid numbers because (Holmes et al. 1963). Here we report on results the two Bracon species are difficult to distin- of a study designed to examine the generality guish morphologically (Runyon et al. 2001). of these findings by quantifying rates of Bracon cephi has previously been found to be parasitism of C. cinctus larvae in diapause the dominant parasitoid in eastern Montana chambers in wheat stubble after harvest (Meers 2005) and thus likely dominated our during an 8-year period in Montana and samples. North Dakota. Preharvest stem collection and dissection Materials and methods Sites used in 2001Á2004 were long-term research sites for which we also collected Postharvest stub collection and processing data on rates of C. cinctus stem infestation Stems that had been cut by C. cinctus to and parasitism. Between 87 and 151 stems form diapause chambers (hereinafter referred were collected just prior to harvest at each to as stubs) were collected after wheat harvest site in each year (Table 1), brought back to in Montana (Richland, Daniels, and Valley the laboratory, and dissected to assess rates of counties) and North Dakota (Golden Valley C. cinctus infestation and parasitism. Stems County), United States of America (Table 1) that contained any evidence of C. cinctus in the fall or early in the spring before the soil (eggs, larvae, or characteristic feeding damage warmed above 12 8C. Collections were made and frass) were considered infested. The pre- in one to three wheat fields per year between sence of Bracon spp. within stems was also 2001 and 2009, except in 2008. noted. Evidence of parasitoids included larvae In each sampling site-year, wheat stubble of Bracon spp. feeding externally on C. cinctus, was excavated and brought to the laboratory, cocoons present within the stems, or the where stubs were separated from uncut stems, presence of characteristic exit holes. Parasit- and carefully cleaned of excess soil and roots. ism was calculated as the number of stems More than 100 stubs were collected in each containing evidence of parasitism divided by site-year (Table 1). Stubs were placed into the number of stems infested by C. cinctus. sealable perforated 3.8 L plastic bags, lightly We fit general linear models using the sprayed with distilled water, and placed in cold REML (REstricted Maximum Likelihood) storage at 4Á8 8C for a minimum of 120 days method in JMP version 8.0.1 (SAS Institute # 2011 Entomological Society of Canada Rand et al. 457 Table 1. Location, sample sizes, and collection dates for each site and year of the study of parasitism of Cephus cinctus in North Dakota and Montana. Location* Latitude Longitude No. of stubs No. of stems Collection Year Site (N) (W) collected Collection dates collected date 2001 1 48.6406 105.2354 3164 10 Sept. Á 1 Nov. 87 28 Aug. 2 48.8384 106.3281 268 26 Oct. 151 21 Aug. 2002 1 48.6406 105.2354 153 12 Mar. 99 27 Aug. 2 48.8384 106.3281 883 5Á12 Mar. 111 27 Aug. 2003 1 48.6406 105.2354 2504 12 Sept. Á 23 Oct. 104 11 Aug. 2 48.8384 106.3281 1166 3 Apr. 102 31 July 2004 1 48.6406 105.2354 3645 22Á29 Oct. 129 5 Aug. 2005 1 48.6406 105.2354 3598 12Á19 Oct. NA NA 3 48.6571 105.2951 3738 3Á7Nov. NA NA 2006 3 48.6571 105.2951 400 18Á19 Oct.
Recommended publications
  • Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands.
