Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture

Total Page:16

File Type:pdf, Size:1020Kb

Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture SRAC Publication No. 454 November 2006 VI Revision PR Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture James E. Rakocy1, Michael P. Masser2 and Thomas M. Losordo3 Aquaponics, the combined culture of many times, non-toxic nutrients and Aquaponic systems offer several ben- fish and plants in recirculating sys- organic matter accumulate. These efits. Dissolved waste nutrients are tems, has become increasingly popu- metabolic by-products need not be recovered by the plants, reducing dis- lar. Now a news group (aquaponics- wasted if they are channeled into charge to the environment and [email protected] — type sub- secondary crops that have economic extending water use (i.e., by remov- scribe) on the Internet discusses value or in some way benefit the pri- ing dissolved nutrients through plant many aspects of aquaponics on a mary fish production system. uptake, the water exchange rate can daily basis. Since 1997, a quarterly Systems that grow additional crops be reduced). Minimizing water periodical (Aquaponics Journal) has by utilizing by-products from the pro- exchange reduces the costs of operat- published informative articles, con- duction of the primary species are ing aquaponic systems in arid cli- ference announcements and product referred to as integrated systems. If mates and heated greenhouses where advertisements. At least two large the secondary crops are aquatic or water or heated water is a significant suppliers of aquaculture and/or terrestrial plants grown in conjunc- expense. Having a secondary plant hydroponic equipment have intro- tion with fish, this integrated system crop that receives most of its required duced aquaponic systems to their is referred to as an aquaponic system catalogs. Hundreds of school districts (Fig. 1). are including aquaponics as a learn- Plants grow rapidly with dissolved ing tool in their science curricula. At nutrients that are excreted directly least two short courses on aquapon- by fish or generated from the micro- ics have been introduced, and the bial breakdown of fish wastes. In number of commercial aquaponic closed recirculating systems with operations, though small, is increas- very little daily water exchange (less ing. than 2 percent), dissolved nutrients Aquaponic systems are recirculating accumulate in concentrations similar aquaculture systems that incorporate to those in hydroponic nutrient solu- the production of plants without soil. tions. Dissolved nitrogen, in particu- Recirculating systems are designed lar, can occur at very high levels in to raise large quantities of fish in rel- recirculating systems. Fish excrete atively small volumes of water by waste nitrogen, in the form of ammo- treating the water to remove toxic nia, directly into the water through waste products and then reusing it. their gills. Bacteria convert ammonia In the process of reusing the water to nitrite and then to nitrate (see SRAC Publication No. 451, “Recirculating Aquaculture Tank 1 Agricultural Experiment Station, University of the Production Systems: An Overview of Virgin Islands Critical Considerations”). Ammonia 2 Department of Wildlife and Fisheries Sciences, and nitrite are toxic to fish, but Texas A&M University 3 nitrate is relatively harmless and is Biological and Agricultural Engineering Figure 1. Nutrients from red tilapia Department, North Carolina State University the preferred form of nitrogen for growing higher plants such as fruit- produce a valuable crop of leaf let- ing vegetables. tuce in the UVI aquaponic system. nutrients at no cost improves a sys- tem’s profit potential. The daily application of fish feed provides a steady supply of nutrients to plants and thereby eliminates the need to Rearing Solids Hydroponic Biofilter Sump discharge and replace depleted nutri- tank removal subsystem ent solutions or adjust nutrient solu- tions as in hydroponics. The plants remove nutrients from the culture water and eliminate the need for Combined separate and expensive biofilters. Combined Aquaponic systems require substan- tially less water quality monitoring Figure 2. Optimum arrangement of aquaponic system components (not to than separate hydroponic or recircu- scale). lating aquaculture systems. Savings are also realized by sharing opera- goldfish, Asian sea bass (barramun- tional and infrastructural costs such can be located after the biofilter and as pumps, reservoirs, heaters and water would be pumped up to the di) and Murray cod, most commer- alarm systems. In addition, the troughs and returned by gravity to cial systems are used to raise tilapia. intensive, integrated production of the fish-rearing tank. Most freshwater species, which can fish and plants requires less land The system can be configured so tolerate crowding, will do well in than ponds and gardens. Aquaponic that a portion of the flow is diverted aquaponic systems (including orna- systems do require a large capital to a particular treatment unit. For mental fish). One species reported to investment, moderate energy inputs perform poorly is hybrid striped and skilled management. Niche mar- example, a small side-stream flow may go to a hydroponic component bass. They cannot tolerate high lev- kets may be required for profitabili- els of potassium, which is often sup- ty. after solids are removed, while most of the water passes through a biofil- plemented to promote plant growth. System design ter and returns to the rearing tank. To recover the high capital cost and The biofilter and hydroponic compo- operating expenses of aquaponic sys- The design of aquaponic systems tems and earn a profit, both the fish- closely mirrors that of recirculating nents can be combined by using plant support