Problems of Urengoy Oil-Gas-Condensate Field at the Late Stage of Exploitation

Total Page:16

File Type:pdf, Size:1020Kb

Problems of Urengoy Oil-Gas-Condensate Field at the Late Stage of Exploitation PROBLEMS OF URENGOY OIL-GAS-CONDENSATE FIELD AT THE LATE STAGE OF EXPLOITATION V.A. Istomin (NOVATEK JSC, Moscow, Russia) G.A.Lanchakov, V.A Stavitskiy, N.A.Tsvetkov (Gazprom dobycha Urengoy LLC, Novy Urengoy, Russia) Urengoy Oil-Gas-Condensate field on the primary proven deposits exceeds 12 tcm of gas. The field is situated in the Western Siberia on the North of the Tyumen region in the areas of unstable permafrost, with the severe climate conditions and with the total absence of infrastructure at the beginning of its development. Basic features of Urengoy field: - multilayer productive horizons (from the bearing Senomanian horizons to Achimov and Jura sediments) - considerable distinctive gas-condensate characteristics of the productive horizons (from practically total condensate lack in Senomanian deposits to 300-400 g/m3 of hydrocarbon condensate in Achimov deposits) - the presence of the considerable ethane content up to 5-7 mol. % in natural gas (that determines the future of gas-chemistry development in the region) - the presence of the formation anomalous pressure factor (FAPF) (so anomalous factor in Achimov stratum is 2 and over, primary formation pressure reaches 70 MPa) in some deposits - the presence of oil rims in some gas-condensate deposits. As a result exploitation objects (5-6 objects) are distinguished with greatly distinctive primary formation pressure and gas-condensate characteristics as well as oil deposits (rims), which development has a considerable peculiarity in comparison with the ordinary oil deposits. Urengoy oil-gas-condensate field is developed since 1978. In the beginning Senomanian gas deposit had been developed, then Valanginian gas-condensate deposits were put into operation, Achimov deposits are being developing now. It is significant to note that the deepest bearing layers are not enough explored, that is why exploration drilling (including ultradeep drilling) is carried out. Gas conditioning technology of Senomanian deposits includes glycol gas dehydration, and the variations of low-temperature separation are used in gas treatment technology of Valanginian deposits. At present, Urengoy field is at the late stage of exploitation (concerning Senomanian and Valanginian deposits). In the report the results of thirty-year field exploitation are summarized. Basic technological exploitation problems are analyzed concerning both bearing layers and technological system – productive layer, well bottom zone, wells, gas gathering field pipelines and gas treatment facilities. The basic exploration directions and the results of technological works with the aim of effective problem solving in the course of field exploitation are presented in the report. By the practical realization of all suggested technological decisions, the special emphasis was paid to ecological aspects and an important task of the environmental risk minimization. Other principals of technical problem solving are connected with optimization of energy expense and exploitation cost reduction on gas and gas-condensate production. The following original technologies are proposed on Senomanian deposits: - water shutoff of the wells and critical area of formation (with the aim of well sand and water seepage limitation) - production stimulation with the aim of stable inflow (fracturing etc.) - two stage gas glycol dehydration technology for providing of required gas quality characteristics and optimal technological equipment load - automatization of gas cooling apparatus for optimal gas temperature and for effective preventing gas hydrates in the cooling apparatus pipes. The following original technologies are proposed on Valanginian deposits: - gathering field pipelines with two different pressure levels for increasing of Valanginian wells output - optimization of loss C5+ from the low-temperature separators - combined technological schemes of Valanginian and Senomanian gases treatments with the optimal usage of the booster compressor system - recycling technologies for preventing gas hydrates with the usage of methanol as a thermodynamical inhibitor (including its usage by boosters at the top of the technological process) - special range forming for waste burial and monitoring of the ecological safety of pump-down of industrial wastewaters. The above technical decisions are protected by some RF patents (more than 20 patents) and their introducing gave considerable economic efficiency. Applying of these technological decisions allowed optimizing gas-gathering and field gas treatment processes, reducing the exploitation cost and providing effective gas and condensate recovery at the late stage of Urengoy oil-gas-condensate complex development. .
