Can Digital Transformation Solve the Problem of Arctic Youth Migration Outflow?

Total Page:16

File Type:pdf, Size:1020Kb

Can Digital Transformation Solve the Problem of Arctic Youth Migration Outflow? sustainability Article Can Digital Transformation Solve the Problem of Arctic Youth Migration Outflow? Vadim E. Ljovkin 1, Gennadij F. Detter 2, Josif L. Tukkel 3, Elena Gladun 4 and Anastasia O. Ljovkina 5,* 1 Department of General and Social Psychology, Institute of Psychology and Pedagogy, Tyumen State University, 625007 Tyumen, Russia; [email protected] 2 Socio-Economic Research Sector, Arctic Scientific Research Center, 629007 Salekhard, Russia; [email protected] 3 Graduate School of Cyber-Physical Systems and Control, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia; [email protected] 4 Institute of State and Law, University of Tyumen, 625007 Tyumen, Russia; [email protected] 5 Department of Economic Security, System Analysis and Control, Financial-Economic Institute, Tyumen State University, 625007 Tyumen, Russia * Correspondence: [email protected]; Tel.: +7-982-903-8395 Received: 24 November 2020; Accepted: 17 December 2020; Published: 21 December 2020 Abstract: Youth educational migration is an urgent problem for most Arctic cities. In particular, this problem is extremely important for Russia in the context of changing the paradigm of the planned development of the Arctic oil and gas economy into indefinite long-term prospects and scenarios of Arctic development. This situation led to reducing social-economic northern benefits and compensations and strengthens the trends of Arctic youth educational migration. However, the experience of digital transformation and forced distance learning due to the pandemic of 2020 could bring young people a new understanding of the opportunities of digitalization, influencing their migration decisions. To clarify the potential of digital technologies in solving the problem of youth migration outflow in the Russian Arctic, we surveyed the students at technical schools and colleges of the Yamal-Nenets autonomous area, Russia; sample size 1532 students in total. The analysis of the survey’s results proved the intention of most respondents to move to larger cities in non-Arctic territories. Together with that, we revealed a high potential of digital technologies in addressing the problem of youth migration which was previously considered unsolvable. In particular, the accessibility of quality distance education can sufficiently increase the attractiveness of Arctic territories for youth life, study, and development. Basing on the research results, we suppose that Arctic youth migration outflow can be sufficiently decreased if the measures proposed in the research are implemented with the help of digitalization. Keywords: youth migration; educational migration; Arctic migration; digitalization; distance education 1. Introduction Digital technologies constantly expand opportunities to solve social problems that previously had no solution with the traditional methods and approaches. One of such problem is the Arctic youth migration outflow, mostly educational migration: in 2018, the difference in migration of young people in the age range of 15–19 was 297 in the Republic of Karelia, 1360 in the Komi Republic, 1399 in the Arkhangelsk region, 1268 in the Murmansk region, 1164 in the Yamal-Nenets autonomous area, 1157 in the Republic of Sakha (Yakutia), and 165 in the Chukotka Autonomous District [1]. Since the vast majority of those young people who have left do not return to their native villages or small towns, this situation stipulated numerous human resource problems in the “donor territories”, which, Sustainability 2020, 12, 10685; doi:10.3390/su122410685 www.mdpi.com/journal/sustainability Sustainability 2020, 12, 10685 2 of 12 in turn, further stimulates the youth migration outflow [2]. Thus, in 2004, 14% of the polled eleventh graders living in small towns intended to stay in their hometowns after graduation from school, and in 2015 it was only 4% [3]. A low percentage of return migration does not save the situation in the “donor territories” [2,4–6], including Arctic regions [1]. Non-return youth migration to the big cities is a steady world trend in the context of rapid urbanization, which appears stronger in the northern territories because of their unfavorable conditions for living. The urgency of this problem became extremely high for the Russian Arctic due to its increased world and national strategic meaning and the importance of its sustainable development [7,8]. At the same time, decreasing youth migration