media such as gravel rearing and the hydroponic veg- systems in general, with the addition etable components must be operated of a hydroponic component and the or sand that also functions as biofil- ter media. Raft hydroponics, which continuously near maximum pro- possible elimination of a separate duction capacity. The maximum bio- biofilter and devices (foam fractiona- consists of floating sheets of poly- styrene and net pots for plant sup- mass of fish a system can support tors) for removing fine and dissolved without restricting fish growth is solids. Fine solids and dissolved port, can also provide sufficient biofiltration if the plant production called the critical standing crop. organic matter generally do not Operating a system near its critical reach levels that require foam frac- area is large enough. Combining biofiltration with hydroponics is a standing crop uses space efficiently, tionation if aquaponic systems have maximizes production and reduces the recommended design ratio. The desirable goal because eliminating the expense of a separate biofilter is variation in the daily feed input to essential elements of an aquaponic the system, an important factor in system are the fish-rearing tank, a one of the main advantages of aquaponics. An alternative design sizing the hydroponic component. settleable and suspended solids There are three stocking methods removal component, a biofilter, a combines solids removal, biofiltra- tion and hydroponics in one unit. that can maintain fish biomass near hydroponic component, and a sump the critical standing crop: sequential (Fig. 2). The hydroponic support media (pea gravel or coarse sand) captures solids rearing, stock splitting and multiple Effluent from the fish-rearing tank is and provides surface area for fixed- rearing units. treated first to reduce organic matter film nitrification, although with this Sequential rearing in the form of settleable and sus- design it is important not to overload pended solids. Next, the culture the unit with suspended solids. Sequential rearing involves the cul- water is treated to remove ammonia As an example, Figures 3 and 4 show ture of several age groups (multiple and nitrate in a biofilter. Then, water cohorts) of fish in the same rearing flows through the hydroponic unit the commercial-scale aquaponic sys- tem that has been developed at the tank. When one age group reaches where some dissolved nutrients are marketable size, it is selectively har- taken up by plants and additional University of the Virgin Islands (UVI). It employs raft hydroponics. vested with nets and a grading sys- ammonia and nitrite are removed by tem, and an equal number of finger- bacteria growing on the sides of the Fish production lings are immediately restocked in tank and the underside of the poly- the same tank. There are three prob- styrene sheets (i.e., fixed-film nitrifi- Tilapia is the fish species most com- lems with this system: 1) the period- cation). Finally, water collects in a monly cultured in aquaponic sys- ic harvests stress the remaining fish reservoir (sump) and is returned to tems. Although some aquaponic sys- and could trigger disease outbreaks; the rearing tank. The location of the tems have used channel catfish, 2) stunted fish avoid capture and sump may vary. If elevated hydro- largemouth bass, crappies, rainbow accumulate in the system, wasting ponic troughs are used, the sump trout, pacu, common carp, koi carp, space and feed; and 3) it is difficult The UVI Aquaponic System ing crop of the initial rearing tank is reached. The fish are either herded Effluent line through a hatch between adjoining Fish rearing tanks Degassing Hydroponic tanks tanks or into “swimways” connect- Base addition ing distant tanks. Multiple rearing units usually come in modules of two to four tanks and are
Recommended publications
  • SUSTAINABLE FISHERIES and RESPONSIBLE AQUACULTURE: a Guide for USAID Staff and Partners
    SUSTAINABLE FISHERIES AND RESPONSIBLE AQUACULTURE: A Guide for USAID Staff and Partners June 2013 ABOUT THIS GUIDE GOAL This guide provides basic information on how to design programs to reform capture fisheries (also referred to as “wild” fisheries) and aquaculture sectors to ensure sound and effective development, environmental sustainability, economic profitability, and social responsibility. To achieve these objectives, this document focuses on ways to reduce the threats to biodiversity and ecosystem productivity through improved governance and more integrated planning and management practices. In the face of food insecurity, global climate change, and increasing population pressures, it is imperative that development programs help to maintain ecosystem resilience and the multiple goods and services that ecosystems provide. Conserving biodiversity and ecosystem functions are central to maintaining ecosystem integrity, health, and productivity. The intent of the guide is not to suggest that fisheries and aquaculture are interchangeable: these sectors are unique although linked. The world cannot afford to neglect global fisheries and expect aquaculture to fill that void. Global food security will not be achievable without reversing the decline of fisheries, restoring fisheries productivity, and moving towards more environmentally friendly and responsible aquaculture. There is a need for reform in both fisheries and aquaculture to reduce their environmental and social impacts. USAID’s experience has shown that well-designed programs can reform capture fisheries management, reducing threats to biodiversity while leading to increased productivity, incomes, and livelihoods. Agency programs have focused on an ecosystem-based approach to management in conjunction with improved governance, secure tenure and access to resources, and the application of modern management practices.
