Heads up on Hypotonia Understanding the Complexities of Hypotonia & Strategies for Treatment by Barbara Hypes P.T

Total Page:16

File Type:pdf, Size:1020Kb

Heads up on Hypotonia Understanding the Complexities of Hypotonia & Strategies for Treatment by Barbara Hypes P.T Heads Up On Hypotonia Understanding the Complexities of Hypotonia & Strategies for Treatment By Barbara Hypes P.T. Chapter 5. Strategies List for Treating Hypotonia? 118 • Alignment 119 • Strengthening 129 • Prevent Joint Deformity 139 • Sensory Experiences 142 • Range of Motion 148 • Visual Input 152 • Increase Function and Independence 159 • Personality 161 • Motor Planning 168 • Chapter Five References 175 Chapter 6. Therapy Tools 176 • Toys and Vibrators 176 • Balls 177 • Treadmills/LiteGait 182 • Immobilizers 184 • Electrical Stimulation 185 • Swings, Climbers, and Mobile Surfaces 186 • Wraps 194 • Ambulatory Assists and Devices 195 • Chapter Six References 202 Chapter 7. Common Compensations & Secondary Complications Seen in Hypotonia? 204 • Considering Orthotics 204 • Tip Toe Walking 207 • W-Sitting 211 • Poor Abdominal Alignment 214 • Poor or Absent Development of Head Control 220 • Chapter Seven References 231 vi “Believe nothing, no matter where you read it or who has said it, not even if I have said it, unless it agrees with your own reason and your own common sense.” -buddha Chapter 1: Introduction Frequently Asked Questions • What is Hypotonia? In a 2005 Pediatric Physical Therapy magazine article, Martin et al concluded, “A preliminary characterization of hypotonia indicates that PT’s and OT’s concur that a child with hypotonia displays decreased strength, decreased activity tolerance, delayed motor skill development, rounded shoulder posture with a tendency to lean onto supports, hypermobile joints, increased flexibility, and poor attention and motivation.”1 This conclusion is consistent with what I observe to be true about the way therapists interpret and perceive the delays presented by children who have hypotonia. However, it is not a good description of what I believe are the major challenges of children who present with hypotonia, and it does not begin to explain the complexities of what doctors and therapists call HYPOTONIA. So what is hypotonia? In my opinion, hypotonia is characterized by a depressed ability to organize and use the motor system against the pull of gravity. The person who has hypotonia appears to be collapsed into gravity. This diagnosis typically is determined based on the appearance of the floppy posturing along with weakness, abnormal reflex responses and ligamentous laxity. Many times muscle biopsies, MRI’s, EEG’s and other testing may indicate no recognizable injury to the muscles or brain to explain this apparent collapsed motor control. 5 Experience draws me to speculate that the missing component is a global neurological ability to organize the information from all systems adequately to generate and support typical antigravity motor control. Therefore, therapists often observe that the person who presents with hypotonia has both a primary motor impairment that is recognizable, as well as, or stemming from, a primary neurological organization and integration impairment. If you cannot feel your body or understand how all the parts are connected, you not only find it difficult to move, you may also lack the desire or drive to move. In their 2007 follow- up to the above referrenced article, my interpretation is that Martin et al support this global impairment theory in the introduction stating: “Many disorders, including neurological diseases, endocrine and systemic metabolic diseases, Down syndrome, …Prader-Willi syndrome, cerebral palsy…have hypotonia as a component of the clinical presentation. This partial list of medical diagnoses and disorders that are associated with hypotonia represents a wide variety of etiologies, including central nervous system pathology, peripheral nerve pathology, metabolic disturbances, and hypotonia of unknown etiology.”2 The motor delay of hypotonia may cause a child to feel heavy to carry and actually feel like she/he may slip through your arms. They may have difficulty moving every part of their body or only move with big bursts commonly described as an all-or-none response. The child presents as being very passive, then suddenly appears to have a surge of activation causing them to move an arm or shift or even knock themselves over. When they are positioned and you look at them, they may look poorly aligned as if the bones are not stacked appropriately to look comfortable. The child is heavy to carry because he has not learned how to turn on his muscles to help hold his weight against gravity while he is being carried, thus making him feel lighter. Hypotonic children slip through your hands because their muscles are not active enough to hold the tension as a base for your grasp. They try to move and find it to be difficult so they learn to generate a burst of effort, like we would do when we try to move the refrigerator. The weight of their extremities is