CRYPTORHYNCHUS LAPATHI (L.) (COLEOPTERA: CURCULIONIDAE) on Sallx SPP

Total Page:16

File Type:pdf, Size:1020Kb

CRYPTORHYNCHUS LAPATHI (L.) (COLEOPTERA: CURCULIONIDAE) on Sallx SPP DISTRIBUTION AND IMPACT OF CRYPTORHYNCHUS LAPATHI (L.) (COLEOPTERA: CURCULIONIDAE) ON SALlX SPP. IN BRITISH COLUMBIA Cynthia L. Broberg B. Sc. (Plant Biology), University of British Columbia, 1997 THESIS SUBMllTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF MASTER OF PEST MANAGEMENT in the Department of Biological Sciences O Cynthia L. Broberg 1999 SIMON FRASER UNIVERSITY October 1999 All rights reserved. This work may not be repmduced in whole or in part. by photocopy or other means. without permission of the author. National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services sewices bibliographiques 395 Wdüngîori Street 395, rue Wellington ûtîawaON KIAON4 ûttawa ON KIA ON4 Cariada Canadtt The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seil reproduire, prêter, distribuer ou copies of this thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or othenivise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract The poplar and willow borer, Cryptorhynchus lapathi (L.), known to be present in British Columbia since 1923, primarily attacks species of Salk and Populus. Larvae bore into stems, causing them to break easily. Its impact has been increasing in recent years due to the increasing importance of poplar and willow from both economic and ecological perspectives. I conducted a survey to document the distribution and prevalence of C. lapathi in B.C. within different biogeoclimatic subzones and Salix hosts, and to describe the between-tree and within- tree dynamics of C. lapathi. The sunrey spanned five biogeoclimatic zones, 15 subzones, 45 locations, 135 sites, and 3360 trees, 675 of which were measured in detail. The range of C. lapathi has at least doubled since 1963. The weevil was present in 38 locations and 14 subzones. The intensity of attack and the number of individual weevils were positively related to the prevalence of attacked trees (f= 0.701 and 0.562, respectively). The prevalence of weevil- attacked trees was significantly lower in cold than in warm subzones. Using available climatic data, three different regression models were derived using: number of months with mean ternperature >1 O°C (mode1 1); number of months with mean ternperature >lO°C, mean annual ternperature (OC), and number of frost tee days (model 2); and elevation (m), mean temperature warmest month (OC), and accumulated day degrees >5'C (model 3) to predict the proportion of attacked trees, al1 with ? XI.8. There were 11 new host records, but no evidence of host preference. In general, attacked trees were larger, had more dead wwd and stems, more adventitious branches per stem, more total breaks per stem, and more naturally-caused breaks per stem than their attack-free neighbours. Breaks caused by C. lapathi tended to be slightly larger in diameter and lower on the stem than naturally-caused breaks. Bases of stems were preferentially attacked, and C. lapathi selected large stems in which to oviposit. As large attack- free trees becorne less abundant, weevils apparendy start to attack small-diameter stems. Although C. lapethi is advenely affecting the health of willows in B.C., there is no evidenm that any Salix species is threatened by weevil-caused extinction. iii Well grandpa, here's to given'er snoose. Acknowledgements I thank Kim Hardacker and Alton Harestad for helping develop the methodology used in the study; John Borden for his support and supervision; Margaret Gajecki for her unfailing enthusiasm and help in collecting most of the data; Kim Hardacker, Ryan Comber, John Borden, Morgan Jones, and Nicole Jeans-Williams for their help in the field; rny parents for their help and encouragement; Lee Humble for his help starting this project; George Argus and Anna Roberts for help with willow identification; Del Meidinger for allowing me access to the dimate data; lan Bercovitz for his help with PROC MIXED; and John Borden, Alton Harestad and Lee Humble for review of this manuscript. This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Canadian Forest Sewice, Forest Renewal B.C., Ainsworth Lumber Co. Ltd., B.C. Hydro Power Authority, Bugbusters Pest Management Inc., Canadian Forest Products Ltd., Crestbrook Forest lndustries Ltd., Finlay Forest lndustries Inc., Gorrnan Bros. Ltd,, International Forest Products Ltd., Lignum Ltd., Manning Oiversified Forest Products Ltd., MB Research, Northwood Pulp and Timber ttd., Pacific Forest Products Ltd., Phero Tech Inc., Riverside Forest Products Ltd., Slocan Forest Products Ltd., TimberWest Ltd,, Tolko lndustries Ltd., Weldwood of Canada Ltd., West Fraser Mills Ltd., Western Forest Products Ltd., Weyerhaeuser Canada Ltd. Table of Contents .i Approval .................... .... ............................................................ 11 Abstract ...........................................................................................iii Acknowledgements ......................................................................... v .. List of Tables ............................................................................ VII List of Figures ............................ .....................................................ix Introduction Materials and Methods .......................m........m..........m.mmm.............mm...10 SELECTION OF SAMPLING UNITS ................................................................................................... 