Identifikation Von Kardiomyozyten-Differenzierungs-Genen Durch Einen Sirna-Basierenden Screeningansatz

Total Page:16

File Type:pdf, Size:1020Kb

Identifikation Von Kardiomyozyten-Differenzierungs-Genen Durch Einen Sirna-Basierenden Screeningansatz Identifikation von Kardiomyozyten-Differenzierungs-Genen durch einen siRNA-basierenden Screeningansatz Inaugural-Dissertation Zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) An der Justus Liebig Universität Gießen Fachbereich 08 „Biologie und Chemie“ angefertigt am Max-Planck-Institut für Herz- und Lungenforschung Bad Nauheim vorgelegt von Stefanie Köhler-Bachmann aus Hilden März 2011 Dekan: Prof. Dr. Volkmar Wolters 1.Gutachter: Prof. Dr. Adriaan Dorresteijn 2.Gutachter: Prof. Dr. Dr. Thomas Braun Tag der mündlichen Prüfung: Unsere Bestimmung verfügt über uns, auch wenn wir sie noch nicht kennen; es ist die Zukunft, die unserm Heute die Regel gibt. Friedrich Nietzsche Menschliches, Allzumenschliches Inhalt Abkürzungen _____________________________________ 1 1. Einleitung ______________________________________ 3 1.1. Die frühe Entwicklung des Herzens ____________________________________ 5 1.1.1. Die Bildung der Keimblätter: Gastrulation in Vertebraten _______________ 6 1.1.2. Bildung des kardialen Mesoderms_______________________________________ 8 1.1.3. Frühe Morphogenese des embryonalen Herzens _______________________ 11 1.2. in vitro Differenzierung embryonaler Stammzellen _________________ 12 1.2.1. Differenzierung von Kardiomyozyten aus murinen Embryonalen Stammzellen __________________________________________________________ 14 1.3. RNA Interferenz ________________________________________________________ 16 1.3.1. Vektor-basierende Expressions-Systeme für Säugerzellen _____________ 21 1.3.2. siRNA Bibliotheken ____________________________________________________ 23 1.4. Fragestellung und Ziel der Arbeit _____________________________________ 24 2. Material und Methoden___________________________ 25 2.1. Chemikalien, Enzyme, Lösungen ______________________________________ 25 2.2. Arbeiten mit Nukleinsäuren ___________________________________________ 25 2.2.1. Sequenzspezifische Spaltung von DNA mit Restriktionsendonukleasen _ 25 2.2.2. Dephosphorylierung von 5'-Enden der DNA ____________________________ 25 2.2.3. Agarose-Gelelektrophorese ____________________________________________ 26 2.2.4. Aufreinigung von DNA-Fragmenten aus Agarosegelen _________________ 26 2.2.5. Paarung komplementärer DNA-Oligonukleotide („Annealing“) __________ 26 2.2.6. Phosphorylierung von DNA-Oligonukleotiden __________________________ 27 2.2.7. Ligation von DNA-Fragmenten _________________________________________ 27 2.2.8. Analytische Plasmid-Isolierung (Mini-Präparation) _____________________ 27 2.2.9. Präparative Plasmid-Isolierung (Maxi-Präparation) _____________________ 28 2.2.10. Konzentrationsbestimmung von Nukleinsäuren in Lösung ___________ 28 2.2.11. Sequenzierung von DNA _____________________________________________ 28 2.2.12. Isolation von Gesamt-RNA aus eukaryotischen Zellen _______________ 29 2.2.13. Fällung von RNA ____________________________________________________ 29 2.2.14. cDNA-Synthese mittels reverser Transkription_______________________ 29 2.2.15. Polymerase-Ketten-Reaktion (PCR) nach (Saiki et al., 1986) ________ 30 2.2.16. Aufreinigung von PCR-Produkten ____________________________________ 32 2.2.17. λ-Exonuklease-Behandlung von PCR-Produkten _____________________ 33 2.3. Bakterien _______________________________________________________________ 33 2.3.1. Bakterienstämme ______________________________________________________ 33 2.3.2. Bakterienmedien ______________________________________________________ 33 2.3.3. Herstellung chemisch-kompetenter Bakterien__________________________ 34 2.3.4. Transformation von chemisch-kompetenten Bakterien _________________ 34 2.4. Zellkultur _______________________________________________________________ 35 2.4.1. Zelllinien ______________________________________________________________ 35 2.4.2. Zellkulturmedien, Lösungen und Reagenzien __________________________ 35 