Psyttalia Lounsburyi (Hymenoptera: Braconidae), Potential Biological Control Agent for the Olive Fruit Fly in California

Total Page:16

File Type:pdf, Size:1020Kb

Psyttalia Lounsburyi (Hymenoptera: Braconidae), Potential Biological Control Agent for the Olive Fruit Fly in California Available online at www.sciencedirect.com Biological Control 44 (2008) 79–89 www.elsevier.com/locate/ybcon Psyttalia lounsburyi (Hymenoptera: Braconidae), potential biological control agent for the olive fruit fly in California Kent M. Daane a,*, Karen R. Sime a, Xin-geng Wang b, Hannah Nadel a,b, Marshall W. Johnson b, Vaughn M. Walton a,1, Alan Kirk c, Charles H. Pickett d a Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114, USA b Department of Entomology, University of California, Riverside, CA 92521, USA c USDA – Agriculture Research Service, European Biological Control Laboratory, Montferrier sur Lez, 34988 St. Ge´ly Cedex, France d Biological Control Program, California Department of Food and Agriculture, 3288 Meadowview Road, Sacramento, CA 95832, USA Received 3 May 2007; accepted 30 August 2007 Available online 8 September 2007 Abstract The African parasitoid Psyttalia lounsburyi (Silvestri) was evaluated as part of a classical biological control program directed at the olive fruit fly, Bactrocera oleae (Rossi), in California, USA. Experimental assessment using three non-target species provided some evi- dence that P. lounsburyi restricts its host use to B. oleae. Female P. lounsburyi preferentially searched olives infested with mature third- instar B. oleae, over other non-target plants, but most offspring were reared from olives containing younger (second through young third instar) B. oleae larvae. Developmental time (egg to adult) and adult longevity were significantly affected by temperature and sex, with males tending to develop faster and females living longer, especially in the lower ranges of temperatures tested. The mean longevity of adult female P. lounsburyi was greatest when honey was available and lowest when they were provided water alone or nothing. The presence of hosts significantly decreased longevity. Females produced an average of 10.2 ± 2.6 progeny during their lifetimes, which was lower than expected for a parasitoid adapted to B. oleae and may be a consequence of increased fruit size—the result of cultivation and selection—reducing parasitoid effectiveness on cultivated vs. wild fruit, as well as constraints on oviposition behavior imposed by experimental design. The results are discussed with respect to the use of P. lounsburyi as a biological control agent for olive fruit fly in California. Published by Elsevier Inc. Keywords: Bactrocera oleae; Olea; Psyttalia lounsburyi; Biological control; Non-target assessment; Parasitoid biology 1. Introduction most commonly reared parasitoid of B. oleae in wild olives (Copeland et al., 2004). In South Africa, the minor impact The African parasitoid Psyttalia lounsburyi (Silvestri) of B. oleae in wild olives is largely attributed to the action (Hymenoptera: Braconidae) was imported to California of the resident natural enemy fauna (Hancock, 1989), of as part of a biological control program directed at the olive which Utetes africanus (Sze´pligeti) is the dominant parasit- fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), a oid and P. lounsburyi is a significant component (Walton, recent arrival in the state (Collier and van Steenwyk, 2003; 2005). Despite its promise, little is known of the biology Rice et al., 2003). The literature suggests that P. lounsburyi of P. lounsburyi. It was identified nearly 100 years ago (Sil- may be an effective B. oleae parasitoid. In Kenya, it is the vestri, 1914), but little effort has been made to use it in the longstanding biological control programs for B. oleae in Europe (Greathead, 1976). These programs have focused * Corresponding author. Fax: +1 559 646 6593. almost exclusively on Psyttalia concolor (Sze´pligeti) since E-mail address: [email protected] (K.M. Daane). 