    [Show full text]
  • Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, Western North America S
    1 New early Eocene Siricomorpha (Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, western North America S. Bruce Archibald,1 Alexandr P. Rasnitsyn Abstract—We describe three new genera and four new species (three named) of siricomorph sawflies (Hymenoptera: Symphyta) from the Ypresian (early Eocene) Okanagan Highlands: Pamphiliidae, Ulteramus republicensis new genus, new species from Republic, Washington, United States of America; Siricidae, Ypresiosirex orthosemos new genus, new species from McAbee, British Columbia, Canada; and Cephidae, Cuspilongus cachecreekensis new genus, new species from McAbee and another cephid treated as Cephinae species A from Horsefly River, British Columbia, Canada. These are the only currently established occurrences of any siricomorph family in the Ypresian. We treat the undescribed new siricoid from the Cretaceous Crato Formation of Brazil as belonging to the Pseudosiricidae, not Siricidae, and agree with various authors that the Ypresian Megapterites mirabilis Cockerell is an ant (Hymenoptera: Formicidae). The Miocene species Cephites oeningensis Heer and C. fragilis Heer, assigned to the Cephidae over a century and a half ago, are also ants. Many of the host plants that siricomporphs feed upon today first appeared in the Eocene, a number of these in the Okanagan Highlands in particular. The Okanagan Highlands sites where these wasps were found also had upper microthermal mean annual temperatures as are overwhelmingly preferred by most modern siricomorphs, but were uncommon
    [Show full text]
  • (Hymenoptera) from the Middle Jurassic of Inner Mongolia, China
    European Journal of Taxonomy 733: 146–159 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.733.1229 www.europeanjournaloftaxonomy.eu 2021 · Zheng Y. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:043C9407-7E8A-4E8F-9441-6FC43E5A596E New fossil records of Xyelidae (Hymenoptera) from the Middle Jurassic of Inner Mongolia, China Yan ZHENG 1,*, Haiyan HU 2, Dong CHEN 3, Jun CHEN 4, Haichun ZHANG 5 & Alexandr P. RASNITSYN 6,* 1,4 Institute of Geology and Paleontology, Linyi University, Shuangling Rd., Linyi 276000, China. 1,4,5 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, East Beijing Road, Nanjing 210008, China. 2 School of Agronomy and Environment, Weifang University of Science and Techonoly, Jinguang Road, Shouguang, 262700, China. 3 School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China. 6 Palaeontological Institute, Russian Academy of Sciences, Moscow, 117647, Russia. 6 Natural History Museum, London SW7 5BD, UK. * Corresponding authors: [email protected], [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 1 urn:lsid:zoobank.org:author:28EB8D72-5909-4435-B0F2-0A48A5174CF9 2 urn:lsid:zoobank.org:author:91B2FB61-31A9-449B-A949-7AE9EFD69F56 3 urn:lsid:zoobank.org:author:51D01636-EB69-4100-B5F6-329235EB5C52 4 urn:lsid:zoobank.org:author:8BAB244F-8248-45C6-B31E-6B9F48962055 5 urn:lsid:zoobank.org:author:18A0B9F9-537A-46EF-B745-3942F6A5AB58 6 urn:lsid:zoobank.org:author:E7277CAB-3892-49D4-8A5D-647B4A342C13 Abstract.
    [Show full text]
  • Pollinators Full.Pdf
    Hymenoptera: Bees Hymenoptera: Bees Hymenoptera: Wasps, Ants & Sawies Hymenoptera: Wasps, Ants & Sawies Pollinator Insects of the South West Slopes of NSW and North East Victoria This guide has been prepared to aid identication of a Pollinator Insects selection of common pollinator insects. Insects Pollinator This guide provides a good starting point, but many species can look similar. Please see the references and websites listed if you would like help with accurate of the South West Slopes of NSW species identification. and North East Victoria An identification and conservation guide Halictid bee Hylaeus bee Gasteruptiid wasp Hairy ower wasp Halictidae Colletidae Gasteruptiidae Scoliidae of the South West Slopes NSW and North East Victoria Blue-banded bee Chequered cuckoo bee Ant Cream-spotted ichneumon wasp Apidae Apidae Formicidae Ichnuemonidae Hylaeus bee (bubbling) Large Lasioglossum sp. Orange ichneumon wasp Paper wasp Colletidae Halictidae Ichnuemonidae Vespidae Orange ichneumon wasp Ichnuemonidae Online pollinator information resources Aussie Bee aussiebee.com.au Bee Aware Australia beeawareaustralia.org Common spring bee European honey bee Cuckoo wasp European wasp Australian Museum Plant2pollinator Colletidae Apidae Chrysididae Vespidae australianmuseum.net.au/welcome-to-plant2pollinator PaDIL Australian Pollinators padil.gov.au/pollinators Bowerbird bowerbird.org.au Leafcutter bee Red bee Paper wasp Sawy adult Victorian butteries Megachilidae Halictidae Vespidae Tenthredinidae museumvictoria.com.au/bioinformatics/butter/images/bthumbmenu.htm Atlas of Living Australia ala.org.au Hymenoptera: Bees Hymenoptera: Wasps, Ants & Sawies Wild Pollinator Count wildpollinatorcount.com • Around 2,000 native bee species currently known. • Around 8,000 native species currently known; many more undescribed. Photography • Mostly found in sunny, open woodlands, gardens and meadows with lots • Found in all habitats.