2.4.3. Kultivierung der Zellen ________________________________________________ 36 2.4.4. Passagieren von Zellen ________________________________________________ 36 2.4.5. Einfrieren und Auftauen von Zellen ____________________________________ 37 2.4.6. Transfektion von Zellen ________________________________________________ 37 2.4.7. G418-Selektion ________________________________________________________ 38 2.4.8. Puromyzin-Selektion ___________________________________________________ 38 2.4.9. in vitro Differenzierung von ES-Zellen _________________________________ 38 2.5. Viren ____________________________________________________________________ 39 2.5.1. Generierung lentiviraler Partikel _______________________________________ 39 2.5.2. Konzentrierung lentiviraler Partikel ____________________________________ 40 2.5.3. Bestimmung des Titers ________________________________________________ 40 Inhalt 2.5.4. Bestimmung der MOI für ES-Zellen ____________________________________ 40 2.6. Proteine ________________________________________________________________ 41 2.6.1. Isolation von Proteinen aus eukaryotischen Zellen _____________________ 41 2.6.2. Konzentrationsbestimmung von Proteinen in Lösung (nach Bradford, 1976) _________________________________________________ 42 2.6.3. SDS-Polyacrylamidgelelektrophorese (SDS-PAGE) nach (Laemmli, 1970) _________________________________________________ 42 2.6.4. Proteintransfer und -nachweis (Western-Blot (Immunoblot)) __________ 43 2.7. Histologische Techniken _______________________________________________ 44 2.7.1. Herstellung von Kryoschnitten _________________________________________ 44 2.8. Immunhistologische und Immunhistochemische Techniken _______ 44 2.8.1. Antikörper-Färbung von Kryoschnitten _________________________________ 44 2.8.2. Durchflußzytrometrie (FACS-Analyse) _________________________________ 46 2.8.3. Affymetrix Gene Chip Expressionsanalyse _____________________________ 47 2.9. Photodokumentation __________________________________________________ 47 3. Ergebnisse ____________________________________ 48 3.1. Charakterisierung der von embryonalen Stammzellen abgeleiteten Kardiomyozyten _______________________________________________________________ 48 3.1.1. Die in vitro Generierung ESC-abgeleiteter Kardiomyozyten folgt einem spezifischen Muster und ist standardisierbar ___________________________ 48 3.1.2. in vitro generierte Kardiomyozytzen zeigen Charakteristika neonataler Herzmuskelzellen ______________________________________________________ 50 3.1.3. Die „Cardiac Bodies“ bestehen ausschließlich aus Kardiomyozyten ____ 53 3.2. Genomweite siRNA-vermittelte Gensuppression während der in vitro Differenzierung ESC-abgeleiteter Kardiomyozyten ___________________ 55 3.2.1. Die Komplexität der sh/siRNA Bibliothek wurde durch die Amplifikation nicht beeinträchtigt ____________________________________________________ 55 3.2.2. Die lentivirale Infektion interferiert nicht mit der Differenzierung ______ 55 3.2.3. Inhibition der kardiomyozytären Differenzierung in vitro durch siRNA-vermittelte Suppression von GATA4 _____________________________ 56 3.2.4. Identifikation kardioessentieller Gene im „batch-Verfahren“ ___________ 58 3.2.5. Identifikation funktionell relevanter Kandidatengene der frühen Kardiomyogenese mit Hilfe eines komplexen bioinformatischer Algorithmus ___________________________________________________________ 62 3.3. Der Screen zeigt eine hohe Repräsentanz bekannter kardiogenetisch essentieller Faktoren verschiedenster Proteinklassen und beteiligter Prozesse ___________________________________________________________ 66 3.4. Interferenz identifizierter individueller siRNAs mit der kardiomyozytären Differenzierung in vitro __________________________________ 69 3.5. Isolation und Identifikation angereicherter Knotenpunkte durch Annotationsverknüpfung nach GO (Gene Ontology) ________________________ 70 4. Diskussion ____________________________________ 77 4.1. In vitro generierte Kardiomyozyten eignen sich für die Identifikation pränatal kardiogenetisch essentieller Faktoren ___________ 77 4.2. Die genomweite