outflow is extremely difficult, considering the specificity of general socioeconomic, environmental, and demographic challenges in the Arctic territories, including harsh climate, remoteness, low density of populations [9], and overall negative net migration rate [10]. The previous research on Arctic intellectual capital showed that a decline in social–economic development of the Arctic regions is sufficiently stipulated by the decline in the level of human capital needed for the next technological transformations [11]. This study aims to identify the potential for digitalization to attract youths to live, study, and develop in their home Arctic cities. In practical terms, the research is aimed at investigating the perspectives of digitalization in solving the problem of youth migration outflow. A better understanding of these perspectives allows for building a more effective and relevant policy of human development in the Arctic region of Russia in compliance with the purposes of Arctic sustainable development and considering digitalization trends. The study is focused on the Russian Arctic, but the problem and discussion of the results are also important for other countries for which the problem of youth migration outflow is urgent. 2. Materials and Methods 2.1. Theoretic Foundation Numerous studies show that the main reason for youth migration is to go to study in large cities [5,6,12–15]. Educational migration explains about 80% of youth migration cases [6]. All other reasons share the remaining 20%: poor job prospects, low salaries, lack of ample opportunities to spend leisure time, high costs of going on vacation, unfavorable climatic conditions, etc. Consequently, digitalization can reduce the migration outflow of young people from the Arctic territories only if it can eliminate or sufficiently decrease the level of youth educational migration. This problem can be solved by offering acceptable alternative (digital) forms of quality education, as well as ensuring the satisfaction of other significant youth needs and the motives that go together with a desire to get an education: professional and personal growth, making new friends, socialization, self-realization, etc. Psychologists of the 20th century formulated the main reasons determining the behavior of people (G. Allport, H. Murrey, G. Kelly, H. Heckhausen, R. Cattell, A. Maslow, E. Erikson, I. S. Petrovsky, A. G. Asmolov, Yu. M. Orlov, D. A. Leontyev, and many others). Since then, these reasons have not undergone fundamental changes. Summarizing the reasons for the behavior of young people, the most significant ones should be highlighted: the need for belonging, communication, and love (associated with the need for recognition by a significant environment, for self-respect, for a sexual/marriage partner), the motive for gaining independence (personal and professional self-determination, freedom of action, self-realization), the motive for improving the quality of one’s life, gaining broad life prospects (a decent standard of living, opportunities for professional and personal growth, self-actualization), and the motive for receiving joy (access to entertainment, exciting activities, spending interesting leisure time). With all the significant differences in content, dynamics, and in the hierarchy of needs between individuals, the listed reasons for behavior are characteristic of all young people and determine the direction of people’s behavior at a young age [16–25]. Despite the global experience of forced distance learning gained in almost all specialties during the 2020 pandemic, the readiness of young people to accept a distance learning form (of comparable quality Sustainability 2020, 12, 10685 3 of 12 to full-time education) as an alternative to educational migration is not clear yet. For example, high-quality video lectures (especially in the format of educational interactive films) with the participation of the best professionals in the industry are preferable (both in content and format) than listening to an ordinary teacher in the classroom. The most noticeable advantages (for the student) in this case are (a) high-quality content—both in terms of content and audiovisual presentation, moreover, edited content—cleared of unnecessary random information; (b) the ability to choose the time for the perception of information; (c) the ability to pause or rewind; (d) saving time spent on getting to the classroom and back. At the same time, there are still a lot of challenges in providing high-quality distance learning, which often requires not only high-quality content and interactive technologies, but also entire virtual laboratories are needed (in the space of which the student can master the necessary equipment), access to special (often expensive) software, online consultations with teachers, real professional and soft skills practice, and much more, depending on what individual and professional competences are being developed. At the same time, the role of digitalization in decreasing young people’s migration outflow is not limited by the sphere of distance learning. In the general sense, digitalization