10 SAMPLINGTREES .........................................................................................................................15 SALIXIDENTIFICATION .................................................................................................................16 STATISTICALANALYSES ................................................................................................................17 Results and Discussion .................... .......................21 DISTRIBUTION AND ABUNDANCE .............................. ... ......................S.......2f GEOGRAPHICRANGE ................................................................................................................ 21 EFFECTOF BIOGEOCLIMATIC SUBZONE ON THE PROPORTION OF ArrACKED TREES ..........................24 RELATIONSHIPBETWEEN THE PREVALENCE OF ArrACKED TREES AND MEVIL ABUNDANCE ............. 30 INFESTATION DYNAMICS AND IMPACT ..............................................................33 HOST PREFERENCE ..................................................................................................................... 33 DlFFERENCES BETWEN ATTACKED AND AITACK-FREE TREES .......................................................35 Size related factors .............................................................................................................. 35 Dead wood ........................................................................................................................... 37 Stem breakage .................................................................................................................... 42 WITHIN-TREE DISTRIBUTION OF C. UPATHl ................................................................................... 45 Conclusions ....................m..mm.m..mm..mmm.m....................m..m...m...m...........mm52 Appendix ........................................................................................ 57 References Cited .............................m...m........................mm..m............76 List of Tables 'able 1. Biogeoclirnatic description, sampling date, and coordinates of the 45 locations in this study in decreasing order of mean annual temperature ("C). Latitude and longitude are from the most central of the thrw possible sites. Table 2. Components of regression equations used to predict the proportion of attacked trees in any biogeocfimatic subzone. The intercepts and cfirnate variables are tested with the null hypothesis that they, or their modifying parameters, are equal to zero. Residuals are tested against the null hypothesis that they are nomally distributed. See text for explanation of mode1 components. Table 3. Results of correlation analysis between the mean proportions of trees with attack and dimatic factors. Table 4. Ranked percentages of attack by C. lapathi on willow in various taxa. Some species presented in groups because of inability to distinguish benHeen specirnens collected. Othen pooled because of taxonornic affinity within a section. Sarnples were excluded if species could not be determined. Table 5. Comparison between attacked and attack-free willows with respect to 14 rneasured characteristics. Values pooled for each site so that each site with both attacked and attack-free trees is a replicate. Table 6. Ranked summaries of causes of stem death in willows assessed by visual observations in the field, comparing stems attacked by C. lapsthi with attack-free stems. Table 7. Predicted proportions
Recommended publications
  • Chicago Joins New York in Battle with the Asian Longhorned Beetle Therese M
    Chicago Joins New York in Battle with the Asian Longhorned Beetle Therese M. Poland, Robert A. Haack, Toby R. Petrice USDA Forest Service, North Central Research Station, 1407 S. Harrison Rd., Rm. 220, E. Lansing, MI 48823 The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), was positively iden- would follow New York’s lead tified on 13 July 1998 attacking trees in an area of and that infested trees would northern Chicago known as Ravenswood. Previ- be cut, chipped, burned and ously, the only known North American occur- replaced by new trees at the rence of this Asian cerambycid beetle was in the city’s expense. Amityville area and the Brooklyn area of Long The city of Chicago ben- Island, New York, where it was discovered in efited greatly from New August 1996 (Haack et al. 1996, Cavey et al. York’s experience in imple- 1998). In New York, this woodborer has attacked menting its eradication program. With an excellent species of maple (Acer), horsechestnut (Aesculus well as 1 square mile each in Addison and in leadership team and organization, the city of hippocastanum), birch (Betula), poplar (Populus), Summit. Extensive surveys were conducted out Chicago obtained public cooperation and support willow (Salix), and elm (Ulmus) (Haack et al. to 1 ¼ miles past the outer boundary of known for the eradication program from the outset. The 1997). Because of the potential for longterm infested trees at all three locations. Survey crews media provided excellent, factual and accurate ecological and economic damage an aggressive were composed of APHIS inspectors, federal, information through extensive television, newspa- eradication program that involves locating, re- state and city employees as well as APHIS trained per, and radio coverage.