1 Present address: Department of Horticulture, Oregon State University, the 1950s, when an efficient mass-rearing technique for this Corvallis, OR 97331-7304, USA. parasitoid was developed that uses the Mediterranean fruit 1049-9644/$ - see front matter Published by Elsevier Inc. doi:10.1016/j.biocontrol.2007.08.010 80 K.M. Daane et al. / Biological Control 44 (2008) 79–89 fly, Ceratitis capitata (Wiedemann) (Tephritidae), in artifi- tephritid biological control agents, and a native species, cial diet (Clausen, 1978; Greathead, 1976). Rhagoletis fausta (Osten Sacken), which feeds on wild bit- Among the various parasitoids considered for B. oleae ter cherry fruit (Rosaceae). These non-target species repre- biological control in California (Sime et al., 2006a,b,c), sent the three major feeding niches of native California P. lounsburyi is especially attractive because there is tephritid larvae (flower heads of Asteraceae, galls, and evidence, again from the literature, that it is more of a fruits) (Foote et al., 1993). Given the challenges posed by specialist on B. oleae than other parasitoid species reared the large number of tephritid species in California, our from B. oleae. Its known geographic range—collections approach to assess the potential non-target host range of have been made from Kenya and South Africa—is entirely candidate parasitoids was to test a small number of tephri- contained within that of B. oleae (Nardi et al., 2005; Whar- tid species selected to span a broad range of phylogenetic ton and Gilstrap, 1983). Unlike other common braconid diversity and larval habitats, and to compare parasitoid parasitoids of B. oleae, such as P. concolor and Bracon celer behavioral responses and reproductive success relative to Sze´pligeti, which are often collected from Ceratitis species, the target species and its habitat. Second, we determined in field collections P. lounsburyi has been reared only from basic biological parameters of P. lounsburyi, including B. oleae (Narayanan and Chawla, 1962; Neuenschwander, adult longevity and fecundity, in order to compare its 1982; Wharton and Gilstrap, 1983; Wharton et al., 2000). potential with other braconids imported and evaluated The absence of other host records is not for lack of inves- for B. oleae biological control. The accumulated experience tigative effort. Likely alternative hosts have been reared gained during these studies will be helpful in developing throughout Africa during decades of foreign exploration field-release protocols and techniques for rearing P. louns- for natural enemies of various tephritid pests (Clausen, buryi on B. oleae. 1978; Clausen et al., 1965; Wharton, 1989; Copeland et al., 2004). That P. lounsburyi has not been reared from 2. Materials and methods C. capitata despite intensive efforts to find natural enemies of this pest (Wharton et al., 2000) and despite the fact that 2.1. Sources of insects and plants, and colony maintenance it can be cultured on C. capitata in the laboratory (Billah et al., 2005) suggests that other tephritid species are accept- Separate colonies of B. oleae and P. lounsburyi were able but not attacked. Many tephritid parasitoids use cues established at two University of California facilities, the from host plants to help locate their insect hosts (Messing College of Natural Resource’s Quarantine in Berkeley and Jang, 1992; Godfray, 1994). Therefore, the apparent and the Kearney Agricultural Center’s Insectary in Parlier, field specialization of P. lounsburyi on B. oleae might also California. Bactrocera oleae were reared on olive fruit include cues from the olive tree or fruit. using methods described by Sime et al. (2006b). In brief, Field evidence of specialization and efficacy alone is not adult flies were held in ventilated cages (50 cm3) that were considered sufficient for obtaining permission to release provisioned ad libitum with water and a 2:1 mixture of parasitoids exotic to the USA and often additional experi- honey and dry yeast extract (Fisher Biotech, Fairlawn, mental evidence of host specificity is also required (Hoel- NJ). Susceptible olives were exposed to the fly colony until mer and Kirk, 2005; van Driesche and Reardon, 2004). each fruit had 3–5 oviposition marks, typically <1 day, and Over 140 native tephritids inhabit California, including then removed to a separate rearing cage. The inoculated some endemic species (Foote et al. 1993). In California olives were held until the mature fly larvae exited the fruit there is also concern that introduced parasitoids of tephri- to pupate, upon which the puparia were collected and tid pests might attack beneficial tephritids used or consid- transferred to Petri dishes. The olives were collected from ered for biological control of weeds. Direct testing of orchards in Fresno County. Small to medium-size olives imported parasitoids’ responses to those tephritids is neces- (‘Mission’ or ‘Manzanillo’ cv.) were used for all experi- sary. Currently these include Chaetorellia succinea (Costa), ments, while olives of various cultivars, including ‘Ascolano’ which feeds in the flower heads of yellow starthistle, Cen- and ‘Sevillano,’ were also used for maintenance of the fly taurea soltitialis L. (Asteraceae) (Balciunas and Villegas, and parasitoid colonies. 