Recommended publications
  • Problems of Urengoy Oil-Gas-Condensate Field at the Late Stage of Exploitation
    PROBLEMS OF URENGOY OIL-GAS-CONDENSATE FIELD AT THE LATE STAGE OF EXPLOITATION V.A. Istomin (NOVATEK JSC, Moscow, Russia) G.A.Lanchakov, V.A Stavitskiy, N.A.Tsvetkov (Gazprom dobycha Urengoy LLC, Novy Urengoy, Russia) Urengoy Oil-Gas-Condensate field on the primary proven deposits exceeds 12 tcm of gas. The field is situated in the Western Siberia on the North of the Tyumen region in the areas of unstable permafrost, with the severe climate conditions and with the total absence of infrastructure at the beginning of its development. Basic features of Urengoy field: - multilayer productive horizons (from the bearing Senomanian horizons to Achimov and Jura sediments) - considerable distinctive gas-condensate characteristics of the productive horizons (from practically total condensate lack in Senomanian deposits to 300-400 g/m3 of hydrocarbon condensate in Achimov deposits) - the presence of the considerable ethane content up to 5-7 mol. % in natural gas (that determines the future of gas-chemistry development in the region) - the presence of the formation anomalous pressure factor (FAPF) (so anomalous factor in Achimov stratum is 2 and over, primary formation pressure reaches 70 MPa) in some deposits - the presence of oil rims in some gas-condensate deposits. As a result exploitation objects (5-6 objects) are distinguished with greatly distinctive primary formation pressure and gas-condensate characteristics as well as oil deposits (rims), which development has a considerable peculiarity in comparison with the ordinary oil deposits. Urengoy oil-gas-condensate field is developed since 1978. In the beginning Senomanian gas deposit had been developed, then Valanginian gas-condensate deposits were put into operation, Achimov deposits are being developing now.
    [Show full text]
  • Northern Sea Route Cargo Flows and Infrastructure- Present State And
    Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources.
    [Show full text]
  • Yamalia English Language Teachers’ Association
    Yamalia English Language Teachers’ Association YAMALIA – THE BACK OF BEYOND A Series of English Lessons in Yamalia Studies Edited by Eugene Kolyadin Yelena Gorshkova Oxana Sokolenko Irina Kolyadina Based on teaching materials created by Alevtina Andreyeva (Salemal), Svetlana Bochkaryova (Salekhard), Natalia Bordzilovskaya (Noyabrsk), Natalia Derevyanko (Noyabrsk), Yelena Gorshkova (Gubkinsky), Olga Grinkevich (Muravlenko), Tamara Khokhlova (Noyabrsk), Anzhelika Khokhlyutina (Muravlenko), Irina Kolyadina (Gubkinsky), Yulia Rudakova (Nadym), Irina Rusina (Noyabrsk), Diana Saitova (Nadym), Yulia Sibulatova (Nadym), Natalia Soip (Nadym), Yelena Ten (Nadymsky district), Natalya Togo (Nyda), Olga Yelizarova (Noyabrsk), Alfiya Yusupova (Muravlenko), Irina Zinkovskaya (Nadym) Phonetic and Listening Comprehension tapescripts sounded by Svetlana Filippova, Associate Professor, Nizhny Novgorod Dobrolyubov State Linguistics University Gubkinsky Yamalo-Nenets Autonomous Okrug 2015 2 Yamalia English Language Teachers’ Association Yamalia – the Back of Beyond. A Series of English Lessons in Yamalia Studies: Сборник учебно-методических материалов для проведения учебных занятий по регионоведению Ямало-Ненецкого автономного округа на английском языке в 8 – 11 классах средних общеобразовательных организаций / Под ред. Е.А. Колядина, Е.А. Горшковой, И.А. Колядиной, О.Б. Соколенко. – Губкинский, 2015. – 82 c. – На англ. яз. Yamalia – the Back of Beyond 3 FOREWORD1 The booklet you are holding in your hands now is a fruit of collaboration of tens of Yamalia teachers of English from different parts of the okrug. The main goal of the authors’ team was to summarise the best practices developed by the okrug educators as well as their expertise in teaching regional studies and disseminate that all around Yamalia. We think that it is a brilliant idea to arm our teachers with ready-made though flexible to adaptation lessons to teach students to different aspects of life in our lands in English.