    [Show full text]
  • Overview of the Potential Interactions and Impacts of Commercial Fishing Methods on Marine Habitats and Species Protected Under the Eu Habitats Directive
    THE N2K GROUP European Economic Interest Group OVERVIEW OF THE POTENTIAL INTERACTIONS AND IMPACTS OF COMMERCIAL FISHING METHODS ON MARINE HABITATS AND SPECIES PROTECTED UNDER THE EU HABITATS DIRECTIVE Contents GLOSSARY................................................................................................................................................3 1. BACKGROUND.................................................................................................................................6 1.1 Fisheries interactions ....................................................................................................................7 2. FISHERIES AND NATURA 2000 - PRESSURES, INTERACTIONS, AND IMPACTS ....................................8 2.1 POTENTIAL PHYSICAL, CHEMICAL AND BIOLOGICAL PRESSURES AND IMPACTS ASSOCIATED WITH COMMERCIAL FISHING METHODS ............................................................................................8 DREDGES .......................................................................................................................................11 TRAWL - PELAGIC ..........................................................................................................................12 HOOK & LINE.................................................................................................................................12 TRAPS ............................................................................................................................................12 NETS ..............................................................................................................................................13
    [Show full text]
  • Australian Fisheries and Aquaculture Statistics 2015
    Department of Agriculture and Water Resources Australian fisheries and aquaculture statistics 2015 Research by the Australian Bureau of Agricultural and Resource Economics and Sciences DECEMBER 2016 ABARES i Australian fisheries and aquaculture statistics 2015 © Commonwealth of Australia 2016 Ownership of intellectual property rights The Australian Government acting through the Department Unless otherwise noted, copyright (and any other intellectual of Agriculture and Water Resources, represented by the property rights, if any) in this publication is owned by the Australian Bureau of Agricultural and Resource Economics Commonwealth of Australia (referred to as the Commonwealth). and Sciences, has exercised due care and skill in preparing and compiling the information and data in this publication. Creative Commons licence Notwithstanding, the Department of Agriculture and Water All material in this publication is licensed under a Creative Resources, ABARES, its employees and advisers disclaim all Commons Attribution 3.0 Australia Licence, save for content liability, including for negligence and for any loss, damage, supplied by third parties, logos and the Commonwealth Coat injury, expense or cost incurred by any person as a result of Arms. of accessing, using or relying on information or data in this publication to the maximum extent permitted by law. Creative Commons Attribution 3.0 Australia Licence is a Acknowledgements standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from creativecommons.org/licenses/by/3.0/ au/deed.en. The full licence terms are available from ABARES thanks state and territory fisheries departments and creativecommons.org/licenses/by/3.0/au/legalcode.
    [Show full text]
  • Pottawatomie County Is Home to Aquaponics Farm
    Pottawatomie County is home to aquaponics farm By Donna Sullivan, Editor Once the fry are hatched, What began as an effort Sperman uses a net to scoop to ensure his diabetic father a them into a bucket to trans- reliable protein supply if port to fry pools. The bread availability to his medication and butter of his business is were interrupted has grown selling three-quarter to one- into a growing business ven- inch fry in bulk. “When fry ture for Pottawatomie Coun- are the size of mosquito lar- ty resident James Sperman. vae, they’re not the most re- Travelers along Highway 24 silient things in the world,” between Manhattan and he said. So he waits about Wamego may have noticed two weeks for them to grow the high tunnel, semi-pit to around an inch, then ships greenhouse and large blue them nationwide. “None of pools that house his my fish go to waste,” he con- aquaponic gardening system tinued. “The ones that I and tilapia farm. don’t manage to find homes Aquaponics combines for can grow and become fish farming with hydropon- adolescents and some are ic gardening inside a high just on the verge of becom- tunnel, which allows for the ing breeders and will be- production of fruits, vegeta- come pond stockers.” bles and fish year-round. The Sperman says that be- system has a 1,700-gallon cause tilapia are predomi- fish tank and 165-square- nantly vegetarian and are fil- foot grow bed. Water from ter feeders, the algae and the fish tank carries fish bacteria that grows in the waste to the grow bed, where James Sperman describes how he feeds the fish at only one end of the pond since the females release their eggs pools is tailored perfectly to it feeds the plants.