2001), and Parafreutreta regalis (Munro), which forms The P. lounsburyi colony used in the Berkeley Quaran- stem galls in Cape ivy, Delairea odorata Lemaire (Astera- tine originated from adults that had emerged from B. oleae ceae) (Balciunas and Smith, 2006). These weeds can occur collected in wild (Olea europaea L. subsp. cuspidata (Wall. near olive trees, and this may promote encounters with par- ex G. Don)) and cultivated (ornamental) olives near Stel- asitoids of B. oleae. Yellow starthistle grows in low-eleva- lenbosch, South Africa, and were sent as puparia to the tion disturbed areas, and Cape ivy is widespread in Berkeley Quarantine in June 2004 and August 2005. After coastal habitats of California. a USDA-APHIS permit was granted to move P. lounsburyi We conducted a series of experiments to determine the out of Quarantine, experiments were conducted at the potential of P. lounsburyi as a biological control agent Kearney Agricultural Center using a P. lounsburyi colony for B. oleae in California and to proceed, if warranted, with established from 400 parasitoids shipped from the its field release. First, we evaluated the non-target impact USDA-ARS European Biological Control Laboratory in of P.
Recommended publications
  • Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands.
    [Show full text]
  • Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
    Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids.
    [Show full text]
  • Unexpectedly High Levels of Parasitism of Wheat Stem Sawfly Larvae in Postcutting Diapause Chambers Author(S) :Tatyana A
    Unexpectedly High Levels of Parasitism of Wheat Stem Sawfly Larvae in Postcutting Diapause Chambers Author(s) :Tatyana A. Rand, Debra K. Waters, Thomas G. Shanower Source: The Canadian Entomologist, 143(5):455-459. 2011. Published By: Entomological Society of Canada URL: http://www.bioone.org/doi/full/10.4039/n11-023 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 455 Unexpectedly high levels of parasitism of wheat stem sawfly larvae in postcutting diapause chambers Tatyana A. Rand, Debra K. Waters, Thomas G. Shanower Abstract*We examined rates of late-season parasitism of larvae of the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), by native species of Bracon F. (Hymenop- tera: Braconidae) over 8 years in Montana and North Dakota, United States of America. We found that rates of parasitism of larvae in diapause chambers reached a maximum of 46%, exceeding the previously reported maximum of 2.5% in 75% of sites and years examined.
    [Show full text]
  • Fauna of Chalcid Wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan Province, Southern Iran
    J Insect Biodivers Syst 02(1): 155–166 First Online JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/AABD72DE-6C3B-41A9-9E46-56B6015E6325 Fauna of chalcid wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan province, southern Iran Tahereh Tavakoli Roodi1, Majid Fallahzadeh1* and Hossien Lotfalizadeh2 1 Department of Entomology, Jahrom branch, Islamic Azad University, Jahrom, Iran. 2 Department of Plant Protection, East-Azarbaijan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran ABSTRACT. This paper provides data on distribution of 13 chalcid wasp species (Hymenoptera: Chalcidoidea: Chalcididae) belonging to 9 genera and Received: 30 June, 2016 three subfamilies Chalcidinae, Dirhininae and Haltichellinae from Hormozgan province, southern Iran. All collected species are new records for the province. Accepted: Two species Dirhinus excavatus Dalman, 1818 and Hockeria bifasciata Walker, 13 July, 2016 1834 are recorded from Iran for the first time. In the present study, D. excavatus Published: is a new species record for the Palaearctic region. An updated list of all known 13 July, 2016 species of Chalcididae from Iran is also included. Subject Editor: George Japoshvili Key words: Chalcididae, Hymenoptera, Iran, Fauna, Distribution, Malaise trap Citation: Tavakoli Roodi, T., Fallahzadeh, M. and Lotfalizadeh, H. 2016. Fauna of chalcid wasps (Hymenoptera: Chalcidoidea: Chalcididae) in Hormozgan province, southern Iran. Journal of Insect Biodiversity and Systematics, 2(1): 155–166. Introduction The Chalcididae are a moderately specious Coleoptera, Neuroptera and Strepsiptera family of parasitic wasps, with over 1469 (Bouček 1952; Narendran 1986; Delvare nominal species in about 90 genera, occur and Bouček 1992; Noyes 2016).
