Misiones Espaciales Misiones Que Año Nación Lanzador Síntesis De La Misión Recorrido Lo Visitaron

Total Page:16

File Type:pdf, Size:1020Kb

Misiones Espaciales Misiones Que Año Nación Lanzador Síntesis De La Misión Recorrido Lo Visitaron Una vez finalizada la Segunda Guerra Mundial, Estados Unidos y la Unión Soviética se enfrentaron ideológica y políticamente. El campo de batalla de los dos bloques fue llamado Guerra fría. Las dos super potencias se embarcaron en una carrera por la conquista del espacio en un despliegue de poderío científico, militar y tecnológico. En un comienzo los mayores éxitos fueron de la URSS pero fue EE UU el que logró llevar seres humanos a la Luna. Luego de ese suceso, pasaron varios años hasta que otros países lograron el sueño de llegar a nuestro satélite. LMiUNsiones espacAiales En la actual carrera espacial ingresan nuevos proyectos financiados de manera privada. Las misiones que tuvieron éxito en llegar a la Luna se pueden dividir en: las que sobrevolaron, las que orbitaron, las que descendieron con robots y las que lograron llevar humanos Sobrevuelos/Orbitadores: Luna | Ranger | Zond| Lunar Orbiter | Explorer | Clementine | Lunar prospector | Smart | Kaguya Selene|Chang`e| Chandrayaan| Lunar reconnaissance|Grail| Ladee Landers y Rovers: Luna 9| Surveyour|Luna13|Luna 16/20/24| Luna 17|Lunakhod|Yutu Misiones tripuladas: Apollo 8/10/11/12/14/15/16/17 Fuente: http://mars.jpl.nasa.gov/programmissions/missions/ Planetario de Buenos AiresPlanetario de la Ciudad de Buenos Aires Galileo Galilei - Av. Sarmiento y B. Roldán - Tel. 4772-9265 / 4771-6629 - e-mail: [email protected] 1/6 Misiones espaciales Misiones que año Nación Lanzador Síntesis de la misión Recorrido lo visitaron Objetivo: Impactar Sobrevoló la Luna. Luego ingresó en órbita al Sol R-7 Logros : Fue el primer vehículo en escapar de la gravedad Enero Unión terrestre. Obtuvo información sobre viento solar en el espacio entre la Tierra y Marte. Luna 1 Soviética Semyorca LUNA 1959 interplanetario. Objetivo: Sobrevolar Marzo Logros : Realizó el primer sobrevuelo lunar exitoso de USA, EEUU Juno 2 Pioner 4 1959 aunque muy lejos para tomar fotos. Luna 2 Objetivo: Impactar Alcanza la Luna e impacta Septiem Unión R-7 Logros : Fue la primera nave en alcanzar la superficie de la Luna. en Palus Putredinus entre Soviética Semyorca Mare Imbrium y Mare 1959 Serenitatis Sobrevoló la Luna. Se pierdió contacto al regreso. Octubre Objetivo: Sobrevolar y regresar Luna 3 Unión R-7 Al parecer se quemó al ingresar 1959 Soviética Semyorca Logros : Obtuvo las primeras fotografías de la cara oculta. a la atmósfera de la Tierra. Objetivo: Impactar Alcanzó la Luna e impactó Abril Atlas - Logros : Éxito parcial, la sonda se estrelló en la Luna pero por el la cara oculta EEUU Ranger IV 1962 Agena fallo de un cronómetro no envió ningún dato. 07/1964 VII-Impactó entre Mare Nubium y Ranger VII Objetivo: Impactar Mare Cognitum Atlas - Ranger VIII 02/ 1965 EEUU Logros : Transmitió miles de fotografías en los últimos minutos antes VIII-Impactó en Mare Tranquilitatis Agena de la colisión. IX-Impactó en cráter Alphonsus Ranger IX 03/ 1965 Cognitum Objetivo: Sobrevolar Luego de sobrevolar la Molniya Julio Unión Logros : Obtuvo 25 