as overwhelming to their posture as that refrigerator is to most of us. The burst occurs when they have generated adequate muscle activity to lift or move against gravity. Secondary to their decreased movement experiences, they lack the awareness of how far or fast to lift or move and their lack of consistent experiences further contributes to their inability to grade and control the movement they can initiate. Unlike children with dystonia, when they are assisted to consistently generate muscle activation and holding, people who have hypotonia can learn to hold using graded control and co-activation instead of continuing to rely on their poorly graded bursts to move their extremities or trunk. When they are in supportive positions, the people who have hypotonia may become still and actually sink into the support because they can feel themselves stacked against the surface, and they feel the stablity being provided by the supportive equipment. The processing delay of hypotonia may cause children who have hypotonia to be very irritable and easily upset. Or, they may be “too good.” Babies that are “too good” fail to complain or fuss even to meet basic needs like satisfying hunger. They appear to be content to stay in one spot and look around. They like routines and will actually train 6 their parent to treat them in ways that are routine and predictable so they do not have to experience novelty. They may almost seem to disappear or shut down when things are out of their routine (birthday parties and holidays). Or, they may become overwhelmed and inconsolable so that they can be removed from all the unpredictable newness. The irritability may be a communication that the world is coming at them too fast and out of control for them to be able to decipher any of the details. The “too good” behavior is actually the child slightly shutting down so that she/he can tune out the overwhelming information. But children with hypotonia aren’t necessarily shutting out everything and actually can learn in an apparent withdrawn space, as long as they are not avoiding and turning away the input. Routines are their survival mechanism and they will fuss and complain until caregivers figure out that routine is what makes their children happy and able to function. Although it is great that children can calm down once rigid routines are followed, they begin to be deprived of variety in all kinds of daily tasks because they are demanding rigid predictability. This begins to lead to decreased opportunity for learning at a very young age. When a child can not tolerate being in family gatherings, extended family may resent the child for making it impossible for the parents to attend and they may feel he is spoiled, or a behavior problem even from a very young age. This is true even when the parent tries to explain that the child is obviously overwhelmed by the chaos of family gatherings. One of our most important jobs as infants, besides eating and keeping our airway clear, is modulating state. Infants must learn to move smoothly between being asleep, awake, aware and alert. When they are too unorganized to smoothly make these transitions they may be demonstrating a processing deficit or challenge. When the world is overwhelming in this way, some individuals will withdraw and this posture may look floppy, so these children may initially be identified as having hypotonia. In this example, the motor system is not the primary reason these individuals appear to be collasped in their posture. Instead, their poorly organized or integrated sensory system is unable to make sense of their surroundings causing them to withdraw. These are people who present with hypotonia secondary to sensory system impairments. This book is presented in a effort to define hypotonia as a major sensory and/or motor challenge that can affect development on a continuum, having a mild to profound impact on the individual’s ability to move and interact. It not only affects the motor system but has repercusions on breathing, learning, G-I functioning, visual motor development, independence and accessing the world. It also affects the sensory systems and can affect a persons sense of place and comfort in her/his home, community and in the world. When a person receives no help or is pushed when she should be supported and protected, it can even affect her willingness to stay present and try to overcome the complexities of interpreting the information surrounding her. 7 Fig. 17 Fig. 18 Fig. 19 In Figure 17, the child is able to lift her arms and head using good alignment in the neck and shoulders because the girdle of proximal control is adequate to allow this lift when the resistance of gravity is minimal. In Figure 18, the head is lifted laterally and the child is using co-activation in her neck and left shoulder to maintain this aligned lift now that the resistance of gravity is stronger. In Figure 19, the child is horizontal to the resistance of gravity and her proximal stability is overwhelmed by the weight of her head staying lifted against the pull of gravity.