    [Show full text]
  • Oregon Invasive Species Action Plan
    Oregon Invasive Species Action Plan June 2005 Martin Nugent, Chair Wildlife Diversity Coordinator Oregon Department of Fish & Wildlife PO Box 59 Portland, OR 97207 (503) 872-5260 x5346 FAX: (503) 872-5269 [email protected] Kev Alexanian Dan Hilburn Sam Chan Bill Reynolds Suzanne Cudd Eric Schwamberger Risa Demasi Mark Systma Chris Guntermann Mandy Tu Randy Henry 7/15/05 Table of Contents Chapter 1........................................................................................................................3 Introduction ..................................................................................................................................... 3 What’s Going On?........................................................................................................................................ 3 Oregon Examples......................................................................................................................................... 5 Goal............................................................................................................................................................... 6 Invasive Species Council................................................................................................................. 6 Statute ........................................................................................................................................................... 6 Functions .....................................................................................................................................................
    [Show full text]
  • Weevils) of the George Washington Memorial Parkway, Virginia
    September 2020 The Maryland Entomologist Volume 7, Number 4 The Maryland Entomologist 7(4):43–62 The Curculionoidea (Weevils) of the George Washington Memorial Parkway, Virginia Brent W. Steury1*, Robert S. Anderson2, and Arthur V. Evans3 1U.S. National Park Service, 700 George Washington Memorial Parkway, Turkey Run Park Headquarters, McLean, Virginia 22101; [email protected] *Corresponding author 2The Beaty Centre for Species Discovery, Research and Collection Division, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, ON. K1P 6P4, CANADA;[email protected] 3Department of Recent Invertebrates, Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, Virginia 24112; [email protected] ABSTRACT: One-hundred thirty-five taxa (130 identified to species), in at least 97 genera, of weevils (superfamily Curculionoidea) were documented during a 21-year field survey (1998–2018) of the George Washington Memorial Parkway national park site that spans parts of Fairfax and Arlington Counties in Virginia. Twenty-three species documented from the parkway are first records for the state. Of the nine capture methods used during the survey, Malaise traps were the most successful. Periods of adult activity, based on dates of capture, are given for each species. Relative abundance is noted for each species based on the number of captures. Sixteen species adventive to North America are documented from the parkway, including three species documented for the first time in the state. Range extensions are documented for two species. Images of five species new to Virginia are provided. Keywords: beetles, biodiversity, Malaise traps, national parks, new state records, Potomac Gorge. INTRODUCTION This study provides a preliminary list of the weevils of the superfamily Curculionoidea within the George Washington Memorial Parkway (GWMP) national park site in northern Virginia.
    [Show full text]
  • 2019 Goose Creek Native Revegetation and Restoration
