Physics Monitor

Total Page:16

File Type:pdf, Size:1020Kb

Physics Monitor Physics monitor Forerunner of millions to come. The first-ever Z decay, as seen by the UA1 detector at CERN's proton-antiproton collider in May 1983. Top, an high energy electron-positron pair, produced by the decay of a Z particle, emerges from the collision debris. Below, the clean 'lego plot' of the electron-positron pair. A decade of heavy light Ten years ago, in May 1983, the UA1 experiment led by Carlo Rubbia at CERN's proton-antiproton collider saw the first Z particle, the heavy (91 GeV) electrically neutral carrier of the weak force. The press announced the discovery of 'heavy light', a highly apt description which has unfortu­ nately fallen into disuse. The weak force comes in two varieties - one which permutes electric charges (the classic example being the beta decay of a neutron into a proton and an electron), and a neutral variant which does not. Each has its carrier particle, and both were discovered at CERN - first the charged W, in January 1983, and then the Z, a few months later. For both experiment and theory, the Z discovery was the culmination of a long and diligent quest without netic radiation. parallel in the history of modern Extending Maxwell's electromag­ physics. The missing piece of the netic unification (in quantum terms 'electroweak' jigsaw finally clicked the emission and absorption of into place, and for ever after electro- photons), the gauge theory ideas of magnetism would be firmly linked twentieth century physics culminated with the weak nuclear force. in the 1960s in the work by Sheldon It was the twentieth-century re­ Glashow, Abdus Salam and Steven make, with a much bigger cast, of the Weinberg which unified electromag- story which began in 1864 when netism with the weak force. This idea James Clerk Maxwell wrote down his had first been proposed in the 1930s four famous equations linking elec­ and had regularly resurfaced, but a tricity and magnetism. This was the successful conclusion had to wait birth of a new science - electromag- until all the necessary techniques the Gargamelle bubble chamber had netism. were firmly in place. jolted other particles in their wake. But Maxwell's equations suggested Until then, all weak interactions The Uncertainty Principle says that also that electromagnetic effects were seen to switch round electric the range of a force is inversely could be transmitted as waves charge, but the Glashow/Salam/ proportional to the mass of its carrier travelling at the speed of light. As Weinberg picture predicted a new particle. The photon, the carrier of well as light itself, a complete spec­ aspect to the weak force, the 'neutral the long range electromagnetic force, trum of wavelengths should exist. current'. In 1973 - exactly twenty is massless, but the W and Z 'radia­ Ten years later Heinrich Hertz' years ago (page 4) - this previously tion' of the short range weak force, famous experiment revealed a new, unseen mechanism was found at had to be heavy, so much so that invisible, component of electromag­ CERN. Neutrinos passing through they were out of reach of conven- CERN Courier, May 1993 1 A constant driving force in CERN's antiproton project, from inception through scientific discoveries, was Carlo Rubbia, seen here at his historic1983 stamping ground at the UA1 detector. In 1989 he became CERN's Director General. tional experiments. New techniques were needed, and the CERN proton- antiproton collider, with its huge detectors was the solution. A special session of the European Physical Society's International Conference on High Energy Physics in Geneva in 1979 marked CERN's 25th anniversary. Describing CERN science, CERN's Research Director- General at the time, Leon Van Hove, compared Hertz' discovery of electro­ magnetic radiation with what hun­ dreds of people at CERN were busy doing. 'All you have to do,' joked Van Hove, Is to replace Hertz' rudimen­ tary radiation emitter and coil detec­ tor with, respectively, the proton- antiproton collider now being constructed at CERN's 7-kilometre SPS proton synchrotron and the huge UA1 and UA2 detectors!' As well as embodying the difference between 19th-century and 20th- success, the proton-antiproton several hundred Zs, a large number century science, that big CERN achievements also prepared the when the total count at the two project also marked the dawn of a research community for the next proton-antiproton colliders at the time new era in particle physics. Building stage - colliding beam projects with was less than a thousand. Rather on Simon van der Meer's sugges­ even larger detectors, such as those than simply catching Zs, an electron- tions for beam cooling, it showed that for CERN's LEP electron-positron positron collider can be tuned to the beam gymnastics required for collider. sweep across the Z resonance. The new physics goals required careful From May 1983 to