Recommended publications
  • Hypotonia and Lethargy in a Two-Day-Old Male Infant Adrienne H
    Hypotonia and Lethargy in a Two-Day-Old Male Infant Adrienne H. Long, MD, PhD,a,b Jennifer G. Fiore, MD,a,b Riaz Gillani, MD,a,b Laurie M. Douglass, MD,c Alan M. Fujii, MD,d Jodi D. Hoffman, MDe A 2-day old term male infant was found to be hypotonic and minimally abstract reactive during routine nursing care in the newborn nursery. At 40 hours of life, he was hypoglycemic and had intermittent desaturations to 70%. His mother had an unremarkable pregnancy and spontaneous vaginal delivery. The mother’s prenatal serology results were negative for infectious risk factors. Apgar scores were 9 at 1 and 5 minutes of life. On day 1 of life, he fed, stooled, and voided well. Our expert panel discusses the differential diagnosis of hypotonia in a neonate, offers diagnostic and management recommendations, and discusses the final diagnosis. DRS LONG, FIORE, AND GILLANI, birth weight was 3.4 kg (56th PEDIATRIC RESIDENTS percentile), length was 52 cm (87th aDepartment of Medicine, Boston Children’s Hospital, d e percentile), and head circumference Boston, Massachusetts; and Neonatology Section, Medical A 2-day old male infant born at Genetics Section, cDivision of Child Neurology, and 38 weeks and 4 days was found to be was 33 cm (12th percentile). His bDepartment of Pediatrics, Boston Medical Center, Boston, limp and minimally reactive during physical examination at birth was Massachusetts routine care in the newborn nursery. normal for gestational age, with Drs Long, Fiore, and Gillani conceptualized, drafted, Just 5 hours before, he had an appropriate neurologic, cardiac, and and edited the manuscript; Drs Douglass, Fujii, and appropriate neurologic status when respiratory components.
    [Show full text]
  • Hypotonia Surestep Product Catalog Page 29 in Step with Pediatric Hypotonia
    SPECIAL EDUCATIONAL SERIES DIAGNOSTIC INSIGHTS ANALYZING GAIT CHANGES GROSS MOTOR SKILLS ORTHOTIC MANAGEMENT CLI N I CAL CASE STUDIES Sponsored by an educational grant from: In Step With Pediatric Hypotonia SureStep Product Catalog Page 29 In Step With Pediatric Hypotonia Contents VIEWPOINT FROM THE EDITOR: An Unexpected Path, Mobility and More an Invaluable Perspective At the most basic level, mobility is about get- PAGE 3 ting from point A to point B. But, for many children with hypotonia, it’s about so much 4 more. FEATURES It’s about independence. It’s about con- fidence. It’s about maintaining strength, fit- ness, and healthy bones. It’s about not being Understanding Hypotonia excluded from activities enjoyed by their PAGE 4 typically developing peers. And improved mobility may have even Gait: The Cornerstone more benefits in those children whose hy- potonia is associated with social and behav- of Intervention ioral developmental delays. New research PAGE 8 has identified an association between motor skills and sociobehavioral milestones in chil- 8 The Importance of Gross dren with autism spectrum disorder, who often present with hypotonia (see “The Im- Motor Skills portance of Gross Motor Skills,” page 12). PAGE 12 This suggests that early intervention to improve gross motor skills—including or- thotic devices and physical therapy—may Orthotic Solutions for also help certain children interact more Children with Hypotonia comfortably with others. That won’t come as PAGE 16 a surprise to the clinicians and parents who 12 have personally seen it happen. This special issue is filled with evidence- Orthotic Success Stories: based information and personal success sto- Four Cases in a Series ries illustrating how effective interventions can enhance mobility in children with hy- PAGE 20 potonia.