    2019 Goose Creek Native Revegetation and Restoration Written by: Joe Dahlke, Katie Fischer, Michaela Fishback, Marissa Lane-Masse, and Steven Pearlman Riparian Restoration Environmental Leadership Program Conducted by the University of Oregon’s 2019 Environmental Leadership Program Website: https://blogs.uoregon.edu/2019riparianrestoration/ Table of Contents 1.0 Executive Summary……………………………………………………………………….....2 2.0 Introduction: About the Project…….……………………………………………...……….2 2.1 History and Background of Whitewater Ranch…………………………….…………2 2.2 Study Area…………………………………………………………………………….3 3.0 Stewardship Summary……………………………………………………………………....4 4.0 Monitoring Summary………………………………………………………………………..5 4.1 Photopoint Monitoring………………………………………………………………...5 4.2 Individual Plant Monitoring…………………………………………………………...8 4.3 Turtle Monitoring……....…………………………………………………………….12 4.4 Aquatic Macroinvertebrate Monitoring…………..………………………………….12 4.5 Stream Temperature Monitoring……………………………………………………..14 4.6 Pollinator Monitoring……………………………………………………..………….17 4.7 Spotted Wing Drosophila Monitoring….…………...…….…………………………19 5.0 Recommendations…………………………………………………………………………..20 5.1 General……………………………………………………………………………….20 5.2 Photopoint Monitoring……………………………………………………………….20 5.3 Individual Plant Monitoring………………………………………………………….20 5.4 Turtle Monitoring…....……………………………………………………………….21 5.5 Aquatic Macroinvertebrate Monitoring………………………………..…………….21 5.6 Stream Temperature Monitoring……………………………………………………..21 5.7 Pollinator Monitoring….…………………….…………………………………….....22 5.8 Spotted Wing Drosophila
    [Show full text]
  • Taxonomic Groups of Insects, Mites and Spiders
    List Supplemental Information Content Taxonomic Groups of Insects, Mites and Spiders Pests of trees and shrubs Class Arachnida, Spiders and mites elm bark beetle, smaller European Scolytus multistriatus Order Acari, Mites and ticks elm bark beetle, native Hylurgopinus rufipes pine bark engraver, Ips pini Family Eriophyidae, Leaf vagrant, gall, erinea, rust, or pine shoot beetle, Tomicus piniperda eriophyid mites ash flower gall mite, Aceria fraxiniflora Order Hemiptera, True bugs, aphids, and scales elm eriophyid mite, Aceria parulmi Family Adelgidae, Pine and spruce aphids eriophyid mites, several species Cooley spruce gall adelgid, Adelges cooleyi hemlock rust mite, Nalepella tsugifoliae Eastern spruce gall adelgid, Adelges abietis maple spindlegall mite, Vasates aceriscrumena hemlock woolly adelgid, Adelges tsugae maple velvet erineum gall, several species pine bark adelgid, Pineus strobi Family Tarsonemidae, Cyclamen and tarsonemid mites Family Aphididae, Aphids cyclamen mite, Phytonemus pallidus balsam twig aphid, Mindarus abietinus Family Tetranychidae, Freeranging, spider mites, honeysuckle witches’ broom aphid, tetranychid mites Hyadaphis tataricae boxwood spider mite, Eurytetranychus buxi white pine aphid, Cinara strobi clover mite, Bryobia praetiosa woolly alder aphid, Paraprociphilus tessellatus European red mite, Panonychus ulmi woolly apple aphid, Eriosoma lanigerum honeylocust spider mite, Eotetranychus multidigituli Family Cercopidae, Froghoppers or spittlebugs spruce spider mite, Oligonychus ununguis spittlebugs, several
    [Show full text]
  • Oemona Hirta (Revised)
    EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES 15-21045 Pest Risk Analysis for Oemona hirta (revised) September 2014 EPPO 21 Boulevard Richard Lenoir 75011 Paris www.eppo.int [email protected] This risk assessment follows the EPPO Standard PM PM 5/3(5) Decision-support scheme for quarantine pests (available at http://archives.eppo.int/EPPOStandards/pra.htm) and uses the terminology defined in ISPM 5 Glossary of Phytosanitary Terms (available at https://www.ippc.int/index.php). This document was first elaborated by an Expert Working Group and then reviewed by the Panel on Phytosanitary Measures and if relevant other EPPO bodies. Cite this document as: EPPO (2014) Revised Pest risk analysis for Oemona hirta. EPPO, Paris. Available at http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm Photo:Adult Oemona hirta. Courtesy Prof. Qiua Wang, Institute of Natural Resources, Massey University (NZ) 15-21045 (13-19036, 13-18422, 12-18133) Pest Risk Analysis for Oemona hirta This PRA follows the EPPO Decision-support scheme for quarantine pests PM 5/3 (5). A preliminary draft has been prepared by the EPPO Secretariat and served as a basis for the work of an Expert Working Group that met in the EPPO Headquarters in Paris on 2012-05-29/06-01. This EWG was composed of: Mr John Bain, Scion Forest Protection (New Zealand Forest Research Institute Ltd.), Rotorua, New Zealand Dr Dominic Eyre, Food and Environment Research Agency, York, UK Dr Hannes Krehan, Federal Office, Vienna Institute of Forest Protection, Vienna, Austria Dr Panagiotis Milonas, Benaki Phytopathological Institute, Kifissia, Greece Dr Dirkjan van der Gaag, Plant Protection Service, Wageningen, Netherlands Dr Qiao Wang, Massey University, Palmerston North, New Zealand.