    [Show full text]
  • FISHING NEWSLETTER 2020/2021 Table of Contents FWP Administrative Regions and Hatchery Locations
    FISHING NEWSLETTER 2020/2021 Table of Contents FWP Administrative Regions and Hatchery Locations .........................................................................................3 Region 1 Reports: Northwest Montana ..........................................................................................................5 Region 2 Reports: West Central Montana .....................................................................................................17 Region 3 Reports: Southwest Montana ........................................................................................................34 Region 4 Reports: North Central Montana ...................................................................................................44 Region 5 Reports: South Central Montana ...................................................................................................65 Region 6 Reports: Northeast Montana ........................................................................................................73 Region 7 Reports: Southeast Montana .........................................................................................................86 Montana Fish Hatchery Reports: .......................................................................................................................92 Murray Springs Trout Hatchery ...................................................................................................................92 Washoe Park Trout Hatchery .......................................................................................................................93
    [Show full text]
  • Preparing Trolling Lines
    CHAPTER 3 PREPARING TROLLING LINES A. TOOLS AND UTENSILS B. HOOKS -Hook types -Sharpening hooks -Ganging hooks C. 'TYPES OF FISHING LINE -Handling lines -Line characteristics D. END LOOPS IN LINE AND SINGLE-STRAND WIRE -Double figure-eight knot -Using end loops -End loops in wire E. .END LOOPS IN ROPE -Whipping and sealing rope ends -Bowline knot -Eye splice F. END LOOPS IN CABLE (MULTI-STRAND WIRE) -Wrapped end loops -Flemish eye -Crimping cable -Lazy splice G. KNOTS FOR HOOKS AND TACKLE -Palomar knot -Slip knot -Clinch knot -'Trilene' knot -Tying a hook rigid on wire H. JOINING LINES TOGETHER -Blood knot (Barrel knot) -Double slip knot -Using end loops -Connector rings and swivels I. THE ASSEMBLED TROLLING LINE -The mainline -The trace -Changing traces- Trace length -The backing J. SINKERS -Heavier line materials -Sinkers -Downriggers -Cannonballs K. DIVING DEVICES -Diving boards -Tripping -Diving lures -Trolling depth L. RIGGING FIXED LINES -Making shock absorbers -Rigging shock absorbers -Position -Backing cord and lazy line -Line storage M. RIGGING LINES ON HAND REELS -Loading the reel -Overloading -Adjustments -Using wire N. RIGGING HANDREELS FOR TROLLING -Rigging through a trolling boom -Rabbit line -Boom stays -Braking system (drag) -Lazy line 29 CHAPTER 3: PREPARING TROLLING LINES SECTION A: TOOLS AND UTENSILS Most of the preparation for trolling is normally done on shore before the fishing trip starts. This makes gear rigging easier and more comfortable, prevents new materials being contaminated with salt water before they are used, and avoids wasting time at sea which could better be used in fishing or carrying out other tasks on the boat.