    [Show full text]
  • IUGR: Intrauterine Growth Restriction
    Table S1. Clinical features observed in the 6 patients described so far harboring pathogenic variants in FOXRED1. Evolutionary symptoms Variants Prenatal Onset Onset clinical Patient Lactic/ Survival FOXRED1 period age symptoms Muscular Psychomotor Metabolic Epilepsy MRI Visual Respiratory Cardiovascular Others tone development acidosis IUGR 2m Hypotonia Yes (+++) Yes ↓ Normal Latent Bronchospasm Normal AEP normal IQ: 48 Alive c.920G>A Development refractary (2m,4y,7y3m) strabismus of episodes in (15y) 1 (p.Gly307Glu) / al delay right eye infant c.733+1G>A c.920G>A NI 4y Clumsiness With No Normal Normal Normal Normal Normal Learning IQ: 99 Alive 2 (p.Gly307Glu) / exercise (+) disorders (19y) c.733+1G>A - Neonatal Premature; No (only ↑ Yes ↓ Decreased Normal Normal Normal Normal Gradually loss Alive period Hypoglycemia lactate in attenuation in of motor (22y)) Congenital LCR) the putamen skills; c.694C>T lactic acidosis and cerebellar wheelchair; (p.Gln232X) / 3 atrophy (6y) no expressive c.1289A>G language; 18 (p.Asn430Ser) understands simple commands NI Neonatal Truncal Yes Yes ↓ Delayed Eye Normal Mild non- Persistent Psychomotor Alive period hypotonia myelination movements obstructive left hepatomegaly retardation (10y) c.1054 C>T Poor feeding ventricular have always ventricular (p.Arg352Trp) / dilatation; been roving hypertrophy 4 c.1054 C>T abnormal signal bilateral optic (p.Arg352Trp) 19 in the thalami atrophy and basal ganglia (8m) c.1308G>A ND ND ND ND Yes NA NA NA NA NA NA Severe Alive (p.Val421Met) / psychomotor (¿) 5 c.1308G>A retardation (p.Val421Met)20 IUGR; Neonatal Congenital Yes Yes ↓ Large -- Persistent Dilated right - - Death (3 c.612_615dupA Cerebral period lactic periventricular severe ventricle and months) CTG intraventric acidosis.
    [Show full text]
  • Cerebral Hypotonia by Mihee Bay MD (Dr
    Cerebral hypotonia By Mihee Bay MD (Dr. Bay of Kennedy Krieger Institute and Johns Hopkins School of Medicine has no relevant financial relationships to disclose.) Originally released July 12, 2006; last updated February 1, 2016; expires February 1, 2019 Introduction This article includes discussion of cerebral hypotonia, central hypotonia, essential hypotonia, benign congenital hypotonia, and floppy infant. The foregoing terms may include synonyms, similar disorders, variations in usage, and abbreviations. Overview Hypotonia is a clinical manifestation of numerous diseases affecting the central and/or peripheral motor nervous system. The key to accurate diagnosis involves integral steps of evaluation that include a detailed history, examination, and diagnostic tests. “Cerebral” (or central) hypotonia implies pathogenesis from abnormalities from the central nervous system, and related causal disorders include cerebral dysgenesis and genetic or metabolic disorders. Patients with central hypotonia generally have hypotonia without associated weakness, in contrast to the peripheral (lower motor neuron) causes, which typically produce both hypotonia and muscle weakness. Hypotonia is a clinical manifestation of over 500 genetic disorders; thus, a logical, stepwise approach to diagnosis is essential. With recent advances in the field of genetic testing, diagnostic yield will undoubtedly improve. There is no cure, but treatment includes supportive therapies, such as physical and occupational therapy, and diagnosis-specific management. Key points • Hypotonia is reduced tension or resistance of passive range of motion. • The first step in the evaluation of a child with hypotonia is localization to the central (“cerebral”) or peripheral nervous system, or both. • Central hypotonia is more likely to be noted axially with normal strength and hyperactive to normal deep tendon reflexes.