    [Show full text]
  • Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
    Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids.
    [Show full text]
  • Fauna of Chalcid Wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan Province, Southern Iran
    J Insect Biodivers Syst 02(1): 155–166 First Online JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/AABD72DE-6C3B-41A9-9E46-56B6015E6325 Fauna of chalcid wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan province, southern Iran Tahereh Tavakoli Roodi1, Majid Fallahzadeh1* and Hossien Lotfalizadeh2 1 Department of Entomology, Jahrom branch, Islamic Azad University, Jahrom, Iran. 2 Department of Plant Protection, East-Azarbaijan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran ABSTRACT. This paper provides data on distribution of 13 chalcid wasp species (Hymenoptera: Chalcidoidea: Chalcididae) belonging to 9 genera and Received: 30 June, 2016 three subfamilies Chalcidinae, Dirhininae and Haltichellinae from Hormozgan province, southern Iran. All collected species are new records for the province. Accepted: Two species Dirhinus excavatus Dalman, 1818 and Hockeria bifasciata Walker, 13 July, 2016 1834 are recorded from Iran for the first time. In the present study, D. excavatus Published: is a new species record for the Palaearctic region. An updated list of all known 13 July, 2016 species of Chalcididae from Iran is also included. Subject Editor: George Japoshvili Key words: Chalcididae, Hymenoptera, Iran, Fauna, Distribution, Malaise trap Citation: Tavakoli Roodi, T., Fallahzadeh, M. and Lotfalizadeh, H. 2016. Fauna of chalcid wasps (Hymenoptera: Chalcidoidea: Chalcididae) in Hormozgan province, southern Iran. Journal of Insect Biodiversity and Systematics, 2(1): 155–166. Introduction The Chalcididae are a moderately specious Coleoptera, Neuroptera and Strepsiptera family of parasitic wasps, with over 1469 (Bouček 1952; Narendran 1986; Delvare nominal species in about 90 genera, occur and Bouček 1992; Noyes 2016).
    [Show full text]
  • Development of Microplitiscroceipes As a Biological Sensor
    eea_743.fm Page 249 Wednesday, July 9, 2008 4:03 PM DOI: 10.1111/j.1570-7458.2008.00743.x Blackwell Publishing Ltd MINI REVIEW Development of Microplitis croceipes as a biological sensor J. K. Tomberlin1*, G. C. Rains2 & M. R. Sanford1 1Department of Entomology, Texas A&M University, College Station, TX 77845-2475, USA, and 2Department of Biological and Agricultural Engineering, University of Georgia, Tifton, GA 31783, USA Accepted: 2 May 2008 Key words: associative learning, Wasp Hound®, Hymenoptera, Braconidae, conditioning, medical diagnosis, forensics, food safety, national security, plant disease Abstract Classical conditioning, a form of associative learning, was first described in the vertebrate literature by Pavlov, but has since been documented for a wide variety of insects. Our knowledge of associative learning by insects began with Karl vonFrisch explaining communication among honeybees, Apis mellifera L. (Hymenoptera: Apidae). Since then, the honey bee has provided us with much of what we understand about associative learning in insects and how we relate the theories of learning in vertebrates to insects. Fruit flies, moths, and parasitic wasps are just a few examples of other insects that have been documented with the ability to learn. A novel direction in research on this topic attempts to harness the ability of insects to learn for the development of biological sensors. Parasitic wasps, especially Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), have been conditioned to detect the odors associated with explosives, food toxins, and cadavers. Honeybees and moths have also been associatively conditioned to several volatiles of interest in forensics and national security. In some cases, handheld devices have been developed to harness the insects and observe conditioned behavioral responses to air samples in an attempt to detect target volatiles.