    [Show full text]
  • Russia's Policies for Arctic Cities
    RUSSIAN ANALYTICAL DIGEST No. 129, 24 June 2013 2 ANALYSIS Russia’s Policies for Arctic Cities By Alexander Pilyasov, Moscow Abstract Although the population of Russia’s Arctic has shrunk notably in the past two decades, the region contin- ues to be highly urbanized. The process of developing sustainable, economically self-sufficient, and socially resilient urban centers requires the implementation of informed and directed policy at the federal and local level. In order to assist in informing better policy, this article establishes several categories of northern urban centers based on their economies, political situation, and social networks. The efficacy of policy is analyzed through two case studies, the cities of Muravlenko and Gubkinsky, which have experienced divergent out- comes despite their proximity and organization. Finally, some general policy recommendations are proposed for the different urban categories, based on their varying needs and characteristics. Introduction (a short statistical review of mum to minimum salaries is often a factor of three. The Russian Arctic cities) most attractive sectors in terms of salary are usually pub- Russian Arctic cities are known for the large size of their lic policy, finance, and mining. In the single-industry populations relative to the Arctic region in general. By cities, differentials between maximum and minimum far, the majority of the biggest Arctic cities are located salaries are usually greater, sometimes by a factor of six, in Russia. Their large size stems from the Soviet era’s but in extreme cases the difference between the best and “triumph of the cities,” and continues to be centered worst paid can be as much as 13 times.
    [Show full text]
  • RSI July 2018 Volume X Number 2
    July 2018 Regional Science Inquiry Volume X Regional Number 2 Science Regional Inquiry Science Inquiry The Journal is Indexed in THE JOURNAL OF THE Hellenic Association of Regional Scientists July 2018 Volume X Number 2 Editor-in-Chief Christos Ap. Ladias RSI J Contribution by: FOUNDATION YEAR 2008 English Edition ISSN: 1791-5961 Print ISSN: 1791-7735 On line RSI J Website: http://www.rsijournal.eu, Email: [email protected], [email protected] Address: 19b Navarinou Street, 15232 Chalandri, Athens, Greece,Tel./Fax: +30 210 6833700. Copyright ©2008: C. A. LADIAS - HELLENIC ASSOCIATION OF REGIONAL SCIENTISTS The RSI is included in the following Reference Lists of: EconLit, Scopus, RSA I, EconPapers, RePec, IDEAS The ICR, ZRW, KΠΕ and GGGR, are also included in the Reference Lists of: EconPapers, RePec, IDEAS Electronic and hard copy editions are offered free of charge RSI Editorial Board 2018 The Board of the Regional Science Inquiry PROFESSOR GEORGE KORRES HELLENIC ASSOCIATION OF REGIONAL Department of Geography University of the Aegean, Mitilene, Greece SCIENTISTS H.A.R.S. - 2018 Hon. Managing Editor PROFESSOR MINAS AGGELIDIS [H.A.R.S . is a Think Tank of groups of people with EMERITUS PROFESSOR PETER NIJKAMP Department of Architecture, National Technical multidisciplinary work in the fields of Regional Science, Free University Faculty of Economics and Business University of Athens, Athens, Greece which occurs with the selfless contribution of Administration, Department of Spatial Economics participants who offer their work to the global scientific Amsterdam, the Netherlands PROFESSOR JOSE VARGAS HERNANDEZ community] Departmentt de Mercadotecnia y Negocios Hon. Managing Editor Internacionales, Universidad de Guadalajara, President and Chair, Guadalajara, Jalisco, Mexico Journals Management Committee EMERITUS PROFESSOR NIKOLAOS KONSOLAS (RSI) Department of Economic and Regional Development PROFESSOR ELIAS CARAYANNIS School of Sciences of Economy and Public Department Information Systems & Technology Professor Christos Ap.