    [Show full text]
  • PRA on Apriona Species
    EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES 16-22171 (13-18692) Only the yellow note is new compared to document 13-18692 Pest Risk Analysis for Apriona germari, A. japonica, A. cinerea Note: This PRA started 2011; as a result, three species of Apriona were added to the EPPO A1 List: Apriona germari, A. japonica and A. cinerea. However recent taxonomic changes have occurred with significant consequences on their geographical distributions. A. rugicollis is no longer considered as a synonym of A. germari but as a distinct species. A. japonica, which was previously considered to be a distinct species, has been synonymized with A. rugicollis. Finally, A. cinerea remains a separate species. Most of the interceptions reported in the EU as A. germari are in fact A. rugicollis. The outcomes of the PRA for these pests do not change. However A. germari has a more limited and a more tropical distribution than originally assessed, but it is considered that it could establish in Southern EPPO countries. The Panel on Phytosanitary Measures agreed with the addition of Apriona rugicollis to the A1 list. September 2013 EPPO 21 Boulevard Richard Lenoir 75011 Paris www.eppo.int [email protected] This risk assessment follows the EPPO Standard PM PM 5/3(5) Decision-support scheme for quarantine pests (available at http://archives.eppo.int/EPPOStandards/pra.htm) and uses the terminology defined in ISPM 5 Glossary of Phytosanitary Terms (available at https://www.ippc.int/index.php). This document was first elaborated by an Expert Working Group and then reviewed by the Panel on Phytosanitary Measures and if relevant other EPPO bodies.
    [Show full text]
  • A Selective Bibliography on Insects Causing Wood Defects in Living Eastern Hardwood Trees By
    Historic, Archive Document Do not assume content reflects current scientific knowledge, policies, or practices. V1 Inited States epartment of .griculture A SELECTIVE Forest Service BIBLIOGRAPHY ON Bibliographies and Literature of Agriculture No. 15 INSECTS CAUSING t»4 WOOD DEFECTS IN LIVING EASTERN HARDWOOD TREES o cr-r m c m TO CO ^ze- es* A Selective Bibliography on Insects Causing Wood Defects in Living Eastern Hardwood Trees by C. John Hay Research Entomologist Forestry Sciences Laboratory Northeastern Forest Experiment Station U.S. Department of Agriculture Forest Service Delaware, Ohio J. D. Solomon Principal Research Entomologist Southern Hardwoods Laboratory Southern Forest Experiment Station U.S. Department of Agriculture Forest Service Stoneville, Miss. Bibliographies and Literature of Agriculture No. 15 U.S. Department of Agriculture Forest Service July 1981 3 8 Contents Introduction 1 Tylonotus bimaculatus Haldeman, ash and Host Tree Species 2 privet borer 18 Hardwood Borers Xylotrechus aceris Fisher, gallmaking maple borer*. 1 General and miscellaneous species 4 Curculionidae Coleoptera Conotrachelus anaglypticus Say, cambium curculio . 18 General and miscellaneous species 7 Cryptorhynchus lapathi (Linnaeus), poplar-and- Brentidae willow borer* 18 Arrhenodes minutus (Drury), oak timbenvorm* .. 8 Lymexylonidae Buprestidae Melittomma sericeum (Harris), chestnut General and miscellaneous species 9 timbenvorm* 22 Agrilus acutipennis Mannerheim 9 Scolytidae Agrilus anxius Gory, bronze birch borer* 9 General and miscellaneous species
    [Show full text]
  • FIELD GUIDE to DISEASES and INSECTS of QUAKING ASPEN in the WEST Part I: WOOD and BARK BORING INSECTS Brytten E
    United States Department of Agriculture FIELD GUIDE TO DISEASES AND INSECTS OF QUAKING ASPEN IN THE WEST Part I: WOOD AND BARK BORING INSECTS Brytten E. Steed and David A. Burton Forest Forest Health Protection Publication April Service Northern Region R1-15-07 2015 WOOD & BARK BORING INSECTS WOOD & BARK BORING INSECTS CITATION Steed, Brytten E.; Burton, David A. 2015. Field guide to diseases and insects FIELD GUIDE TO of quaking aspen in the West - Part I: wood and bark boring insects. U.S. Department of Agriculture, Forest Service, Forest Health Protection, Missoula DISEASES AND INSECTS OF MT. 115 pp. QUAKING ASPEN IN THE WEST AUTHORS Brytten E. Steed, PhD Part I: WOOD AND BARK Forest Entomologist BORING INSECTS USFS Forest Health Protection Missoula, MT Brytten E. Steed and David A. Burton David A. Burton Project Director Aspen Delineation Project Penryn, CA ACKNOWLEDGEMENTS Technical review, including species clarifications, were provided in part by Ian Foley, Mike Ivie, Jim LaBonte and Richard Worth. Additional reviews and comments were received from Bill Ciesla, Gregg DeNitto, Tom Eckberg, Ken Gibson, Carl Jorgensen, Jim Steed and Dan Miller. Many other colleagues gave us feedback along the way - Thank you! Special thanks to Betsy Graham whose friendship and phenomenal talents in graphics design made this production possible. Cover images (from top left clockwise): poplar borer (T. Zegler), poplar flat­ head (T. Zegler), aspen bark beetle (B. Steed), and galls from an unidentified photo by B. Steed agent (B. Steed). We thank the many contributors of photographs accessed through Bugwood, BugGuide and Moth Photographers (specific recognition in United States Department of Agriculture Figure Credits).