June 1989, high first glimpse of the Z profile at SLC planning and teamwork as well as energy proton-antiproton colliders suggested strongly that there are consummate skill. Physics experi­ were the only source of Zs. Fermilab only three neutrino decay channels ments broke new ground in sheer joined the hunt in 1985, when the big open for the Z. With its three quark scale and complexity, with hundreds CDF experiment captured its first pairs and three types of lepton, the of people involved in the design, events at the Tevatron collider. Standard Model looked to be capped. installation and operation of huge Meanwhile big new projects were Later that summer LEP turned on, detectors and the analysis of the taking shape. To cash in on and before the end of the year its recorded data. electroweak physics, CERN was four experiments - Aleph, Delphi, L3 With Van Hove's challenge met, the building its 27-kilometre LEP elec­ and Opal - had bagged some ten 1984 Nobel Prize for Physics was tron-positron collider, the world's first thousand Zs. The lid was sealed on awarded to Carlo Rubbia and Simon Z factory, while at Stanford the two- Standard Model particles. Since then van der Meer 'for their decisive mile linear accelerator was adapted LEP has not looked back, with the contributions to the large project to become the SLC - Stanford Linear current Z score 4.5 million. which led to the discovery of the field Collider - the world's first electron- Although out of the running for particles W and Z, the carriers of the positron linear collider. sheer numbers of Zs, the SLC has weak interaction'. In the summer of 1989 the up­ the so far unique ability to make Zs As well as being crowned with graded Mark II detector at SLC saw from polarized (spin oriented) beams, 2 CERN Courier, May 1993 All the High-Energy Physics Instruments You Wanted... BUT Couldn't Get! 4? Now in North America — for any HEP requirement call EG&G, your instant link to European excellence ... Full range of instruments from: CAEN — NIM, CAMAC, VME, High Voltage CES — VME processors/interfaces to CAMAC and FASTBUS WIENER — Crates, crates, and more crates ORTEC — NIM, CAMAC Call the HOTLINE, 800-251-9750 (USA), 800-268-2735 (Canada), or 5-568-7904 (Mexico) for INSTANT response to your every HEP need. tf^Bm lr£ju$'"B wKÊê k n mT33 wieNeR Wmm Nuklaar- eiekfronik JÊBÊ MÊÊÊÊ, W Regelungs- JMHBP CREATIVE ELECTRONIC SYSTEMS 1 'fzjj ORTEC 100 Midland Road, Oak Ridge, TN 37831-0895 U.S.A. • (615)482-4411 • Telex 6843140 EGGOKRE • Fax (615) 483-0396 60 Circle advertisement number on reader service form CERN Courier, May 1993 Ten years of searching preceded the discovery of the neutral current at CERN in 1973. providing added value to the data sample. Z physics has come a long way since May 1983. Thirty Years of Weak Neutral Currents! Twenty years ago at CERN, a new form of interaction, the neutral current, was discovered. However for initial unsuccessful attempts to detect first quark mixing theory. His talk was the preceding ten years physicists WNC at Brookhaven and CERN in followed by George Snow (Maryland) already had been searching for the 1960s and the early search for recounting early data from hyperon variants of this interaction, so a FCWNC. decays and the then new Cabibbo symposium held on February 3-5 by The absence of strange quark model. the Pacific Ocean in Santa Monica, transitions set the stage for the In 1974 came a seminal paper on California reviewed a total of thirty introduction of a fourth quark charm by Ben Lee, Marie K. Gaillard years of neutral current research. ('charm') - the GIM mechanism - and and Jon Rosner. Two of the authors The meeting began with an over­ the subsequent emergence of the were at Santa Monica: Marie Gaillard view of the development of the Standard Model. (Berkeley) described a model of understanding of weak interactions The era of the WNC discovery in strong WW interactions, while Jon from the 1930s to 1950s. Laurie 1973 was described by science Rosner (Chicago) spoke on the Brown (Northwestern) led this discus­ historian Peter Galison (Harvard). current status of mass constraints on sion, which was followed by a tribute Dieter Haidt (DESY) represented the the sixth ('top') quark. to the milestone accomplishments of Gargamelle Collaboration at CERN The meeting then changed direction the late Ben Lee and J.J. Sakurai credited with the discovery, while AI to discuss the implications of neutral (UCLA). Mann (Penn), representing the currents in astrophysics. David In the Weak Neutral Currents Harvard-Penn-Wisconsin-Fermilab Schramm (Chicago) and James (WNC) discovery, neutrinos were (HPWF) collaboration, put the obser­ Wilson (Livermore) explained how seen to interact with target particles vations in the context of Fermilab's supernovae explode, while George but still continued on their way as appearance on the physics scene, Fuller of San Diego looked at how neutrinos.