    [Show full text]
  • Development of Microplitiscroceipes As a Biological Sensor
    eea_743.fm Page 249 Wednesday, July 9, 2008 4:03 PM DOI: 10.1111/j.1570-7458.2008.00743.x Blackwell Publishing Ltd MINI REVIEW Development of Microplitis croceipes as a biological sensor J. K. Tomberlin1*, G. C. Rains2 & M. R. Sanford1 1Department of Entomology, Texas A&M University, College Station, TX 77845-2475, USA, and 2Department of Biological and Agricultural Engineering, University of Georgia, Tifton, GA 31783, USA Accepted: 2 May 2008 Key words: associative learning, Wasp Hound®, Hymenoptera, Braconidae, conditioning, medical diagnosis, forensics, food safety, national security, plant disease Abstract Classical conditioning, a form of associative learning, was first described in the vertebrate literature by Pavlov, but has since been documented for a wide variety of insects. Our knowledge of associative learning by insects began with Karl vonFrisch explaining communication among honeybees, Apis mellifera L. (Hymenoptera: Apidae). Since then, the honey bee has provided us with much of what we understand about associative learning in insects and how we relate the theories of learning in vertebrates to insects. Fruit flies, moths, and parasitic wasps are just a few examples of other insects that have been documented with the ability to learn. A novel direction in research on this topic attempts to harness the ability of insects to learn for the development of biological sensors. Parasitic wasps, especially Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), have been conditioned to detect the odors associated with explosives, food toxins, and cadavers. Honeybees and moths have also been associatively conditioned to several volatiles of interest in forensics and national security. In some cases, handheld devices have been developed to harness the insects and observe conditioned behavioral responses to air samples in an attempt to detect target volatiles.
    [Show full text]
  • Response of Psyttalia Humilis (Hymenoptera: Braconidae) to Olive Fruit Fly (Diptera: Tephritidae) and Conditions in California Olive Orchards
    BIOLOGICAL CONTROL-PARASITOIDS AND PREDATORS Response of Psyttalia humilis (Hymenoptera: Braconidae) to Olive Fruit Fly (Diptera: Tephritidae) and Conditions in California Olive Orchards VICTORIA Y. YOKOYAMA,1 PEDRO A. RENDO´ N,2 XIN-GENG WANG,3 SUSAN B. OPP,4 5 3 MARSHALL W. JOHNSON, AND KENT M. DAANE Environ. Entomol. 40(2): 315Ð323 (2011); DOI: 10.1603/EN10186 ABSTRACT The larval parasitoid, Psyttalia humilis (Silvestri), reared on Mediterranean fruit ßy, Ceratitis capitata (Weidemann), by USDA-APHIS-PPQ, San Miguel Petapa, Guatemala was imported into California for biological control of olive fruit ßy, Bactrocera oleae (Rossi). This study reports the results of Þeld releases and recovery of P. humilis in California, and laboratory investigations to determine the effects of food provision, high temperature, and insecticidal bait spray on the parasi- toidÕs survival and fecundity. Parasitoids (3,613Ð7,823) were released in Orland, San Juan Bautista, Cayucos, Sylmar, Santa Barbara, and San Diego during October through December 2006. Mean daily temperatures at the release sites ranged from 10.7ЊC in Orland to 20.9ЊC in San Juan Bautista. The lowest (0.5) and highest (29.7) mean number of adult B. oleae per day per trap was captured in Orland and Sylmar, while the lowest (0.01) and highest (2.21) number of third instar larvae per fruit was collected on 11 December in Orland and on 5 October in San Diego in prerelease samples, respectively. Parasitoids were recovered from all release sites, the lowest (0.3%) and highest (100%) parasitism occurred on 25 January in Sylmar and on 26 October in Cayucos, respectively.