    [Show full text]
  • PDF Version Assessing the Efficiency of Gazprom Neft's Contribution
    GAZPROM NEFT Gazprom Neft at a glance Sustainable development management Health and safety Commissioning Environmental safety of the Sports Complex Employee development in Yamalo-Nenets Social policy Autonomous Okrug Appendices Expanding partnership with the Yamalo-Nenets Autonomous Okrug Gazprom Neft and the Government The area of the Ice Centre totals 5,400 of the Yamalo-Nenets Autonomous square metres. The Centre will host Okrug signed a supplementary ice-hockey, figure-skating, and other agreement on partnership winter-sports training sessions in social and economic projects. and competitions. The parties will continue their cooperation to ensure The Polyarny Sports Complex will further economic development allow local residents to swim, Modern sports centres of the region, and improve quality play futsal, basketball, volleyball are an essential of life there. The agreement also and tennis, do aerobics and dance all part of development provides for the development year round. The 7,000-square-metre on Yamal. Sports of energy infrastructure and roads complex also includes a versatile facilities such as Polyarny in the Tazovsky district. gym and a weight room, an aerobics are becoming centres that studio, and a six-lane swimming pool. attract local residents The company implemented several and open up new opportunities major infrastructure projects The company has previously opened for talented children. Together in the Yamalo-Nenets Autonomous such sports facilities in Noyabrsk, with the Avangard Ice Centre, Okrug, designed to promote Myuravlenko, and Tarko-Sale. which we built nearby an attractive urban environment, Construction of the multifunctional in cooperation with regional and develop sport for children Yamal-Arena Sports Complex authorities, it marks and the general public, as part in Salekhard is continuing the completion of sports of the “Home Towns” Programme.
    [Show full text]
  • Russia's Arctic Cities
    ? chapter one Russia’s Arctic Cities Recent Evolution and Drivers of Change Colin Reisser Siberia and the Far North fi gure heavily in Russia’s social, political, and economic development during the last fi ve centuries. From the beginnings of Russia’s expansion into Siberia in the sixteenth century through the present, the vast expanses of land to the north repre- sented a strategic and economic reserve to rulers and citizens alike. While these reaches of Russia have always loomed large in the na- tional consciousness, their remoteness, harsh climate, and inaccessi- bility posed huge obstacles to eff ectively settling and exploiting them. The advent of new technologies and ideologies brought new waves of settlement and development to the region over time, and cities sprouted in the Russian Arctic on a scale unprecedented for a region of such remote geography and harsh climate. Unlike in the Arctic and sub-Arctic regions of other countries, the Russian Far North is highly urbanized, containing 72 percent of the circumpolar Arctic population (Rasmussen 2011). While the largest cities in the far northern reaches of Alaska, Canada, and Greenland have maximum populations in the range of 10,000, Russia has multi- ple cities with more than 100,000 citizens. Despite the growing public focus on the Arctic, the large urban centers of the Russian Far North have rarely been a topic for discussion or analysis. The urbanization of the Russian Far North spans three distinct “waves” of settlement, from the early imperial exploration, expansion of forced labor under Stalin, and fi nally to the later Soviet development 2 | Colin Reisser of energy and mining outposts.