Recommended publications
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]
  • De Nobelprijzen Komen Eraan!
    De Nobelprijzen komen eraan! De Nobelprijzen komen eraan! In de loop van volgende week worden de Nobelprijswinnaars van dit jaar aangekondigd. Daarna weten we wie in december deze felbegeerde prijzen in ontvangst mogen gaan nemen. De Nobelprijzen zijn wellicht de meest prestigieuze en bekende academische onderscheidingen ter wereld, maar waarom eigenlijk? Hoe zijn de prijzen ontstaan, en wie was hun grondlegger, Alfred Nobel? Afbeelding 1. Alfred Nobel.Alfred Nobel (1833-1896) was de grondlegger van de Nobelprijzen. Volgende week is de jaarlijkse aankondiging van de prijswinnaard. Alfred Nobel Alfred Nobel was een belangrijke negentiende-eeuwse Zweedse scheikundige en uitvinder. Hij werd geboren in Stockholm in 1833 in een gezin met acht kinderen. Zijn vader, Immanuel Nobel, was een werktuigkundige en uitvinder die succesvol was met het maken van wapens en stoommotoren. Immanuel wou dat zijn zonen zijn bedrijf zouden overnemen en stuurde Alfred daarom op een twee jaar durende reis naar onder andere Duitsland, Frankrijk en de Verenigde Staten, om te leren over chemische werktuigbouwkunde. In Parijs ontmoette bron: https://www.quantumuniverse.nl/de-nobelprijzen-komen-eraan Pagina 1 van 5 De Nobelprijzen komen eraan! Alfred de Italiaanse scheikundige Ascanio Sobrero, die drie jaar eerder het explosief nitroglycerine had ontdekt. Nitroglycerine had een veel grotere explosieve kracht dan het buskruit, maar was ook veel gevaarlijker om te gebruiken omdat het instabiel is. Alfred raakte geinteresseerd in nitroglycerine en hoe het gebruikt kon worden voor commerciele doeleinden, en ging daarom werken aan de stabiliteit en veiligheid van de stof. Een makkelijk project was dit niet, en meerdere malen ging het flink mis.
    [Show full text]
  • The 1984 Nobel Prize in Physics Goes to Carlo Rubbia and Simon Vm Der Meer: R
    arrent Comments” EUGENE GARFIELD INSTITUTE FOR SCIENTIFIC INFORMATION* 3501 MARKET ST,, PHILADELPHIA, PA !9104 The 1984 Nobel Prize in Physics Goes to Carlo Rubbia and Simon vm der Meer: R. Bruce Merrifield Is Awarded the Chemistry Prize I Number 46 November 18, 1985 Last week we reviewed the 1984 Nobel Rubbia, van der Meer, and the hun- laureates in medicine: immunologists dreds of scientists and technicians at Niels K. Jerne, Georges J.F. Kohler, and CERN were seeking the ultimate confir- C6sar Milstein. 1 In this week’s essay the mation of what is known as the electro- prizewinners in physics and chemistry weak theory. Thk theory states that two are discussed. of the fundamental forces—electromag- The 1984 physics prize was shared by netism and the weak force-are actually Carlo Rubbia, Harvard University and facets of the same phenomenon. The the European Center for Nuclear Re- 1979 Nobel Prize in physics was shared search (CERN), Geneva, Switzerland, by Sheldon Glashow and Steven Wein- and Simon van der Meer, also of CERN. berg, Harvard, and Abdus Salam, Impe- The Nobel committee honored “their rial College of London, for their contri- decisive contributions.. which led to the butions to the eiectroweak theory. I dk- discovery of the field particles W and Z, cussed their work in my examination of communicators of the weak interac- the 1979 Nobel Iaureates.s tion. ”z The 1984 Nobel Prize in chemis- The daunting task facing the scientists try was awarded to R. Bruce Mertileld, at CERN was to find evidence of the sub- Rockefeller University, New York, for atomic exchange particles that commu- his development of a “simple and in- nicate the weak force.
    [Show full text]
  • Standard Model of Particle Physics, Or Beyond?