    [Show full text]
  • DISPERSAL and SAMPLING of the WHEAT STEM SAWFLY, <I>
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 4-2016 DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, Cephus cintus NORTON, (HYMENOPTERA: CEPHIDAE) Christopher McCullough University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons McCullough, Christopher, "DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, Cephus cintus NORTON, (HYMENOPTERA: CEPHIDAE)" (2016). Dissertations and Student Research in Entomology. 41. http://digitalcommons.unl.edu/entomologydiss/41 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, CEPHUS CINTUS NORTON, (HYMENOPTERA: CEPHIDAE) By Christopher T. McCullough A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Entomology Under the Supervision of Professors Jeffery D. Bradshaw and Gary L. Hein Lincoln, Nebraska May 2016 DISPERSAL AND SAMPLING OF THE WHEAT STEM SAWFLY, CEPHUS CINTUS NORTON, (HYMENOPTERA: CEPHIDAE) Christopher T. McCullough, M.S. University of Nebraska, 2016 Advisors: Jeffery D. Bradshaw and Gary L. Hein The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a serious insect pest of wheat, Triticum aestivum L., in the northern central Great Plains.
    [Show full text]
  • Response of Psyttalia Humilis (Hymenoptera: Braconidae) to Olive Fruit Fly (Diptera: Tephritidae) and Conditions in California Olive Orchards
    BIOLOGICAL CONTROL-PARASITOIDS AND PREDATORS Response of Psyttalia humilis (Hymenoptera: Braconidae) to Olive Fruit Fly (Diptera: Tephritidae) and Conditions in California Olive Orchards VICTORIA Y. YOKOYAMA,1 PEDRO A. RENDO´ N,2 XIN-GENG WANG,3 SUSAN B. OPP,4 5 3 MARSHALL W. JOHNSON, AND KENT M. DAANE Environ. Entomol. 40(2): 315Ð323 (2011); DOI: 10.1603/EN10186 ABSTRACT The larval parasitoid, Psyttalia humilis (Silvestri), reared on Mediterranean fruit ßy, Ceratitis capitata (Weidemann), by USDA-APHIS-PPQ, San Miguel Petapa, Guatemala was imported into California for biological control of olive fruit ßy, Bactrocera oleae (Rossi). This study reports the results of Þeld releases and recovery of P. humilis in California, and laboratory investigations to determine the effects of food provision, high temperature, and insecticidal bait spray on the parasi- toidÕs survival and fecundity. Parasitoids (3,613Ð7,823) were released in Orland, San Juan Bautista, Cayucos, Sylmar, Santa Barbara, and San Diego during October through December 2006. Mean daily temperatures at the release sites ranged from 10.7ЊC in Orland to 20.9ЊC in San Juan Bautista. The lowest (0.5) and highest (29.7) mean number of adult B. oleae per day per trap was captured in Orland and Sylmar, while the lowest (0.01) and highest (2.21) number of third instar larvae per fruit was collected on 11 December in Orland and on 5 October in San Diego in prerelease samples, respectively. Parasitoids were recovered from all release sites, the lowest (0.3%) and highest (100%) parasitism occurred on 25 January in Sylmar and on 26 October in Cayucos, respectively.
    [Show full text]
  • Extreme Diversity of Tropical Parasitoid Wasps Exposed by Iterative Integration of Natural History, DNA Barcoding, Morphology, and Collections
    Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections M. Alex Smith*†, Josephine J. Rodriguez‡, James B. Whitfield‡, Andrew R. Deans§, Daniel H. Janzen†¶, Winnie Hallwachs¶, and Paul D. N. Hebert* *The Biodiversity Institute of Ontario, University of Guelph, Guelph Ontario, N1G 2W1 Canada; ‡Department of Entomology, 320 Morrill Hall, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801; §Department of Entomology, North Carolina State University, Campus Box 7613, 2301 Gardner Hall, Raleigh, NC 27695-7613; and ¶Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018 Contributed by Daniel H. Janzen, May 31, 2008 (sent for review April 18, 2008) We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgas- A detailed recognition of species in parasitoid communities is trine braconid genera reared from parapatric tropical dry forest, cloud necessary because of the pivotal role parasitoids play in food web forest, and rain forest in Area de Conservacio´ n Guanacaste (ACG) in structure and dynamics. While generalizations about the effects of northwestern Costa Rica and combined these data with records of parasitoids on community diversity are complex (7), a common- caterpillar hosts and morphological analyses. We asked whether place predictor of the impact of a parasitoid species on local host barcoding and morphology discover the same provisional species and dynamics is whether the parasitoid is a generalist or specialist. A whether the biological entities revealed by our analysis are congruent generalist, especially a mobile one, is viewed as stabilizing food webs with wasp host specificity. Morphological analysis revealed 171 (see ref.