siRNA-vermittelte Gensuppression im „batch- Verfahren“ eignet sich zur Identifikation von Genen, welche die Herzentwicklung beeinflussen _______________________________________________ 79 4.2.1. Die siRNA-vermittelte Suppression von GATA4 verhindert die kardiomyozytäre Differenzierung in vitro, aber nicht in vivo ___________ 79 4.2.2. Die Komplexität der lentiviralen sh/siRNA-Bibliothek bleibt auf zellulärer Ebene erhalten _____________________________________________ 81 4.2.3. Das Stadium der Testpopulationen definiert das entwicklungsbiologische Zeitfenster ____________________________________________________________ 82 Inhalt 4.3. Identifikation von Kandidatengenen durch einen bioinformatischer Algorithmus ___________________________________________________________________ 84 4.3.1. Die Identifikation der siRNAs wird durch die komplexe Verrechnung der Hybridisierungssignale erreicht ________________________________________ 84 4.3.2. Die Bestimmung der Anzahl der als essentiell identifizierten Kandidatengene ist von der Stringenz abhängig _______________________ 86 4.3.3. Der Abgleich der Screeningresultate mit Expressionsdaten verbessert die Qualität der Analyse und schließt falsch positive Kandidaten aus __ 87 4.4. Die Konsistenz des genomweiten Screens wird durch die theoretische und biologische Validierung verbessert ______________________ 88 4.4.1. Die Identifikation bekannter kardiogenetisch essentieller Gene demonstriert die Validität und die Potenz des in vitro Screens _________ 88 4.4.2. Die erfolgreiche Validierung
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supp Table 1.Pdf
    Upregulated genes in Hdac8 null cranial neural crest cells fold change Gene Symbol Gene Title 134.39 Stmn4 stathmin-like 4 46.05 Lhx1 LIM homeobox protein 1 31.45 Lect2 leukocyte cell-derived chemotaxin 2 31.09 Zfp108 zinc finger protein 108 27.74 0710007G10Rik RIKEN cDNA 0710007G10 gene 26.31 1700019O17Rik RIKEN cDNA 1700019O17 gene 25.72 Cyb561 Cytochrome b-561 25.35 Tsc22d1 TSC22 domain family, member 1 25.27 4921513I08Rik RIKEN cDNA 4921513I08 gene 24.58 Ofa oncofetal antigen 24.47 B230112I24Rik RIKEN cDNA B230112I24 gene 23.86 Uty ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome 22.84 D8Ertd268e DNA segment, Chr 8, ERATO Doi 268, expressed 19.78 Dag1 Dystroglycan 1 19.74 Pkn1 protein kinase N1 18.64 Cts8 cathepsin 8 18.23 1500012D20Rik RIKEN cDNA 1500012D20 gene 18.09 Slc43a2 solute carrier family 43, member 2 17.17 Pcm1 Pericentriolar material 1 17.17 Prg2 proteoglycan 2, bone marrow 17.11 LOC671579 hypothetical protein LOC671579 17.11 Slco1a5 solute carrier organic anion transporter family, member 1a5 17.02 Fbxl7 F-box and leucine-rich repeat protein 7 17.02 Kcns2 K+ voltage-gated channel, subfamily S, 2 16.93 AW493845 Expressed sequence AW493845 16.12 1600014K23Rik RIKEN cDNA 1600014K23 gene 15.71 Cst8 cystatin 8 (cystatin-related epididymal spermatogenic) 15.68 4922502D21Rik RIKEN cDNA 4922502D21 gene 15.32 2810011L19Rik RIKEN cDNA 2810011L19 gene 15.08 Btbd9 BTB (POZ) domain containing 9 14.77 Hoxa11os homeo box A11, opposite strand transcript 14.74 Obp1a odorant binding protein Ia 14.72 ORF28 open reading
    [Show full text]
  • A B-Cell Receptor-Related Gene Signature Predicts Survival in Mantle
    Published Ahead of Print on February 22, 2018, as doi:10.3324/haematol.2017.184325. Copyright 2018 Ferrata Storti Foundation. A B-cell receptor-related gene signature predicts survival in mantle cell lymphoma: results from the “Fondazione Italiana Linfomi” MCL-0208 trial by Riccardo Bomben, Simone Ferrero, Tiziana D'Agaro, Michele Dal Bo, Alessandro Re, Andrea Evangelista, Angelo Michele Carella, Alberto Zamò, Umberto Vitolo, Paola Omedè, Chiara Rusconi, Luca Arcaini, Luigi Rigacci, Stefano Luminari, Andrea Piccin, Delong Liu, Adrien Wiestner, Gianluca Gaidano, Sergio Cortelazzo, Marco Ladetto, and Valter Gattei Haematologica 2018 [Epub ahead of print] Citation: Riccardo Bomben, Simone Ferrero, Tiziana D'Agaro, Michele Dal Bo, Alessandro Re, Andrea Evangelista, Angelo Michele Carella, Alberto Zamò, Umberto Vitolo, Paola Omedè, Chiara Rusconi, Luca Arcaini, Luigi Rigacci, Stefano Luminari, Andrea Piccin, Delong Liu, Adrien Wiestner, Gianluca Gaidano, Sergio Cortelazzo, Marco Ladetto, and Valter Gattei. A B-cell receptor-related gene signature predicts survival in mantle cell lymphoma: results from the “Fondazione Italiana Linfomi” MCL-0208 trial. Haematologica. 2018; 103:xxx doi:10.3324/haematol.2017.184325 Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Expression of Human Endogenous Retrovirus K Envelope Transcripts in Human Breast Cancer1