    [Show full text]
  • Fishery Basics – Fishing Vessels Fishing Vessel Types
    Fishery Basics – Fishing Vessels Fishing Vessel Types Fishing vessels are typically designed with a specific purpose. That purpose is to locate, catch, and preserve fish while out at sea. The planned operations of a vessel determine the overall size of the vessel, the arrangement of the deck, carrying capacity, as well as the machinery and types of equipment that will be supported by the vessel. Due to the inherent differences in fishing communities around the world, there is a wide range of types and styles of fishing vessels. Vessel sizes can range from the 2 m (6 ft) dug out canoes used in subsistence and artisanal fisheries, to factory ships that exceed 130 m (427 ft) in length. Commercial fishing vessels can also be characterized by a variety of criteria: types of fish (See Biology & Ecology) they catch, fishing gear and methods used (See Fishing Gear), capacity and processing capabilities, and the geographical origin of the vessel. In 2002, the United Nations Food and Agriculture Organization (FAO) estimated the world fishing fleet had approximately four million vessels, with an average vessel size ranging from 10-15 m (33-49 ft). Based on a quarterly catch statistics report, published by the Pacific Fisheries Information Network (PacFIN), approximately 1,950 vessels landed their catches in California ports. Due to the technological innovations that began in the 1950s, many fishing vessels are now classified as multi-purpose vessels, because of the ability to switch out gear types depending on the targeted species. However, single use vessels still exist in the world fishing fleet today.
    [Show full text]
  • A Strategic Approach to Sustainable Shrimp Production in Thailand
    A Strategic Approach to Sustainable Shrimp Production in Thailand THE CASE FOR IMPROVED ECONOMICS AND SUSTAINABILITY Boston Consulting Group partners with leaders in business and society to tackle their most important challenges and capture their greatest opportunities. BCG was the pioneer in business strategy when it was founded in 1963. Today, we help clients with total transformation—inspiring complex change, enabling organizations to grow, building competitive advantage, and driving bottom-line impact. To succeed, organizations must blend digital and human capabilities. Our diverse, global teams bring deep industry and functional expertise and a range of perspectives to spark change. BCG delivers solutions through leading-edge management consulting along with technology and design, corporate and digital ventures—and business purpose. We work in a uniquely collaborative model across the firm and throughout all levels of the client organization, generating results that allow our clients to thrive. A STRATEGIC APPROACH TO SUSTAINABLE SHRIMP PRODUCTION IN THAILAND THE CASE FOR IMPROVED ECONOMICS AND SUSTAINABILITY HOLGER RUBEL WENDY WOODS DAVID PÉREZ SHALINI UNNIKRISHNAN ALEXANDER MEYER ZUM FELDE SOPHIE ZIELCKE CHARLOTTE LIDY CAROLIN LANFER July 2019 | Boston Consulting Group CONTENTS 4 EXECUTIVE SUMMARY 6 MARKET FORCES ARE RESHAPING THE GLOBAL SHRIMP INDUSTRY 8 THE THAI SHRIMP INDUSTRY IS AT AN INFLECTION POINT The Perfect Storm Has Hit Thai Shrimp Production in Recent Years Thailand Is Weathering the Storm but Is Still Losing Ground
    [Show full text]
  • Genetic and Demographic Implications of Aquaculture in White Sturgeon (Acipenser Transmontanus) Conservation
    1733 Genetic and demographic implications of aquaculture in white sturgeon (Acipenser transmontanus) conservation Henriette I. Jager Abstract: This study uses a genetic individual-based model of white sturgeon (Acipenser transmontanus) populations in a river to examine the genetic and demographic trade-offs associated with operating a conservation hatchery. Simula- tion experiments evaluated three management practices: (i) setting quotas to equalize family contributions in an effort to prevent genetic swamping, (ii) an adaptive management scheme that interrupts stocking when introgression exceeds a specified threshold, and (iii) alternative broodstock selection strategies that influence domestication. The first set of simulations, designed to evaluate equalizing the genetic contribution of families, did not show the genetic benefits expected. The second set of simulations showed that simulated adaptive management was not successful in controlling introgression over the long term, especially with uncertain feedback. The third set of simulations compared the effects of three alternative broodstock selection strategies on domestication for hypothetical traits controlling early density-dependent survival. Simulated aquaculture selected for a density-tolerant phenotype when broodstock were taken from a genetically connected population. Using broodstock from an isolated population (i.e., above an upstream barrier or in a different watershed) was more effective at preventing domestication than using wild broodstock from a connected population.