    [Show full text]
  • Extreme Diversity of Tropical Parasitoid Wasps Exposed by Iterative Integration of Natural History, DNA Barcoding, Morphology, and Collections
    Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections M. Alex Smith*†, Josephine J. Rodriguez‡, James B. Whitfield‡, Andrew R. Deans§, Daniel H. Janzen†¶, Winnie Hallwachs¶, and Paul D. N. Hebert* *The Biodiversity Institute of Ontario, University of Guelph, Guelph Ontario, N1G 2W1 Canada; ‡Department of Entomology, 320 Morrill Hall, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801; §Department of Entomology, North Carolina State University, Campus Box 7613, 2301 Gardner Hall, Raleigh, NC 27695-7613; and ¶Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018 Contributed by Daniel H. Janzen, May 31, 2008 (sent for review April 18, 2008) We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgas- A detailed recognition of species in parasitoid communities is trine braconid genera reared from parapatric tropical dry forest, cloud necessary because of the pivotal role parasitoids play in food web forest, and rain forest in Area de Conservacio´ n Guanacaste (ACG) in structure and dynamics. While generalizations about the effects of northwestern Costa Rica and combined these data with records of parasitoids on community diversity are complex (7), a common- caterpillar hosts and morphological analyses. We asked whether place predictor of the impact of a parasitoid species on local host barcoding and morphology discover the same provisional species and dynamics is whether the parasitoid is a generalist or specialist. A whether the biological entities revealed by our analysis are congruent generalist, especially a mobile one, is viewed as stabilizing food webs with wasp host specificity. Morphological analysis revealed 171 (see ref.
    [Show full text]
  • Chalcid Forum Chalcid Forum
    ChalcidChalcid ForumForum A Forum to Promote Communication Among Chalcid Workers Volume 23. February 2001 Edited by: Michael E. Schauff, E. E. Grissell, Tami Carlow, & Michael Gates Systematic Entomology Lab., USDA, c/o National Museum of Natural History Washington, D.C. 20560-0168 http://www.sel.barc.usda.gov (see Research and Documents) minutes as she paced up and down B. sarothroides stems Editor's Notes (both living and partially dead) antennating as she pro- gressed. Every 20-30 seconds, she would briefly pause to Welcome to the 23rd edition of Chalcid Forum. raise then lower her body, the chalcidoid analog of a push- This issue's masthead is Perissocentrus striatululus up. Upon approaching the branch tips, 1-2 resident males would approach and hover in the vicinity of the female. created by Natalia Florenskaya. This issue is also Unfortunately, no pre-copulatory or copulatory behaviors available on the Systematic Ent. Lab. web site at: were observed. Naturally, the female wound up leaving http://www.sel.barc.usda.gov. We also now have with me. available all the past issues of Chalcid Forum avail- The second behavior observed took place at Harshaw able as PDF documents. Check it out!! Creek, ~7 miles southeast of Patagonia in 1999. Jeremiah George (a lepidopterist, but don't hold that against him) and I pulled off in our favorite camping site near the Research News intersection of FR 139 and FR 58 and began sweeping. I knew that this area was productive for the large and Michael W. Gates brilliant green-blue O. tolteca, a parasitoid of Pheidole vasleti Wheeler (Formicidae) brood.