    Vol. 7, 1553–1560, June 2001 Clinical Cancer Research 1553 Advances in Brief Expression of Human Endogenous Retrovirus K Envelope Transcripts in Human Breast Cancer1 Feng Wang-Johanning, Andra R. Frost, breast tumor sample showed nucleotide sequence differ- Gary L. Johanning, M. B. Khazaeli, ences, suggesting that multiple loci may be transcribed. Conclusions: These data indicate that HERV-K tran- Albert F. LoBuglio, Denise R. Shaw, and scripts with coding potential for the envelope region are 2 Theresa V. Strong expressed frequently in human breast cancer. The Comprehensive Cancer Center and Division of Hematology Oncology, Departments of Medicine [F. W-J., M. B. K., A. F. L., Introduction D. R. S., T. V. S.], Pathology [A. R. F.], and Nutrition Sciences 3 [G. L. J.], University of Alabama at Birmingham, Birmingham, HERVs are stably inherited sequences thought to have Alabama 35294-3300 entered the germ line of their host more than a million years ago (1, 2). These elements are widely dispersed throughout the genome and are estimated to comprise Ͼ1% of the entire human Abstract genome. Most HERVs are defective because of multiple termi- Purpose: We investigated the expression of human en- nation codons and deletions (3), but some appear to contain all dogenous retroviral (HERV) sequences in breast cancer. structural features necessary for viral replication (4). HERVs are Experimental Design: Reverse transcription-PCR (RT- grouped into single- and multiple-copy families, usually classi- PCR) was used to examine expression of the envelope (env) fied according to the tRNA used for reverse transcription (2). region of ERV3, HERV-E4-1, and HERV-K in breast cancer The type K family (HERV-K) is present in an estimated 30–50 cell lines, human breast tumor samples, adjacent uninvolved copies/human genome and includes some elements with long breast tissues, nonmalignant breast tissues, and placenta.
    [Show full text]
  • How Relevant Are Bone Marrow-Derived Mast Cells (Bmmcs) As Models for Tissue Mast Cells? a Comparative Transcriptome Analysis of Bmmcs and Peritoneal Mast Cells
    cells Article How Relevant Are Bone Marrow-Derived Mast Cells (BMMCs) as Models for Tissue Mast Cells? A Comparative Transcriptome Analysis of BMMCs and Peritoneal Mast Cells 1, 2, 1 1 2,3 Srinivas Akula y , Aida Paivandy y, Zhirong Fu , Michael Thorpe , Gunnar Pejler and Lars Hellman 1,* 1 Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; [email protected] (S.A.); [email protected] (Z.F.); [email protected] (M.T.) 2 Department of Medical Biochemistry and Microbiology, Uppsala University, The Biomedical Center, Box 589, SE-751 23 Uppsala, Sweden; [email protected] (A.P.); [email protected] (G.P.) 3 Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007 Uppsala, Sweden * Correspondence: [email protected]; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862 These authors contributed equally to this work. y Received: 29 July 2020; Accepted: 16 September 2020; Published: 17 September 2020 Abstract: Bone marrow-derived mast cells (BMMCs) are often used as a model system for studies of the role of MCs in health and disease. These cells are relatively easy to obtain from total bone marrow cells by culturing under the influence of IL-3 or stem cell factor (SCF). After 3 to 4 weeks in culture, a nearly homogenous cell population of toluidine blue-positive cells are often obtained. However, the question is how relevant equivalents these cells are to normal tissue MCs. By comparing the total transcriptome of purified peritoneal MCs with BMMCs, here we obtained a comparative view of these cells.