    Standard Model of Particle Physics, or Beyond? Mariano Quir´os High Energy Phys. Inst., BCN (Spain) ICTP-SAIFR, November 13th, 2019 Outline The outline of this colloquium is I Standard Model: reminder I Electroweak interactions I Strong interactions I The Higgs sector I Experimental successes I Theoretical and observational drawbacks I Beyond the Standard Model I Supersymmetry I Large extra dimensions I Warped extra dimensions/composite Higgs I Concluding remarks Disclaimer: I will not discuss any technical details. With my apologies to my theorist (and experimental) colleagues The Standard Model: reminder I The knowledge of the Standard Model of strong and electroweak interactions requires (as any other physical theory) the knowledge of I The elementary particles or fields (the characters of the play) I How particles interact (their behavior) The characters of the play I Quarks: spin-1/2 fermions I Leptons: spin-1/2 fermions I Higgs boson: spin-0 boson I Carriers of the interactions: spin-1 (gauge) bosons I All these particles have already been discovered and their mass, spin, and charge measured \More in detail the characters of the play" - Everybody knows the Periodic Table of the Elements - Compare elementary particles with some (of course composite) very heavy nuclei What are the interactions between the elementary building blocks of the Standard Model? I Interactions are governed by a symmetry principle I The more symmetric the theory the more couplings are related (the less of them they are) and the more predictive it is Strong interactions:
    [Show full text]
  • James Chadwick and E.S
    What is the Universe Made Of? Atoms - Electrons Nucleus - Nucleons Antiparticles And ... http://www.parentcompany.com/creation_explanation/cx6a.htm What Holds it Together? Gravitational Force Electromagnetic Force Strong Force Weak Force Timeline - Ancient 624-547 B.C. Thales of Miletus - water is the basic substance, knew attractive power of magnets and rubbed amber. 580-500 B.C. Pythagoras - Earth spherical, sought mathematical understanding of universe. 500-428 B.C. Anaxagoras changes in matter due to different orderings of indivisible particles (law of the conservation of matter) 484-424 B.C. Empedocles reduced indivisible particles into four elements: earth, air, fire, and water. 460-370 B.C. Democritus All matter is made of indivisible particles called atoms. 384-322 B.C. Aristotle formalized the gathering of scientific knowledge. 310-230 B.C. Aristarchus describes a cosmology identical to that of Copernicus. 287-212 B.C. Archimedes provided the foundations of hydrostatics. 70-147 AD Ptolemy of Alexandria collected the optical knowledge, theory of planetary motion. 1214-1294 AD Roger Bacon To learn the secrets of nature we must first observe. 1473-1543 AD Nicholaus Copernicus The earth revolves around the sun Timeline – Classical Physics 1564-1642 Galileo Galilei - scientifically deduced theories. 1546-1601, Tycho Brahe accurate celestial data to support Copernican system. 1571-1630, Johannes Kepler. theory of elliptical planetary motion 1642-1727 Sir Isaac Newton laws of mechanics explain motion, gravity . 1773-1829 Thomas Young - the wave theory of light and light interference. 1791-1867 Michael Faraday - the electric motor, and electromagnetic induction, electricity and magnetism are related. electrolysis, conservation of energy.
    [Show full text]
  • INMUNOTERAPIA CONTRA EL CÁNCER ESPECIAL Inmunoterapia Contra El Cáncer
    ESPECIAL INMUNOTERAPIA CONTRA EL CÁNCER ESPECIAL Inmunoterapia contra el cáncer CONTENIDO Una selección de nuestros mejores artículos sobre las distintas estrategias de inmunoterapia contra el cáncer. Las defensas contra el cáncer El científico paciente Karen Weintraub Katherine Harmon Investigación y Ciencia, junio 2016 Investigación y Ciencia, octubre 2012 Desactivar el cáncer Un interruptor Jedd D. Wolchok Investigación y Ciencia, julio 2014 para la terapia génica Jim Kozubek Investigación y Ciencia, mayo 2016 Una nueva arma contra el cáncer Viroterapia contra el cáncer Avery D. Posey Jr., Carl H. June y Bruce L. Levine Douglas J. Mahoney, David F. Stojdl y Gordon Laird Investigación y Ciencia, mayo 2017 Investigación y Ciencia, enero 2015 Vacunas contra el cáncer Inmunoterapia contra el cáncer Eric Von Hofe Lloyd J. Old Investigación y Ciencia, diciembre 2011 Investigación y Ciencia, noviembre 1996 EDITA Prensa Científica, S.A. Muntaner, 339 pral. 1a, 08021 Barcelona (España) [email protected] www.investigacionyciencia.es Copyright © Prensa Científica, S.A. y Scientific American, una división de Nature America, Inc. ESPECIAL n.o 36 ISSN: 2385-5657 En portada: iStock/royaltystockphoto | Imagen superior: iStock/man_at_mouse Takaaki Kajita Angus Deaton Paul Modrich Arthur B. McDonald Shuji Nakamura May-Britt Moser Edvard I. Moser Michael Levitt James E. Rothman Martin KarplusMÁS David DE J. 100 Wineland PREMIOS Serge Haroche NÓBEL J. B. Gurdon Adam G.han Riess explicado André K. Geim sus hallazgos Carol W. Greider en Jack W. Szostak E. H. Blackburn W. S. Boyle Yoichiro Nambu Luc MontagnierInvestigación Mario R. Capecchi y Ciencia Eric Maskin Roger D. Kornberg John Hall Theodor W.