Recommended publications
  • Yamalia English Language Teachers’ Association
    Yamalia English Language Teachers’ Association YAMALIA – THE BACK OF BEYOND A Series of English Lessons in Yamalia Studies Edited by Eugene Kolyadin Yelena Gorshkova Oxana Sokolenko Irina Kolyadina Based on teaching materials created by Alevtina Andreyeva (Salemal), Svetlana Bochkaryova (Salekhard), Natalia Bordzilovskaya (Noyabrsk), Natalia Derevyanko (Noyabrsk), Yelena Gorshkova (Gubkinsky), Olga Grinkevich (Muravlenko), Tamara Khokhlova (Noyabrsk), Anzhelika Khokhlyutina (Muravlenko), Irina Kolyadina (Gubkinsky), Yulia Rudakova (Nadym), Irina Rusina (Noyabrsk), Diana Saitova (Nadym), Yulia Sibulatova (Nadym), Natalia Soip (Nadym), Yelena Ten (Nadymsky district), Natalya Togo (Nyda), Olga Yelizarova (Noyabrsk), Alfiya Yusupova (Muravlenko), Irina Zinkovskaya (Nadym) Phonetic and Listening Comprehension tapescripts sounded by Svetlana Filippova, Associate Professor, Nizhny Novgorod Dobrolyubov State Linguistics University Gubkinsky Yamalo-Nenets Autonomous Okrug 2015 2 Yamalia English Language Teachers’ Association Yamalia – the Back of Beyond. A Series of English Lessons in Yamalia Studies: Сборник учебно-методических материалов для проведения учебных занятий по регионоведению Ямало-Ненецкого автономного округа на английском языке в 8 – 11 классах средних общеобразовательных организаций / Под ред. Е.А. Колядина, Е.А. Горшковой, И.А. Колядиной, О.Б. Соколенко. – Губкинский, 2015. – 82 c. – На англ. яз. Yamalia – the Back of Beyond 3 FOREWORD1 The booklet you are holding in your hands now is a fruit of collaboration of tens of Yamalia teachers of English from different parts of the okrug. The main goal of the authors’ team was to summarise the best practices developed by the okrug educators as well as their expertise in teaching regional studies and disseminate that all around Yamalia. We think that it is a brilliant idea to arm our teachers with ready-made though flexible to adaptation lessons to teach students to different aspects of life in our lands in English.
    [Show full text]
  • Russia's Policies for Arctic Cities
    RUSSIAN ANALYTICAL DIGEST No. 129, 24 June 2013 2 ANALYSIS Russia’s Policies for Arctic Cities By Alexander Pilyasov, Moscow Abstract Although the population of Russia’s Arctic has shrunk notably in the past two decades, the region contin- ues to be highly urbanized. The process of developing sustainable, economically self-sufficient, and socially resilient urban centers requires the implementation of informed and directed policy at the federal and local level. In order to assist in informing better policy, this article establishes several categories of northern urban centers based on their economies, political situation, and social networks. The efficacy of policy is analyzed through two case studies, the cities of Muravlenko and Gubkinsky, which have experienced divergent out- comes despite their proximity and organization. Finally, some general policy recommendations are proposed for the different urban categories, based on their varying needs and characteristics. Introduction (a short statistical review of mum to minimum salaries is often a factor of three. The Russian Arctic cities) most attractive sectors in terms of salary are usually pub- Russian Arctic cities are known for the large size of their lic policy, finance, and mining. In the single-industry populations relative to the Arctic region in general. By cities, differentials between maximum and minimum far, the majority of the biggest Arctic cities are located salaries are usually greater, sometimes by a factor of six, in Russia. Their large size stems from the Soviet era’s but in extreme cases the difference between the best and “triumph of the cities,” and continues to be centered worst paid can be as much as 13 times.
    [Show full text]
  • A Spatial Study of Geo-Economic Risk Exposure of Russia's Arctic Mono-Towns with Commodity Export-Based Economy
    Journal of Geography and Geology; Vol. 6, No. 1; 2014 ISSN 1916-9779 E-ISSN 1916-9787 Published by Canadian Center of Science and Education A Spatial Study of Geo-Economic Risk Exposure of Russia’s Arctic Mono-Towns with Commodity Export-Based Economy Anatoly Anokhin1, Sergey Kuznetsov2 & Stanislav Lachininskii1 1 Department of Economic & Social Geography, Saint-Petersburg State University, Saint-Petersburg, Russia 2 Institute of Regional Economy of RAS, Russian Academy of Science, Saint-Petersburg, Russia Correspondence: Stanislav Lachininskii, Department of Economic & Social Geography, Saint-Petersburg State University, Saint-Petersburg, Russia. Tel: 7-812-323-4089. E-mail: [email protected] Received: December 30, 2013 Accepted: January 14, 2014 Online Published: January 16, 2014 doi:10.5539/jgg.v6n1p38 URL: http://dx.doi.org/10.5539/jgg.v6n1p38 Abstract In the context of stagnating global economy mono-towns of Arctic Russia are especially exposed to uncertainty in their socio-economic development. Resource orientation of economy that formed in the 20th century entails considerable geo-economical risk exposure both for the towns and their population as well as for Russia's specific regions. In the 1990–2000s Russia’s Arctic regions were exposed to a systemic crisis which stemmed from production decline, out-migration, capital asset obsolescence, depletion of mineral resources and environmental crisis. This spatial study of geo-economic risk exposure of Russia’s Arctic mono-towns with commodity export-based economy was conducted at four dimensions - global, macro-regional, regional and local. The study of the five types of geo-economic risks was based on the existing approach, economic and socio-demographic risks being the most critical for the towns under consideration.