    [Show full text]
  • RSC Advances
    RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 8 RSC Advances The Effects of Solvent Composition on the Affinity of a Peptide towards Hair Keratin: Experimental and Molecular Dynamics Data. Egipto Antunes a, Célia F. Cruz a, Nuno G. Azoia a, Artur Cavaco-Paulo a* a CEB – Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal Table of Contents Manuscript Accepted Molecular dynamics simulations with a developed hair protofibril model demonstrated capability to improve a peptide uptake by hair shafts. Advances RSC RSC Advances Page 2 of 8 RSC Advances RSCPublishing ARTICLE The Effects of Solvent Composition on the Affinity of a Peptide towards Hair Keratin: Experimental and Cite this: DOI: 10.1039/x0xx00000x Molecular Dynamics Data.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Identifying Lineage Relationships in Human T Cell Populations
    Identifying lineage relationships in human T cell populations by Celia Lara Menckeberg A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Immunity and Infection College of Medical and Dental Sciences The University of Birmingham December 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ii ABSTRACT CD4+ and CD8+ T cell populations can be divided into subpopulations based on expression of surface markers CCR7 and CD45RA. The resulting populations are referred to as naive, central memory, effector memory and effector memory RA+ (EMRA). The aim of this study was to identify potential lineage relationships between these subpopulations for both CD4+ and CD8+ T cells through microarray analysis. The genes found to distinguish between these subpopulations include many molecules with known functions in T cell differentiation, including CCR7, CD45RA, granzymes, L-selectin and TNF receptors. Several genes from the tetraspanin family of proteins were found to be differentially expressed at mRNA and protein level; suggesting a possible role for these genes in CD4+ and CD8+ T cell activation, migration and lysosomal function.
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]
  • View / Download 3.3 Mb
    Identification of Mechanisms and Pathways Involved in MLL2-Mediated Tumorigenesis by Chun-Chi Chang Department of Pathology Duke University Date:_______________________ Approved: ___________________________ Yiping He, Supervisor ___________________________ Salvatore Pizzo ___________________________ Hai Yan Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Pathology in the Graduate School of Duke University 2013 ABSTRACT Identification of Mechanisms and Pathways Involved in MLL2-Mediated Tumorigenesis by Chun-Chi Chang Department of Pathology Duke University Date:_______________________ Approved: ___________________________ Yiping He, Supervisor ___________________________ Salvatore Pizzo ___________________________ Hai Yan An abstract of a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Pathology in the Graduate School of Duke University 2013 Copyright by Chun-Chi Chang 2013 Abstract Myeloid/lymphoid or mixed-lineage leukemia (MLL)-family genes encode histone lysine methyltransferases that play important roles in epigenetic regulation of gene transcription, and these genes are frequently mutated in human cancers. While MLL1 and MLL4 have been the most extensively studied, MLL2 and its homolog MLL3 are not well-understood. Specifically, little is known regarding the extent of global MLL2 involvement in the regulation of gene expression and the mechanism underlying its alterations in mediating tumorigenesis. To study the role of MLL2 in tumorigenesis, we somatically knocked out MLL2 in a colorectal carcinoma cell line, HCT116. We observed that the MLL2 loss of function results in significant reduction of cell growth and multinuclear morphology. We further profiled MLL2 regulated genes and pathways by analyzing gene expression in MLL2 wild-type versus MLL2-null isogenic cell lines.
    [Show full text]
  • Antibodies Products
    Chapter 2 : Gentaur Products List • Human Signal peptidase complex catalytic subunit • Human Sjoegren syndrome nuclear autoantigen 1 SSNA1 • Human Small proline rich protein 2A SPRR2A ELISA kit SEC11A SEC11A ELISA kit SpeciesHuman ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex catalytic subunit • Human Sjoegren syndrome scleroderma autoantigen 1 • Human Small proline rich protein 2B SPRR2B ELISA kit SEC11C SEC11C ELISA kit SpeciesHuman SSSCA1 ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 1 SPCS1 ELISA • Human Ski oncogene SKI ELISA kit SpeciesHuman • Human Small proline rich protein 2D SPRR2D ELISA kit kit SpeciesHuman • Human Ski like protein SKIL ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 2 SPCS2 ELISA • Human Skin specific protein 32 C1orf68 ELISA kit • Human Small proline rich protein 2E SPRR2E ELISA kit kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 3 SPCS3 ELISA • Human SLAIN motif containing protein 1 SLAIN1 ELISA kit • Human Small proline rich protein 2F SPRR2F ELISA kit kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptide CUB and EGF like domain • Human SLAIN motif containing protein 2 SLAIN2 ELISA kit • Human Small proline rich protein 2G SPRR2G ELISA kit containing protein 2 SCUBE2 ELISA kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptide CUB and EGF like domain • Human SLAM family member 5 CD84 ELISA kit • Human Small proline rich protein 3 SPRR3 ELISA kit containing protein
    [Show full text]