    [Show full text]
  • Symposium Celebrating CERN's Discoveries and Looking Into the Future
    CERN–EP–2003–073 CERN–TH–2003–281 December 1st, 2003 Proceedings Symposium celebrating the Anniversary of CERN’s Discoveries and a Look into the Future 111999777333::: NNNeeeuuutttrrraaalll CCCuuurrrrrreeennntttsss 111999888333::: WWW±±± &&& ZZZ000 BBBooosssooonnnsss Tuesday 16 September 2003 CERN, Geneva, Switzerland Editors: Roger Cashmore, Luciano Maiani & Jean-Pierre Revol Table of contents Table of contents 2 Programme of the Symposium 4 Foreword (L. Maiani) 7 Acknowledgements 8 Selected Photographs of the Event 9 Contributions: Welcome (L. Maiani) 13 The Making of the Standard Model (S. Weinberg) 16 CERN’s Contribution to Accelerators and Beams (G. Brianti) 30 The Discovery of Neutral Currents (D. Haidt) 44 The Discovery of the W & Z, a personal recollection (P. Darriulat) 57 W & Z Physics at LEP (P. Zerwas) 70 Physics at the LHC (J. Ellis) 85 Challenges of the LHC: – the accelerator challenge (L. Evans) 96 – the detector challenge (J. Engelen) 103 – the computing challenge (P. Messina) 110 Particle Detectors and Society (G. Charpak) 126 The future for CERN (L. Maiani) 136 – 2 – Table of contents (cont.) Panel discussion on the Future of Particle Physics (chaired by Carlo Rubbia) 145 Participants: Robert Aymar, Georges Charpak, Pierre Darriulat, Luciano Maiani, Simon van der Meer, Lev Okun, Donald Perkins, Carlo Rubbia, Martinus Veltman, and Steven Weinberg. Statements from the floor by: Fabiola Gianotti, Ignatios Antoniadis, S. Glashow, H. Schopper, C. Llewellyn Smith, V. Telegdi, G. Bellettini, and V. Soergel. Additional contributions: Comment on the occasion (S. L. Glashow) 174 Comment on Perturbative QCD in early CERN experiments (D. H. Perkins) 175 Personal remarks on the discovery of Neutral Currents (A.
    [Show full text]
  • Jan/Feb 2015
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 5 N UMBER 1 J ANUARY /F EBRUARY 2 0 1 5 CERN Courier – digital edition Welcome to the digital edition of the January/February 2015 issue of CERN Courier. CMS and the The coming year at CERN will see the restart of the LHC for Run 2. As the meticulous preparations for running the machine at a new high energy near their end on all fronts, the LHC experiment collaborations continue LHC Run 1 legacy to glean as much new knowledge as possible from the Run 1 data. Other labs are also working towards a bright future, for example at TRIUMF in Canada, where a new flagship facility for research with rare isotopes is taking shape. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. TRIUMF TRIBUTE CERN & Canada’s new Emilio Picasso and research facility his enthusiasm SOCIETY EDITOR: CHRISTINE SUTTON, CERN for rare isotopes for physics The thinking behind DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p26 p19 a new foundation p50 CERNCOURIER www. V OLUME 5 5 N UMBER 1 J AARYN U /F EBRUARY 2 0 1 5 CERN Courier January/February 2015 Contents 4 COMPLETE SOLUTIONS Covering current developments in high-energy Which do you want to engage? physics and related fi elds worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affi liated with CERN, and to their personnel.