    [Show full text]
  • Presentation
    Environmental aspects of urbanization in the Russian Arctic E.V. Abakumov Saint-Petersburg State University, Department of Applied Ecology, 1 [email protected] Arctic is about 37 % of Russian territory, but the Cryolithozone is about 54-60 % of total state area Population of Russian Arctic Developmental Population, thousands zone people European part –Siberia - Chukotka Murmansk 796 Population of key developmantal zones Arkhangelsk 661 800 Nenets 42 700 Vorkuta 143 600 Yamal 522 500 Taymyr 217 400 thousands 300 Yakutsk 65 (not all republic) 200 Chukotka 52 100 0 Nenets Yamal Total 2498 (involved in to Mumansk Yakutsk economic activity - 1300) Creation of “Development zones” in the Arctic accodring to Federal program “Development of the Arctic zone of the Russian Federation and the national security up to 2020” • Development zones: 1 – Kola, 2 –Arkhangelsk, 3 – Nenets, 4 – Vorkuta, 5 Yamal, 6- Taymyr, 7 – North-Yakutks, 8 - Chukotka Population of the Russian Arctic: 2391 min =2,2% of whole population Arctic Population total urban 89,3 % 2500 2000 1500 1000 10,7% other 500 0 total urban other Number of cities with population range number of cities with population 14 14 12 9 10 8 6 4 4 3 4 2 1 2 0 5000 10000 20000 50000 1000000 250000 300000 Key Factors, Limiting the Arctic Zone Development • a) extreme climatic conditions, including low temperatures, strong winds and the presence of ice in the waters of the Arctic seas; • b) the localized nature of industrial and economic development of the areas and low population density; • c) the distance
    [Show full text]
  • EGU2018-11870, 2018 EGU General Assembly 2018 © Author(S) 2018
    Geophysical Research Abstracts Vol. 20, EGU2018-11870, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license. The first estimates of winter urban heat island intensity for medium-sized cities in the Eurasian Arctic Mikhail Varentsov (1,2) and Pavel Konstantinov (1) (1) Lomonosov Moscow State University, Moscow, Russia ([email protected]), (2) A.M. Obukhov Institute of Atmospheric Physics, Moscow, Russia The Urban Heat Island (UHI) effect is well studied for moderate and low latitudes. But the knowledge about the UHIs in the Arctic was extremely poor until the nowadays. It was limited by few studies for Alaskan towns (e.g. Hinkel et al. 2003), while the biggest Arctic cities located in Russian sector of Northern Eurasia were the terra incognita of urban climatology. In this study we present the first estimates of winter-time UHI intensity for the medium-sized cities of Russian Arctic. They are based on the UHIARC (Urban Heat Island Arctic Research Campaign) seasonal-scale experimental meteorological observations in the five cities: Apatity in Kola peninsula, Vorkuta in the north-east of the European Russia and Nadym, Novy Urengoy and Salekhard in the north of Western Siberia. All of them have quite similar population (from 50 to 115 thousands inhabitants) and typical dense building by medium-rise blocks of flats. Observations were made by the automatic weather stations and low-cost temperature loggers. The measurements in Vorkuta, Nadym, Novy Urengoy and Salekhard have shown quite similar values of the UHI intensity and patterns of its temporal variation. The average winter UHI intensity is 1-1.5 K, while extremes up to 6-7 K are observed in frosty anticyclonic weather.