    [Show full text]
  • Business Plan to Support the Improvement of the Yellowfin Tuna (Thunnus Albacares) Small-Scale Fishery in the Galapagos Marine Reserve, Ecuador
    Business plan to support the improvement of the yellowfin tuna (Thunnus albacares) small-scale fishery in the Galapagos Marine Reserve, Ecuador Developed as part of the GEF-funded, World Bank-implemented Ocean Partnerships for Sustainable Fisheries and Biodiversity Conservation (OPP), a sub-project of the Common Oceans ABNJ Program led by UN-FAO Fishery location: Galapagos Islands, Ecuador Report authors: Viteri, C., Obregón, P., Castrejón, M., and Yoshioka, J. Organization: Conservation International Report date: December 2018 1 Version Control Amendments Issued Version No. Date Description of Amendment 1.0 October 23 2018 First draft 2.0 December 31 2018 Second draft The current materials drafted by Conservation International are a product of the GEF-funded, World Bank- implemented project titled 'Ocean Partnership for Sustainable Fisheries and Biodiversity Conservation (OPP)', and is part of the FAO Common Oceans Program. The opinions expressed in this report belong solely to the authors, and are not necessarily endorsed by reviewers, by the GEF or by the World Bank". This document is to be cited as: Viteri, C., Obregón, P., Castrejón, M., and Yoshioka, J. 2018. Business plan to support the improvement of the yellowfin tuna (Thunnus albacares) small-scale fishery in the Galapagos Marine Reserve, Ecuador. Conservation International. 72 pp. Acknowledgements: The authors want to thank Scott Henderson, Jack Kittinger, Luis Suarez, Jerson Moreno, Mariana Vera, and the Galapagos National Park staff, particularly Harry Reyes and Danny Rueda for their support in the development of the Galapagos Tuna Business Case. 2 TABLE OF CONTENTS Investment overview 5 1. INTRODUCTION 10 2. CONTEXTUAL ANALYSIS 16 2.1 Overview and Background of The Galapagos Islands 16 2.2 Governance and management of the Galapagos Marine Reserve 17 2.3 The yellowfin tuna fishery 19 2.3.1 Stock status 21 2.3.2 Governance and management of the Galapagos tuna fishery 23 2.3.3 organization and entrepreneurial capacity of the small-scale fishing sector: 25 3.
    [Show full text]
  • The New Fisherman
    WILLIAM B. McCLOSKEY, JR. THE NEW FISHERMAN Hydraulic hoses and black boxes make fishing easier, but exact a price. We took hail and spray in our faces and crouched buoy of the first crab pot: barely a minute's search monkey-style to keep pace while working the gear on for a 2-foot pink buoy hidden in rolling seas during a a pitching deck glazed with ice. The wind blew a snowstom. straight 35 knots and gusted 60. Up through the Despite the weather, we worked all night, black hydraulic block zipped a crab pot-a 7-foot-square waves that could obliterate us towering over our by 3-foot steel-framed cage. Seven hundred pounds deck; worked without stop through all the daylight empty, it would now weigh 1000 to 2500 pou~ hours and on through the next night until about 2 depending on the number of king crabs insi£ Its AM. At last, peeling off our raingear but nothing else, trip up from the seafloor 60 fathoms below took we groaned to our bunks. about a minute. The pot surfaced in a froth of purple By the first grey light, the skipper had the wheel crab shapes and water. We braced it at the rail again. He slowed the engine, a standard signal. Our waiting for the proper boat motion, and swung it fishermen's discipline responded with feet back into aboard, holding tight to prevent a wild swing. Then it damp boots, salt-clammy raingear over our clothes. was teamwork on the run, to prepare the line and And so for seven days, until our tanks were filled.
    [Show full text]
  • How Fish Are Caught
    How fish are caught Wild fish can be caught in a variety of different ways, from the traditional rod and line to traps and trawl nets large enough to capture a passenger airplane. Fishing gears can be categorized as either mobile/active or static/passive depending on whether they are towed across the seabed or fixed to it. Mobile/active gear includes any trawls, trolling and drifting nets or lines whereas static/passive gear includes fixed nets, traps and rod and line. Generally static /passive gear has a lower impact on the seabed. Here are the most commonly used fishing methods with a brief explanation of how they work and their environmental impacts. Beam trawl In this type of trawl, the mouth or opening of the net is kept open by a beam, which is mounted at each end on guides or skids which travel along the seabed. The trawls are adapted and made more effective by attaching tickler chains (for sand or mud) or heavy chain matting (for rough, rocky ground) depending on the type of ground being fished. These drag along the seabed in front of the net, disturbing the fish in the path of the trawl, causing them to rise from the seabed into the oncoming net. Electrified ticklers, which are less damaging to the seabed, have been developed but used only experimentally. Work is also being carried out to investigate whether square mesh panels (see below) fitted in the ‘belly’ or lower panel of the net can reduce the impact of beam trawling on communities living on or in the seabed.
    [Show full text]