    [Show full text]
  • CURCULIO an International Newsletter for Curculionoidea Research Volume 53 September 2006 Featured Researcher CONTENTS Department of Biology Featured Researcher
    CURCULIO An International Newsletter for Curculionoidea Research Volume 53 September 2006 Featured Researcher CONTENTS Department of Biology Featured Researcher ............................. 1 Bjarte Jordal University of Bergen, Norway Editorial Comments .......................... 2 Research Activities ......................... 4 Past Specialists: W. H. Anderson ..... 5 ESA 2006 Report ............................... 8 Curculio-Institute .................................. 10 BToL Weevils ........................................ 11 Obituary Vadim Gratshev ..................... 12 Bulletin Board ....................................... 13 Recent Publications .............................. 14 Directory of Researchers ..................... 17 Academic Background Bachelor of Science in Biology, University of Bergen, Norway - 1993 Master of Science in Systematic Zoology, University of Bergen - 1995: "Taxonomy and ecology of beetles breeding in Cecropia (Cecropiaceae) leafstalks with special empha- sis on Scolytodes (Coleoptera: Scolytidae)" Bjarte Jordal at the University of Bergen Didactics in Natural Sciences, University of Bergen - 1996 conservation biology. I grew up on a mountain farm in the Doctor of Philosophy in Evolutionary Biology, University of western parts of Norway, with long winters and very little expo- Bergen & Harvard University - 2001: "The origin and radi- sure to insect diversity, except for blood sucking mosquitoes ation of sib-mating haplodiploid beetles (Coleoptera, Cur- and other annoyances. Therefore my narrowminded
    [Show full text]
  • 1 the RESTRUCTURING of ARTHROPOD TROPHIC RELATIONSHIPS in RESPONSE to PLANT INVASION by Adam B. Mitchell a Dissertation Submitt
    THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell 1 A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Winter 2019 © Adam B. Mitchell All Rights Reserved THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell Approved: ______________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ______________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: ______________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Douglas W. Tallamy, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Charles R. Bartlett, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Jeffery J. Buler, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Exotic Bark- and Wood-Boring Coleoptera in the United States: Recent Establishments and Interceptions1
    269 Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions1 Robert A. Haack Abstract: Summary data are given for the 25 new species of exotic bark- and wood-boring Coleoptera first reported in the continental United States between 1985 and 2005, including 2 Buprestidae (Agrilus planipennis and Agrilus prionurus), 5 Cerambycidae (Anoplophora glabripennis, Callidiellum rufipenne, Phoracantha recurva, Sybra alternans, and Tetrops praeusta), and 18 Scolytidae (Ambrosiodmus lewisi, Euwallacea fornicatus, Hylastes opacus, Hylurgops palliatus, Hylurgus ligniperda, Orthotomicus erosus, Phloeosinus armatus, Pityogenes bidentatus, Scolytus schevyrewi, Tomicus piniperda, Xyleborinus alni, Xyleborus atratus, Xyleborus glabratus, Xyleborus pelliculosus, Xyleborus pfeilii, Xyleborus seriatus, Xyleborus similis, and Xylosandrus mutilatus). In addition, summary interception data are presented for the wood-associated beetles in the families Bostrichidae, Buprestidae, Cerambycidae, Curculionidae, Lyctidae, Platypodidae, and Scolytidae, based on the USDA Animal and Plant Health Inspection Service “Port Information Network” database for plant pests intercepted at US ports of entry from 1985 to 2000. Wood-associated insects were most often intercepted on crating, followed by dunnage and pallets. The five imported products most often associated with these 8341 interceptions were tiles, machinery, marble, steel, and ironware. A significantly higher proportion of the most frequently intercepted true bark beetles
    [Show full text]