    [Show full text]
  • Additional Information to OAO Gazprom's 2010 Annual Report
    ADDITIONAL INFORMATION TO OAO GAZPROM’S 2010 ANNUAL REPORT TABLE OF CONTENTS Members of OAO Gazprom’s Revision Commission .....................................................................................2 Meetings held by OAO Gazprom’s Board of Directors in 2010 ......................................................................3 Ongoing legal proceedings connected with debt enforcement as of December 31, 2010 ..........................11 OAO Gazprom participation in share capital of third companies as of December 31, 2010 .......................13 MEMBERS OF OAO GAZPROM’S REVISION COMMISSION Information about the People Elected as Members of the Revision Commission at the Annual General Shareholders Meeting Dated June 25, 2010. Full name Date of Birth Position as of December 31, 2010 Dmitry Alexandrovich Arkhipov 1975 Deputy Head of the Administration of the Management Committee – Head of OAO Gazprom’s Internal Audit Department, Chairman of the Commission Vadim Kasymovich Bikulov 1957 Head of Directorate of the Internal Audit Department of the Administration of OAO Gazprom’s Management Committee, secretary of the Commission Andrey Nikolaevich Kobzev 1971 Head of the Expert Analysis Department of the Federal Agency for State Property Management Nina Vladislavovna Lobanova 1955 Dmitry Sergeevich Logunov 1979 Deputy Director of the Economics and Analysis Department of the Russian Ministry of Agriculture Yury Stanislavovich Nosov 1963 Deputy Head of the Administration of the Management Committee – Head of OAO Gazprom’s Affairs Management
    [Show full text]
  • Resettlement from the Russian North: an Analysis of State-Induced Relocation Policy Arctic Centre Reports 55
    Resettlement from the Russian North: an analysis of state-induced relocation policy Arctic Centre Reports 55 Resettlement from the Russian North: an analysis of state-induced relocation policy ARCTIC CENTRE Elena Nuykina Edited and with a preface by Florian Stammler “This study brings the importance of the Arctic down to the lived experience of industrial city-dwellers with state policies beyond abstract climate change models and offshore resource games. Nuykina’s work is valuable not only for its policy analysis, but also for its focus on the consequences of resettlement poli- cies for residents and their responses. It is worth reading for all those interested in the study of population movement, Russian northern development and the anthropology of the state.” Florian Stammler, coordinator, Anthropology Research Team, Arctic Centre, University of Lapland “The northern regions of Russia are crucial for the country’s development and the right-sizing of the population in the north is an important element of north- ern development strategy. Elena Nuykina’s excellent study skillfully combines analysis of Russian government laws and policies of northern resettlement poli- cies with on-the-ground research of the implimentatuon and unintended conse- quences of those policies.” Timothy Heleniak, Department of Geography, University of Maryland Arctic Centre Reports 55 ISSN 1235-0583 ISBN 978-952-484-404-8 ISBN 978-952-484-444-4 (electronic version) 2011 Arctic Centre Reports 55 Resettlement from the Russian North: an analysis of state-induced relocation policy Elena Nuykina Guest edited and with a preface by Florian Stammler Sevenprint Rovaniemi 2011 Published in Finland by Arctic Centre, University of Lapland, Rovaniemi P.O.
    [Show full text]
  • NOVATEK's Sustainability Report 2019
    Sustainability Report 2019 Sustainability Report 2019 2 | 3 Contents LETTER FROM THE CHAIRMAN OF NOVATEK’S EXTERNAL SOCIAL POLICY MANAGEMENT BOARD . 4 Cooperation with Russian Regions . 103 LETTER FROM THE DEPUTY CHAIRMAN Educational Programs . 106 OF NOVATEK’S MANAGEMENT BOARD . 8 Preserving Cultural Heritage . 108 Promotion of Sports . 109 REPORT AND REPORTING PROCESS Help to Children in Desperate Need . 109 Report Preparation . 12 Corporate Volunteering . 110 Defining Report Content and Material Topics . 14 Aid to Veterans . 111 Materiality Matrix . 16 EMPLOYMENT PRACTICES COMPANY PROFILE Employee Profile . 114 NOVATEK’s Core Assets as at 31 December 2019 . 21 Employee Motivation and KPI System . 116 Share Capital Structure and Market Capitalization . 22 Personnel Training and Development . 117 Membership and Participation in Trade Associations . 23 Social Policy . 121 Awards and Achievements . 24 Trade Union Relations . 125 Interaction Between Management and Employees SUSTAINABLE DEVELOPMENT STRATEGY Discussing Current Issues . 125 Our Approach to Sustainability . 29 Integrating the United Nations Sustainable PROCUREMENT PRACTICES Development Goals . 30 Procurement Approach . 128 Materials and Equipment Supply Chain CLIMATE CHANGE Management . 129 Climate Change Management . 38 Procurement Performance . 131 Risks and Opportunities . 38 Import Substitution Policy . 131 Climate Protection Initiatives . 42 OCCUPATIONAL HEALTH AND SAFETY STAKEHOLDER ENGAGEMENT Our Approach to Occupational Health and Safety . 134 Stakeholder Engagement Principles . 46 Operational Control . 137 Stakeholder Engagement Matrix . 48 Accidents and Incidents . 138 Workplace Injury Rate . 140 CORPORATE GOVERNANCE OHS Training . 141 Corporate Governance System . 58 Fire Safety, Civil Defense and Emergencies . 142 Remuneration to the Members of the Board of Directors and Management Board . 64 ENVIRONMENTAL PERFORMANCE AND PROTECTION Internal Control and Audit .