    [Show full text]
  • Warmer Urban Climates for Development of Green
    DOI: 10.15356/2071-9388_04v09_2016_04 Igor Esau1*, Victoria Miles1 1 Nansen Environmental and Remote Sensing Center/Bjerknes Centre for Climate Research, Thormohlensgt. 47, 5006, Bergen, Norway *Corresponding author; e-mail: [email protected] WARMER URBAN CLIMATES ENVIRONMENT FOR DEVELOPMENT OF GREEN SPACES 48 IN NORTHERN SIBERIAN CITIES ABSTRACT. Modern human societies have accumulated considerable power to modify their environment and the earth’s system climate as the whole. The most significant environmental changes are found in the urbanized areas. This study considers coherent changes in vegetation productivity and land surface temperature (LST) around four northern West Siberian cities, namely, Tazovsky, Nadym, Noyabrsk and Megion. These cities are located in tundra, forest-tundra, northern taiga and middle taiga bioclimatic zones correspondingly. Our analysis of 15 years (2000–2014) Moderate Resolution Imaging Spectroradiometer (MODIS) data revealed significantly (1.3 °C to 5.2 °C) warmer seasonally averaged LST within the urbanized territories than those of the surrounding landscapes. The magnitude of the urban LST anomaly corresponds to climates found 300–600 km to the South. In the climate change perspective, this magnitude corresponds to the expected regional warming by the middle or the end of the 21st century. Warmer urban climates, and specifically warmer upper soil layers, can support re-vegetation of the disturbed urban landscapes with more productive trees and tall shrubs. This afforestation is welcome by the migrant city population as it is more consistent with their traditional ecological knowledge. Survival of atypical, southern plant species encourages a number of initiatives and investment to introduce even broader spectrum of temperate blossoming trees and shrubs in urban landscapes.
    [Show full text]
  • A Spatial Study of Geo-Economic Risk Exposure of Russia's Arctic Mono-Towns with Commodity Export-Based Economy
    Journal of Geography and Geology; Vol. 6, No. 1; 2014 ISSN 1916-9779 E-ISSN 1916-9787 Published by Canadian Center of Science and Education A Spatial Study of Geo-Economic Risk Exposure of Russia’s Arctic Mono-Towns with Commodity Export-Based Economy Anatoly Anokhin1, Sergey Kuznetsov2 & Stanislav Lachininskii1 1 Department of Economic & Social Geography, Saint-Petersburg State University, Saint-Petersburg, Russia 2 Institute of Regional Economy of RAS, Russian Academy of Science, Saint-Petersburg, Russia Correspondence: Stanislav Lachininskii, Department of Economic & Social Geography, Saint-Petersburg State University, Saint-Petersburg, Russia. Tel: 7-812-323-4089. E-mail: [email protected] Received: December 30, 2013 Accepted: January 14, 2014 Online Published: January 16, 2014 doi:10.5539/jgg.v6n1p38 URL: http://dx.doi.org/10.5539/jgg.v6n1p38 Abstract In the context of stagnating global economy mono-towns of Arctic Russia are especially exposed to uncertainty in their socio-economic development. Resource orientation of economy that formed in the 20th century entails considerable geo-economical risk exposure both for the towns and their population as well as for Russia's specific regions. In the 1990–2000s Russia’s Arctic regions were exposed to a systemic crisis which stemmed from production decline, out-migration, capital asset obsolescence, depletion of mineral resources and environmental crisis. This spatial study of geo-economic risk exposure of Russia’s Arctic mono-towns with commodity export-based economy was conducted at four dimensions - global, macro-regional, regional and local. The study of the five types of geo-economic risks was based on the existing approach, economic and socio-demographic risks being the most critical for the towns under consideration.