    [Show full text]
  • Simon Van Der Meer (1925–2011) Engineer Whose Invention Enabled the Discovery of the W and Z Particles
    COMMENT OBITUARY OBITUARY COMMENT Simon van der Meer (1925–2011) Engineer whose invention enabled the discovery of the W and Z particles. imon van der Meer was one of the obey the theorem of the French mathema- the particles back on course. This very handful of truly exceptional people tician Joseph Liouville, and behave like an subtle form of compression of the beam does who contributed to making the Euro- incompressible fluid. In other words, if the not violate the Liouville theorem. Indeed, Spean Organization for Nuclear Research beam is squashed at one end, the distribu- through the synchronized use of a pick-up (CERN) the world’s premier laboratory in tion of particles will bulge out somewhere and a kicker, the very tiny elementary vol- elementary particle physics. His invention of else along its length. Beams of fast-moving umes around which a particle is present stochastic cooling offered a means to nudge electrons and positrons, their antiparticles, are simply moved away from those around protons and their antimatter equivalents into disobey this rule because they emit a form which there are no particles. The density of tightly focused beams, paving the way for the of radiation; in essence, the beams ‘cool’ particles seems to increase simply because discovery of the W and Z particles — two naturally. But in the case of the more mas- the voids have been pushed to the side. fundamental constituents of matter. sive particle beams, the Liouville theorem The approach was originally Van der Meer, who died on 4 March, studied kicks in. This presents a significant obstacle applied to beams of protons, where the technical physics at the University of stochastic cooling effect was visible Technology in Delft, the Netherlands, but very small because the number of from 1945, at a time when Dutch uni- particles in the beams was very large.
    [Show full text]
  • Talk CAS 2019 Accelerators & Discoveries.Pdf
    Particle accelerators, instruments of discovery in physics Philippe Lebrun Director, Joint Universities Accelerator School CAS Vysoke (High Tatra), 9 September 2019 Foreword • The aim of this lecture is to illustrate the joint evolution of elementary particle physics and their essential tools, the particle accelerators, cross-fertilized by the «pull» of the former and the «push» of the latter, throughout the 20th and beginning of the 21st century • The presentation approximately follows chronological order, though with some necessary deviations imposed by the non-linear developments in the history of science and technology • Not all the major discoveries in particle physics, and not all the major high- energy accelerators are discussed; rather, the lecture addresses a selection of salient cases deemed of interest to the purpose of the discussion • The lecture is targeted to students of accelerator physics and technology, not of particle physics Ph. Lebrun CAS 2019 Vysoke (High Tatra) 2 Isaac Newton Opticks (1704) There are agents in Nature able to make the particles of bodies stick together by very strong attractions. And it is the business of Experimental Philosophy to find them out. The smallest particles of matter may cohere by the strongest attractions. Ph. Lebrun CAS 2019 Vysoke (High Tatra) 3 John Dalton A New System of Chemical Philosophy (1808) John Dalton introduces atoms to explain why elements always react in ratios of small whole numbers Chemical analysis and synthesis go no farther than to the separation of particles one from another, and to their reunion. No new creation or destruction of matter is within the reach of chemical agency… All the changes we can produce consist in separating particles that are in a state of cohesion or combination, and joining those that were previously at a distance Ph.
    [Show full text]
  • Deconstruction: Standard Model Discoveries
    deconstruction: standard model discoveries elementary types of particles form the basis for the theoretical framework known as the Sixteen Standard Model of fundamental particles and forces. J.J. Thomson discovered the electron in 1897, while scientists at Fermilab saw the first direct interaction of a tau neutrino with matter less than 10 years ago. This graphic names the 16 particle types and shows when and where they were discovered. These particles also exist in the form of antimatter particles, with the same mass and the opposite electric charge. Together, they account for about 300 subatomic particles observed in experiments so far. The Standard Model also predicts the Higgs boson, which still eludes experimental detection. Experiments at Fermilab and CERN could see the first signals for this particle in the next couple of years. Other funda- mental particles must exist, too. The Standard Model does not account for dark matter, which appears to make up 83 percent of all matter in the universe. 1968: SLAC 1974: Brookhaven & SLAC 1995: Fermilab 1979: DESY u c t g up quark charm quark top quark gluon 1968: SLAC 1947: Manchester University 1977: Fermilab 1923: Washington University* d s b γ down quark strange quark bottom quark photon 1956: Savannah River Plant 1962: Brookhaven 2000: Fermilab 1983: CERN νe νμ ντ W electron neutrino muon neutrino tau neutrino W boson 1897: Cavendish Laboratory 1937 : Caltech and Harvard 1976: SLAC 1983: CERN e μ τ Z electron muon tau Z boson *Scientists suspected for several hundred years that light consists of particles. Many experiments and theoretical explana- tions have led to the discovery of the photon, which explains both wave and particle properties of light.
    [Show full text]