    [Show full text]
  • Differentiation of Trace Metal Contamination Level
    minerals Article Differentiation of Trace Metal Contamination Level between Different Urban Functional Zones in Permafrost Affected Soils (the Example of Several Cities in the Yamal Region, Russian Arctic) Timur Nizamutdinov 1 , Eugenia Morgun 2 , Alexandr Pechkin 2, Jakub Kostecki 3 , Andrzej Greinert 3 and Evgeny Abakumov 1,4,* 1 Department of Applied Ecology, Saint Petersburg State University, 16 Line 29 Vasilyevskiy Island, 199178 Saint-Petersburg, Russia; [email protected] 2 Arctic Research Center of the Yamal-Nenets Autonomous District, 73, Respubliki St., 629008 Salekhard, Russia; [email protected] (E.M.); [email protected] (A.P.) 3 Institute of Environmental Engineering, University of Zielona Góra, 15, Prof. Z. Szafrana St., 65-516 Zielona Góra, Poland; [email protected] (J.K.); [email protected] (A.G.) 4 All Russian Institute for Agricultural Microbiology, 196608 Saint-Petersburg, Russia * Correspondence: [email protected]; Tel.: +7-9111969395 Abstract: Dynamically developing urbanization causes a number of environmental effects, including those related to the chemical transformation of soils. Relatively less information about the urban Citation: Nizamutdinov, T.; Morgun, areas of the Arctic and Subarctic zones, constructed mostly on permafrost and intensively populated E.; Pechkin, A.; Kostecki, J.; Greinert, areas can be found. By the example of the analysis of basic soil properties and concentrations of A.; Abakumov, E. Differentiation of trace metals in the soils of the cities of Salekhard, Urengoy, Nadym, Novy Urengoy and Gaz Sale Trace Metal Contamination Level (the Yamalo-Nenets Autonomous District), as well as various functional zones within the cities, between Different Urban Functional the relationship between the age of the cities, the level of anthropogenic pressure and the type of Zones in Permafrost Affected Soils parent materials and the character of accumulation of metals in the soil profile of urban soils have (the Example of Several Cities in the been described.
    [Show full text]
  • Smart and Sustainable Arctic Cities: the Russian Perspective
    SMART AND SUSTAINABLE ARCTIC CITIES: THE RUSSIAN PERSPECTIVE Prof. Irina A. Shmeleva, ITMO University, St Petersburg Dr. Stanislav E. Shmelev, Director, Environment Europe Ltd, Oxford 2019 Arctic Cities of Russia Source: http://www.interarctic.ru/map SDGS –RUSSIAN PERSPECTIVE HTTP://WWW.GKS.RU/WPS/WCM/CONNECT/ROSSTAT_MAIN/ROSSTAT/RU/STATISTICS/ GOALOFDEVELOPMENT/ Source: https://www.stockholmresilience.org Life Expectancy Share of renewables GRP Gini Unemployment Higher education SUSTAINABLE DEVELOPMENT INDICATORS Share of GRP renewables Investment Resource extraction CO emissions 2 Energy dimensions Economic dimensions Unemployment Metro Stations Crime rate Walking, Transport dimensions Social dimensions cycling, PT Democratic governance Planning Higher Environmental behaviour education Generation of MSW Environmental Green infrastructure Forest dimensions dimensions cover Recycling Rate Creative dimensions Smart dimensions Emissions Internet speed Lung diseases Creative industries employment, % Patents Source: Environment Europe (2018) Green space Recycling Rate International visitors Water use Visits to top 5 museums Creative industries Bookshops Art employment, % per capita galleries Archangelsk Arctic Cities of Russia: GRP GRP per person, RUB Murmansk 1 Yakutsk Archangelsk 0,9 0,8 0,7 Magadan Apatity 0,6 0,5 0,4 0,3 Anadyr Naryan Mar 0,2 0,1 0 Hatanga Vorkuta Norilsk Nadym Noyabrsk Salehard Novy Urengoy Arctic Cities of Russia: Investment per year INVEST, mln RUB Murmansk 1 Yakutsk Archangelsk 0,9 0,8 0,7 Magadan Apatity 0,6 0,5