    [Show full text]
  • Mean Platelet Volume in Asymptomatic Chorioamnionitis-Exposed Infants
    www.jpnim.com Open Access eISSN: 2281-0692 Journal of Pediatric and Neonatal Individualized Medicine 2021;10(1):e100132 doi: 10.7363/100132 Received: 2019 Aug 22; revised: 2020 Jan 26; accepted: 2020 Feb 02; published online: 2020 Dec 28 Original article Mean platelet volume in asymptomatic chorioamnionitis- exposed infants. A retrospective case-control study Atef Alshafei, Moustafa Hassan, Yaser El saba, Anwar Khan, Mahmoud Ahmed Neonatology Section, Pediatric Department, Dubai Hospital, Dubai, UAE Abstract Introduction: Maternal chorioamnionitis (CA) is a serious condition causing several neonatal morbidities and long-term neurodevelopmental sequelae in exposed infants. Current guidelines still recommend admission, laboratory evaluation, and antibiotic administration to all CA-exposed infants. The incidence of early-onset neonatal sepsis (EOS) is currently low, owing to the routine intrapartum antibiotic administration to mothers identified to be at risk of developing CA. New diagnostic tools for early diagnosis of sepsis in apparently healthy infants exposed to maternal CA are needed. Previous studies showed that mean platelet volume (MPV) is evolving as a potential inflammatory marker of neonatal sepsis. We aimed to study whether MPV can be used as an adjuvant diagnostic tool for EOS in asymptomatic CA-exposed infants. Objective: To evaluate the role of MPV as an adjuvant biomarker of EOS in cases of asymptomatic CA-exposed infants. Design: Retrospective case-control study. Setting: A tertiary care Neonatal Intensive Care Unit (NICU). Patients: Asymptomatic CA-exposed infants 37-40 weeks of gestation admitted between May 2016 and April 2019 to the NICU of Dubai Hospital, UAE. Results: A total of 1,300 infants were admitted to NICU during the study period.
    [Show full text]
  • Long-Term Outcome After Neonatal Meconium Obstruction
    Long-term Outcome After Neonatal Meconium Obstruction Julie R. Fuchs, MD, and Jacob C. Langer, MD ABSTRACT. Objective. It is unclear whether children meconium ileus and those undergoing resection or enter- with cystic fibrosis (CF) who present with neonatal ostomy. Patients with meconium obstruction who do not meconium ileus have a different long-term outcome from have CF have an excellent long-term prognosis. This those presenting later in childhood with pulmonary com- information will be useful in counseling the families of plications or failure to thrive. We examined a cohort of infants presenting with neonatal meconium obstruction. patients with meconium ileus, and compared their long- Pediatrics 1998;101(4). URL: http://www.pediatrics.org/ term outcome with children who had CF without meco- cgi/content/full/101/4/e7; cystic fibrosis, meconium ileus, nium ileus and neonates who had meconium obstruction meconium plug syndrome. without CF (meconium plug syndrome). Study Design. Comparative study using retrospective and follow-up interview data. ABBREVIATION. CF, cystic fibrosis. Patients. Group 1 consisted of 35 surviving CF pa- tients who presented with meconium ileus between 1966 econium obstruction in the neonate is a and 1992. Two control groups were also studied: 35 age- spectrum of disease that includes meco- and sex-matched CF patients without meconium ileus 1 (group 2), and 12 infants presenting with meconium plug Mnium ileus and meconium plug syndrome. syndrome during the same time period (group 3). Meconium ileus is characterized by extremely viscid, Outcome Measures. Pulmonary, gastrointestinal, nu- protein-rich inspissated meconium causing terminal tritional, and functional status were reviewed, and sur- ileal obstruction, and accounts for approximately gical complications were recorded.
    [Show full text]
  • Common Anomalies Associated To
    ISSN: 2643-3885 Muhsin. Int J Foot Ankle 2018, 2:013 Volume 2 | Issue 2 Open Access International Journal of Foot and Ankle RESEARCH ARTICLE Common Anomalies Associated To Congenital Vertical Talus: A Single Center Experience Elmas Muhsin* Check for Department of Medical Genetic, Afyon Kocatepe University, Turkey updates *Corresponding author: Elmas Muhsin, Department of Medical Genetic, Afyon Kocatepe University, Afyonkarahisar, Turkey vicular. The incidence is estimated to be one in 10,000. Abstract Approximately half of all cases (idiopathic) are associ- Background: Congenital vertical talus is defined as a foot deformity in which the calcaneus is in equinus, the talus is ated with deformity and 2-5 neuromuscular and genet- plantarflexed, and there is a rigid and irreducible dislocation ic disorders in the remaining cases. There is evidence of the talonavicular joint complex, with the navicular articu- that some isolated deformities are transmitted as an lating on the dorsolateral aspect of the talar neck. It is often autosomal dominant feature with incomplete pene- associated with systemic involvement. trance [1-4]. The deformity is also known by congenital Aims: To identify the most common anomalies accompany- “rocker-bottom” flatfoot because of its rigid deformity ing to CVT (Congenital Vertical Talus). No literature investi- gating similar clinical data was found in the literature review. with the forefoot dorsiflexed and the hindfoot plantar- Study design: CVT has a systemic effect and is accom- flexed. The term “congenital convex pes valgus” is also panied by many anomalies. At the same time as this study, frequently used. To make a definite diagnosis, it is im- anomalies were frequently found accompanying CVT.