    [Show full text]
  • Hibiscus Sawfly, Atomacera Decepta HYMENOPTERA: ARGIDAE
    Rose Hiskes, Diagnostician and Horticulturist Valley Laboratory The Connecticut Agricultural Experiment Station 153 Cook Hill Road, P. O Box 248 Windsor, CT 06095 Phone: (860) 683-4977 Email: [email protected] Hibiscus Sawfly, Atomacera decepta HYMENOPTERA: ARGIDAE Rose mallow, Hibiscus moscheutos, a (Figure 3). The larvae look like moth or southern native, along with related hybrids butterfly caterpillars but can be and cultivars are valued in Northeast gardens distinguished from them by the number of for their many mid- to late summer blooms short, fleshy prolegs found on the abdomen. and strong stems that rarely need staking. Moth and butterfly larvae have five or fewer Their white, pink or red flowers, some as pairs of prolegs, while sawflies have none or large as dinner plates, can have a darker eye. more than five pairs of prolegs. The Until recently, they have been relatively free hibiscus sawfly larva has six pairs of of insect and disease pests in home prolegs. Mature larvae, up to ½” long, form landscapes. In 2004 and 2005, however, straw-colored fibrous cocoons (Figure 4). larvae of the hibiscus sawfly defoliated many rose mallow plants in Connecticut Life Cycle and Damage: landscapes. This sawfly is more commonly Not much is known of the life cycle of this found in the Mid-Atlantic and Midwest pest in the Northeast. Adult activity and egg states. It also feeds on hollyhock and other laying may take place from late May through mallows. If left untreated for several the growing season until the first frost. Eggs seasons, populations can build up and kill an are laid in older leaves and hatch in about a otherwise healthy plant.
    [Show full text]
  • The Leaf-Feeding Sawfly (Pachynematus Sp) in Michigan
    Field Crops The leaf-feeding sawfly (Pachynematus sp) Entomology MSU Program in Michigan wheat fields Chris DiFonzo, Field Crops Entomologist Picture credits: CDD #029 Howard Russell, Diagnostic Services Paul Gross, Gary Heilig, Howard Russell, June 2010 Michigan State University Ben Yost & Chris DiFonzo Sawflies are insects in the Order Hymenoptera, related to bees, wasps, and ants. They are named for their saw-like ovipositor, or egg laying device, used to insert eggs into plant material. Sawfly larvae resemble caterpillars, but they are easily distinguished by their numerous fleshy prolegs. Moth and butterfly caterpillars have 5 or fewer pairs of prolegs, while sawfly larvae have 7-8 pairs. Many sawfly feed on trees and are forest pest, but some feed on grass (below) and cereal crops. Sawfly larva with numerous fleshy prolegs Sawfly larva in turf Sawfly adult In wheat, sawflies in the genus Pachynematus are reported to feed on leaves. Leaf-feeding sawflies may occur in the same field with true armyworm (above), but the two pests differ both in color and in number of prolegs (true armyworm with only 5 pairs, and Pachynematus with 8 pairs). A sawfly larva proudly shows off the head it clipped. Sawflies have also been observed head clipping. In Michigan this summer, an increase in head-clipped wheat is attributed to sawflies. Even in mixed populations of armyworm and sawfly, sawflies appear to be responsible for much of the clipping. The clipping occurs even when there is no leaf feeding, and during the day, when sawfly larvae are active. One observer reported that sawflies bit into the stem, causing the head to fall, then drank the liquid oozing from the cut (right).
    [Show full text]