    [Show full text]
  • Russian Regional Flags: Flags of the Subjects of the Russian Federation
    110 Russian Regional Flags Tambov Oblast Тамбовская область / Tambovskaia oblast’ Year Adopted: 2005 Proportions: 2:3 Designer: unknown Federal District: Central Administrative Center: Tambov Population: 1,096,879 Tambov Oblast’s flag is divided vertically into two equal parts—red at the hoist and blue at the fly. Red is a symbol of courage and steadfastness. It reflects the bravery of the inhabitants, their magnanimity, their aspirations to unity and solidarity, and the continuity of the generations. Red is also drawn from histori- cal flags of Russia, emblems of the Tambov area, and from the flags of the Soviet period. Blue symbolizes the greatness, natural beauty, and cleanliness of the Tam- bov region, faithfulness to its traditions, faultlessness, and well-being. Centered on the flag are the arms of the oblast, which show a beehive and three bees in white on a blue field. The beehive symbolizes the concept of home, and the bees repre- sent industriousness and thrift. Topping the arms is a gold crown. The width of the arms is roughly 1/3 the length of the flag. Sources: Tambovskaia oblast’, “Simvolika oblasti”, http://www.tambov.gov.ru//?Page=171, accessed 15 June 2008; Tam- bovskaia oblast’, “Zakon o flage Tambovskoi oblasti”, http://www.regadm.tambov.ru/flag.htm, accessed 9 July 2008; “Flag Tambovskoi oblasti”, Geral’dika.ru, http://geraldika.ru/symbols/11007, accessed 20 June 2008; “Tambovskaia oblast’”, Vexillographia: Flagi Rossii, http://www.vexillographia.ru/russia/subjects/tambov.htm, accessed 1 August 2008; Borisov and Kozina, p. 311; Saprykov (2004), p. 74; Saprykov (2006), p. 74; Smetannikov, p.
    [Show full text]
  • Fertility in the Yamal–Nenets Autonomous Okrug
    Population and Economics 5(1): 72–89 DOI 10.3897/popecon.5.e65207 RESEARCH ARTICLE Fertility in the Yamal–Nenets Autonomous Okrug Vladimir N. Arkhangelsky1, 2 1 Lomonosov Moscow State University, Moscow, 119991, Russia 2 ISESP FCTAS RAS, Moscow, 117218, Russia Received 27 February 2021 ♦ Accepted 15 March 2021 ♦ Published 09 April 2021 Citation: Arkhangelsky VN (2021) Fertility in the Yamal–Nenets Autonomous Okrug. Population and Economics 5(1): 72-89. https://doi.org/10.3897/popecon.5.e65207 Abstract The article is devoted to the analysis of fertility indicators in the Yamal–Nenets Autonomous Okrug. Along with the total fertility rate for all births, the author traces the dynamics of birth order-specific fertility rates, as well as actual cohort fertility rates estimated by 2010 All-Russian census data. Particular attention is paid to the differences between these indicators in urban districts and municipal areas of the region. When considering the possible relationship of fertility indicators with the implementation of regional measures of demographic policy, special attention is paid to third and subsequent births, the level and dynamics of which can be influenced by the amount of regional maternal (family) capital, which is larger in the Yamal– Nenets Autonomous Okrug than in other federal subjects of Russia. The results of the analysis show that the Yamal–Nenets Autonomous Okrug is among regions with a relatively high level and a young model of fertility. To a greater extent, this manifests itself in the second, third and subsequent births. Keywords age-specific fertility, demographic policy, order of birth, cohort fertility, total fertility rate, Yamal–Ne- nets Autonomous Okrug JEL codes: J11, J13 Introduction Fertility largely determines the mode of population reproduction, its natural growth, and therefore the dynamics of the population size in general.
    [Show full text]