    [Show full text]
  • Factors Associated with Low Muscle Tone and Impact of Common
    Original Article DOI: 10.7860/JCDR/2019/39551.12675 Factors Associated with Low Muscle Tone and Section Physiotherapy Impact of Common Musculoskeletal Problems on Motor Development in Preterm Infants at One Year of Corrected Age SRIVARSHA TELEDEVARA1, M RAJESWARI2, R SIVA KUMAR3, N UDAYAKUMAR4 ABSTRACT motor development. Backward multiple regression, Chi-square Introduction: Structural immaturity of muscular system in test Pearson’s correlation were used for data analysis. Preterm Infants (PTI) results in maturation related hypotonia Results: Backward multiple regression analysis showed which is found to be influenced by risk factors present at the statistically significant association of Birth weight, Gestational time of birth. Low muscle tone can lead to lower extremity Age, and Apgar score with low muscle tone in PTI (p<0.05). Chi- malalignment, abnormal positioning and loading resulting in square test was used to compare the muscle tone of PTI and FTI musculoskeletal problems that could have an impact on motor which showed that ATA of PTI was significantly higher than FTI development which is not well established. but within physiological limits (p<0.05). Pearson’s correlation Aim: This study was carried out to analyse the risk factors coefficient showed that there is statistically significant positive associated with low muscle tone in PTI and the impact of correlation between muscle tone and musculoskeletal problems common musculoskeletal problems on motor development of and a negative correlation between musculoskeletal problems PTI at 1 year of corrected age. and Gross Motor Quotient (GMQ) of PDMS 2 in PTI at 1 year of corrected age (p<0.05). Materials and Methods: This Cross sectional study was carried out in 36 PTI and 36 Full Term Infants (FTI) who were recruited Conclusion: Maturation related hypotonia carried during the first from Child Development unit and the details of risk factors were year of life brings about musculoskeletal problems which have obtained from the records.
    [Show full text]
  • WHO Recommendations on Interventions to Improve Preterm Birth Outcomes
    WHO recommendations on interventions to improve preterm birth outcomes For more information, please contact: Department of Reproductive Health and Research World Health Organization ISBN 978 92 4 150898 8 Avenue Appia 20, CH-1211 Geneva 27, Switzerland Fax: +41 22 791 4171 E-mail: [email protected] www.who.int/reproductivehealth WHO recommendations on interventions to improve preterm birth outcomes WHO Library Cataloguing-in-Publication Data WHO recommendations on interventions to improve preterm birth outcomes. Contents: Appendix: WHO recommendations on interventions to improve preterm birth outcomes: evidence base 1.Premature Birth – prevention and control. 2.Infant, Premature. 3.Infant Mortality – prevention and control. 4.Prenatal Care. 5.Infant Care. 6.Guideline. I.World Health Organization. ISBN 978 92 4 150898 8 (NLM Classifi cation: WQ 330)Contents © World Health Organization 2015 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Neonatal Hypotonia
    Neonatal Hypotonia Clinical Approach to Floppy Baby Hypotonia in the newborn is a common presenting feature of systemic illness or neurologic dysfunction at any level of the central or peripheral nervous system. It is defined as reduced resistance to passive range of motion in joints. Etiology: diverse Causes include (but are not limited to): Central Sepsis (most common) Hypoxic ischemic encephalopathy Intracranial hemorrhage Cerebral malformations Chromosomal abnormalities (e.g.Trisomy 21, Prader-Willi syndrome) Congenital infections (TORCH) Drug effects (e.g. benzodiazepines, Magnesium toxicity) Inborn errors of metabolism Endocrine: hypothyroidism Benign congenital hypotonia Spinal cord Birth trauma (especially Breech delivery) Syringomyelia Anterior Horn Cell Spinal Muscular Atrophy Neurogenic arthrogryposis Neuromuscular Myasthenia gravis (transient/ congenital) junction Infantile botulism Peripheral nerves Congenital hypomyelinating neuropathy Hereditary motor and sensory neuropathies (Dejerine-Sottas disease) Hereditary sensory and autonomic neuropathy Guillain Barre syndrome (very rare) Muscle Congenital myopathies (e.g. central core disease, Nemaline Rod myopathy, myotubular myopathy, congenital fiber type disproportion and multicore myopathy) Congenital muscular dystrophies( merosin deficient, Walker- Warburg disease, muscle-eye-brain disease, Fukuyama disease Muscular dystrophies (inc. congenital myotonic dystrophy) Metabolic myopathies Disease of Glycogen Metabolism and multisystem Acid maltase deficiency