    [Show full text]
  • Presentation
    Environmental aspects of urbanization in the Russian Arctic E.V. Abakumov Saint-Petersburg State University, Department of Applied Ecology, 1 [email protected] Arctic is about 37 % of Russian territory, but the Cryolithozone is about 54-60 % of total state area Population of Russian Arctic Developmental Population, thousands zone people European part –Siberia - Chukotka Murmansk 796 Population of key developmantal zones Arkhangelsk 661 800 Nenets 42 700 Vorkuta 143 600 Yamal 522 500 Taymyr 217 400 thousands 300 Yakutsk 65 (not all republic) 200 Chukotka 52 100 0 Nenets Yamal Total 2498 (involved in to Mumansk Yakutsk economic activity - 1300) Creation of “Development zones” in the Arctic accodring to Federal program “Development of the Arctic zone of the Russian Federation and the national security up to 2020” • Development zones: 1 – Kola, 2 –Arkhangelsk, 3 – Nenets, 4 – Vorkuta, 5 Yamal, 6- Taymyr, 7 – North-Yakutks, 8 - Chukotka Population of the Russian Arctic: 2391 min =2,2% of whole population Arctic Population total urban 89,3 % 2500 2000 1500 1000 10,7% other 500 0 total urban other Number of cities with population range number of cities with population 14 14 12 9 10 8 6 4 4 3 4 2 1 2 0 5000 10000 20000 50000 1000000 250000 300000 Key Factors, Limiting the Arctic Zone Development • a) extreme climatic conditions, including low temperatures, strong winds and the presence of ice in the waters of the Arctic seas; • b) the localized nature of industrial and economic development of the areas and low population density; • c) the distance
    [Show full text]
  • Subject of the Russian Federation)
    How to use the Atlas The Atlas has two map sections The Main Section shows the location of Russia’s intact forest landscapes. The Thematic Section shows their tree species composition in two different ways. The legend is placed at the beginning of each set of maps. If you are looking for an area near a town or village Go to the Index on page 153 and find the alphabetical list of settlements by English name. The Cyrillic name is also given along with the map page number and coordinates (latitude and longitude) where it can be found. Capitals of regions and districts (raiony) are listed along with many other settlements, but only in the vicinity of intact forest landscapes. The reader should not expect to see a city like Moscow listed. Villages that are insufficiently known or very small are not listed and appear on the map only as nameless dots. If you are looking for an administrative region Go to the Index on page 185 and find the list of administrative regions. The numbers refer to the map on the inside back cover. Having found the region on this map, the reader will know which index map to use to search further. If you are looking for the big picture Go to the overview map on page 35. This map shows all of Russia’s Intact Forest Landscapes, along with the borders and Roman numerals of the five index maps. If you are looking for a certain part of Russia Find the appropriate index map. These show the borders of the detailed maps for different parts of the country.
    [Show full text]
  • Trends in Normalized Difference Vegetation Index (NDVI) Associated with Urban Development in Northern West Siberia
    Atmos. Chem. Phys., 16, 9563–9577, 2016 www.atmos-chem-phys.net/16/9563/2016/ doi:10.5194/acp-16-9563-2016 © Author(s) 2016. CC Attribution 3.0 License. Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia Igor Esau1, Victoria V. Miles1, Richard Davy1, Martin W. Miles2, and Anna Kurchatova3 1Nansen Environmental and Remote Sensing Centre/Bjerknes Centre for Climate Research, Bergen, Norway 2Uni Research Climate/Bjerknes Centre for Climate Research, Bergen, Norway, Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA 3Institute of the Earth’s Cryosphere, Tyumen Oil and Gas University, Tyumen, Russia Correspondence to: Igor Esau ([email protected]) Received: 17 January 2016 – Published in Atmos. Chem. Phys. Discuss.: 18 March 2016 Revised: 21 June 2016 – Accepted: 27 June 2016 – Published: 1 August 2016 Abstract. Exploration and exploitation of oil and gas re- with the urban heat islands and succession of more produc- serves of northern West Siberia has promoted rapid indus- tive shrub and tree species growing on warmer sandy soils. trialization and urban development in the region. This devel- opment leaves significant footprints on the sensitive northern environment, which is already stressed by the global warm- ing. This study reports the region-wide changes in the veg- 1 Introduction etation cover as well as the corresponding changes in and around 28 selected urbanized areas. The study utilizes the Significant shifts in the vegetation land cover and biologi- normalized difference vegetation index (NDVI) from high- cal productivity manifest rapid climate change in the north- resolution (250 m) MODIS data acquired for summer months ern high latitudes (Hinzman et al., 2005; Groisman and Gut- (June through August) over 15 years (2000–2014).
    [Show full text]