    [Show full text]
  • Braconidae, Braconid Wasps
    Beneficial Insects Class Insecta, Insects Order Hymenoptera, Ants, bees, and wasps Hymenoptera means “membraneous wings.“ The hind wings are smaller than the front wings and have a row of tiny hooks, hamuli, that attach the two wings. There are two suborders. The smaller suborder includes sawflies and horntails, which are phytophagous. Bees, wasps, and ants belong to the larger suborder, which includes nectar, pollen, and insect feeders. Hymenoptera is the second largest group of insects, most of which are beneficial. These insects undergo complete metamorphosis and have complex behaviors. Most parasitic wasps do not sting humans. All hymenopterans have chewing mouthparts. Braconid wasps Family Braconidae Description and life yhistory: There are over 1000 known species of Braconid parasitoids. They are mostly internal parasitoids, but many emerge to pupate outside their dead hosts. Adults are usually less than 13 mm long, with a slender abdomen that is longer than the head and thorax combined. They are popular biological control agents, because they are good searchers, even at low host densities. Prey species: Braconid hosts include larvae of beetles, Braconid wasp parasitoid reared from an aphid mummy. (340) caterpillars, flies and sawflies. Cotesia congregata attacks Photo: John Davidson tomato hornworm larvae, C. glomerata attacks imported cabbageworm larvae, and C. melanoscelus attacks gypsy moth larvae. Braconids are also an important parasitoid of aphids. Each female can attack between 200–300 aphids in a two-week lifespan. Aphidius matricariae, A. colemani, and A. ervi are commercially available for control against green peach aphid, melon aphid, cotton aphid in greenhouses, and soybean aphid. Lysiphlebus testaceipes also attacks greenbug aphids and cotton aphids, while Diaeretiella rapae attacks greenbug aphids, Russian wheat aphid, corn leaf aphid, and English grain aphid.
    [Show full text]
  • First Aphidiine Wasp from the Sakhalinian Amber
    First aphidiine wasp from the Sakhalinian amber ELENA M. DAVIDIAN, MARYNA O. KALIUZHNA, and EVGENY E. PERKOVSKY Davidian E.M., Kaliuzhna M.O., and Perkovsky E.E. 2021. First aphidiine wasp from the Sakhalinian amber. Acta Palaeontologica Polonica 66 (Supplement to 3): S59–S65. The first ichneumonoid aphidiine wasp species from Sakhalinian amber (middle Eocene) is described. Ephedrus rasnit- syni Davidian and Kaliuzhna sp. nov. іs the oldest named aphidiine female, the first fossil aphidiine from Asia, and the oldest named species of the Ephedrus. Ephedrus rasnitsyni Davidian and Kaliuzhna sp. nov. and the two fossil species of Ephedrus, i.e., Ephedrus primordialis from Baltic amber (late Eocene) and Ephedrus mirabilis from Camoins-les-Bains (early Oligocene), presumably belong to the Ephedrus plagiator species group of the subgenus Ephedrus sensu stricto, and new species differs from them in having a longer petiole and a rather long 3M vein that does not reach the forewing margin. It additionally differs from E. primordialis by having longer ovipositor sheaths. The new species is most similar to the extant Ephedrus validus and Ephedrus carinatus, from which it differs by the less elongated F1, absence of notauli, and by ovipositor sheaths that are 3.0 times as long as wide. Key words: Hymenoptera, Ichneumonoidea, Braconidae, Aphidiinae, Eocene, Oligocene, Baltic amber, Sakhalinian amber. Elena M. Davidian [[email protected]; ORCID: https://orcid.org/0000-0003-3804-4618], All-Russian Institute of Plant Protection (FSBSI VIZR), Podbelskogo, 3, St. Petersburg – Pushkin, 196608 Russian Federation. Maryna O. Kaliuzhna [[email protected]; ORCID: https://orcid.org/0000-0002-9265-0195], I.I.