    [Show full text]
  • Review and Hypothesis: Syndromes with Severe Intrauterine Growth
    RESEARCH REVIEW Review and Hypothesis: Syndromes With Severe Intrauterine Growth Restriction and Very Short Stature—Are They Related to the Epigenetic Mechanism(s) of Fetal Survival Involved in the Developmental Origins of Adult Health and Disease? Judith G. Hall* Departments of Medical Genetics and Pediatrics, UBC and Children’s and Women’s Health Centre of British Columbia Vancouver, British Columbia, Canada Received 4 June 2009; Accepted 29 August 2009 Diagnosing the specific type of severe intrauterine growth restriction (IUGR) that also has post-birth growth restriction How to Cite this Article: is often difficult. Eight relatively common syndromes are dis- Hall JG. 2010. Review and hypothesis: cussed identifying their unique distinguishing features, over- Syndromes with severe intrauterine growth lapping features, and those features common to all eight restriction and very short stature—are they syndromes. Many of these signs take a few years to develop and related to the epigenetic mechanism(s) of fetal the lifetime natural history of the disorders has not yet been survival involved in the developmental completely clarified. The theory behind developmental origins of origins of adult health and disease? adult health and disease suggests that there are mammalian Am J Med Genet Part A 152A:512–527. epigenetic fetal survival mechanisms that downregulate fetal growth, both in order for the fetus to survive until birth and to prepare it for a restricted extra-uterine environment, and that these mechanisms have long lasting effects on the adult health of for a restricted extra-uterine environment [Gluckman and Hanson, the individual. Silver–Russell syndrome phenotype has recently 2005; Gluckman et al., 2008].
    [Show full text]
  • AMERICAN ACADEMY of PEDIATRICS Management of Hyperbilirubinemia in the Newborn Infant 35 Or More Weeks of Gestation
    AMERICAN ACADEMY OF PEDIATRICS CLINICAL PRACTICE GUIDELINE Subcommittee on Hyperbilirubinemia Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation ABSTRACT. Jaundice occurs in most newborn infants. Hyperbilirubinemia”3 for a description of the meth- Most jaundice is benign, but because of the potential odology, questions addressed, and conclusions of toxicity of bilirubin, newborn infants must be monitored this report.) This guideline is intended for use by to identify those who might develop severe hyperbili- hospitals and pediatricians, neonatologists, family rubinemia and, in rare cases, acute bilirubin encephalop- physicians, physician assistants, and advanced prac- athy or kernicterus. The focus of this guideline is to tice nurses who treat newborn infants in the hospital reduce the incidence of severe hyperbilirubinemia and bilirubin encephalopathy while minimizing the risks of and as outpatients. A list of frequently asked ques- unintended harm such as maternal anxiety, decreased tions and answers for parents is available in English breastfeeding, and unnecessary costs or treatment. Al- and Spanish at www.aap.org/family/jaundicefaq. though kernicterus should almost always be prevent- htm. able, cases continue to occur. These guidelines provide a framework for the prevention and management of DEFINITION OF RECOMMENDATIONS hyperbilirubinemia in newborn infants of 35 or more The evidence-based approach to guideline devel- weeks of gestation. In every infant, we recommend that clinicians 1) promote and support successful breastfeed- opment requires that the evidence in support of a ing; 2) perform a systematic assessment before discharge policy be identified, appraised, and summarized and for the risk of severe hyperbilirubinemia; 3) provide that an explicit link between evidence and recom- early and focused follow-up based on the risk assess- mendations be defined.
    [Show full text]