    [Show full text]
  • Habrobracon Hebetor and Pteromalus Cerealellae As Tools in Post-Harvest Integrated Pest Management
    insects Review Habrobracon hebetor and Pteromalus cerealellae as Tools in Post-Harvest Integrated Pest Management George N. Mbata * and Sanower Warsi Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA; [email protected] * Correspondence: [email protected] Received: 24 February 2018; Accepted: 23 March 2019; Published: 27 March 2019 Abstract: Consumers are increasingly demanding pesticide-free grain/legumes and processed foods. Additionally, there are more restrictions, or complete loss, of insecticides labelled for use in managing stored grain insects in post-harvest ecosystems. Suppression of post-harvest pests using parasitic wasps is a more sustainable alternative than chemical pesticides. Habrobracon hebetor (Say) (Hymenoptera: Braconidae) and Pteromalus cerealellae Ashmead (Hymenoptera: Pteromalidae) are two important parasitoids that limit economically important pests of stored products. Host searching ability and reproductive performances of H. hebetor and P. cerealellae depend on a wide range of factors, such as host species, commodities, and environmental conditions. Further, use of entomopathogens can complement the ability of parasitoids to regulate pest populations. This review provides information on aspects of H. hebetor and P. cerealellae biology and successful regulation of post-harvest pest populations. Keywords: pesticide residue; post-harvest pest; parasitoid; entomopathogens; commodities 1. Introduction Stored product pests cause severe economic losses due to the infestation of commodities in stored grain ecosystems including silos, bakeries, food processing industries, flourmills, and pet food factories. Stored grain managers rely substantially on strategies involving the application of synthetic insecticides to manage stored product pests [1,2]. Although insecticides can be effective, their repeated and indiscriminative use will cause insecticide resistance and detrimental non-target effects, potentially leading to the loss of biodiversity [3].
    [Show full text]
  • As a Parasitoid of Agrilus Planipennis Fairmaire
    PROC. ENTOMOL. SOC. WASH. 112(2), 2010, pp. 246–257 LELUTHIA ASTIGMA (ASHMEAD) (HYMENOPTERA: BRACONIDAE: DORYCTINAE) AS A PARASITOID OF AGRILUS PLANIPENNIS FAIRMAIRE (COLEOPTERA: BUPRESTIDAE: AGRILINAE), WITH AN ASSESSMENT OF HOST ASSOCIATIONS FOR NEARCTIC SPECIES OF LELUTHIA CAMERON ROBERT R. KULA,KATHLEEN S. KNIGHT,JOANNE REBBECK, LEAH S. BAUER,DAVID L. CAPPAERT, AND KAMAL J. K. GANDHI (RRK) Systematic Entomology Laboratory, Plant Sciences Institute, Agricul- tural Research Service, U.S. Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 168, Washington, DC 20013-7012, U.S.A. (e-mail: [email protected]); (KSK, JR) U.S. Forest Service Northern Research Station, U.S. Department of Agriculture, 359 Main Road, Delaware, OH 43015, U.S.A.; (LSB) U.S. Forest Service Northern Research Station, U.S. Department of Agriculture, Michigan State University, 1407 S. Harrison Road, East Lansing, MI 48823, U.S.A.; (DLC) Department of Entomology, Michigan State University, East Lansing, MI 48824, U.S.A.; (LSB) U.S. Forest Service Northern Research Station, U.S. Department of Agriculture, Michigan State University, 1407 S. Harrison Road, East Lansing, MI 48823, U.S.A.; (KJKG) Daniel B. Warnell School of Forestry and Natural Resources, The University of Georgia, 180 E Green St., Athens, GA 30602, U.S.A. Abstract.—Published host associations are assessed for Leluthia astigma (Ashmead), Leluthia floridensis Marsh, and Leluthia mexicana Cameron, the three known species of Leluthia Cameron in the Nearctic Region. Leluthia astigma is reported as a parasitoid of Agrilus planipennis Fairmaire, emerald ash borer (EAB), infesting Fraxinus americana L., white ash, in Delaware County, Ohio.
    [Show full text]