fotografías de alta calidad del lado oculto, a una sonda siguió explorando Zond III 1965 Soviética o SS-6 distancia de 9200 km. el espacio interplanetario modificado Objetivo: Alunizar Alcanzó la Luna y alunizó Molniya Logros : Primer alunizaje no tripulado. Envió las primeras imágenes en Oceanus Procellarum Enero Unión al O de crater Reiner y 1966 Soviética o SS-6 panorámicas de la superficie de la Luna. Luna 9 modificado Marius Objetivo: Orbitar Alcanzó la Luna y la orbitó Molniya Logros : Primera nave en orbitar la Luna. Obtuvo información sobre Estuvo 56 días en órbita. Marzo Unión radiación cósmica e impactos de micrometeoritos, distorsiones en el 1966 Soviética o SS-6 campo gravitatorio y datos acerca de la composición de la superficie. Luna 10 modificado Objetivo: Orbitar Alcanzó la Luna y la orbitó Molniya Luna 11 08/1966 Unión Logros : Realizó observaciones de emisión de rayos gamma y X, Soviética o SS-6 estudios de anomalías gravitacionales, radiación y concentración de Luna 12 10/1966 modificado estelas de meteoritos cerca de la Luna. Planetario de Buenos Aires 2/6 Misiones espaciales Misiones que año Nación Lanzador Síntesis de la misión Recorrido lo visitaron Objetivo: alunizar Mayo Alunizaje en un cráter al N Surveyor I Atlas Logros : primer alunizaje de nave de Estados Unidos - tomó gran de crater Flamsteed, al SO 1966 EEUU Centaur cantidad de imágenes y datos de reflectividad y temperatura en de Oceanus Procellarum LUNA superficie. Alcanza la Luna, orbita e Agosto Objetivo: Órbitar e Impactar Lunar Atlas - Logros : primer orbitador de los Estados Unidos - primeras impacta de forma delib- Orbiter 1 1966 EEUU Agena-D fotografías de la Tierra desde la Luna (b&n) erada una vez cumplida su misión 11/1966 Objetivo: Orbitar e impactar Alcanza la Luna, orbita e 02/1967 Atlas SLV-3 impacta de forma delib- EEUU Logros : Realizan un relevamiento fotográfico de la Luna para Lunar Orbiter 05/1967 Agena-D recolectar datos para las misiones Apollo. Se completa el 99% de la erada una vez cumplida 2- 3- 4- 5 08/1967 superficie su misión Diciembre Desciende en el Unión Molniya-M Objetivo: Alunizar Oceanus Procellarum Luna 13 1966 Soviética Logros : Funcionamiento por unos días en la superficie lunar 04/19.67/ Atlas LV-3C Objetivo: Alunizaje III- Desciende en el EEUU Contaban con un brazo robótico para realizar análisis Oceanus Procellarum Surveyor Centauro-D Logros : III y V 1967 químico del suelo. V- Desciende en Mare Tranquilitatis Objetivo: Orbitar Julio Alcanza la luna y Explorer 35 EEUU Delta E1 Logros : Estudios del viento solar, campo magnético inter- funciona durante 6 años 1967 planetario y campo gravitatorio de la luna. Atlas LV-3C Objetivo: Alunizaje Alcanza la luna y Surveyor Noviembre EEUU Transmisión de imágenes y análisis de suelo. Realiza el aluniza en Simus Medii Centauro-D Logros : VI 1967 primer ensayo de despegue de la superficie lunar Alcanza la luna y orbita Abril Unión Molniya-M Objetivo: Orbitar Luna 14 1968 Soviética Logros : estudio del viento solar, rayos cósmicos, movimiento y campo gravitatorio de la Luna Objetivo: Sobrevolar y regresar Sobrevuela la Luna y Protón-K/D Septiembre Unión Logros : Prototipo de nave tripulada. LLeva tortugas, invertebra- regresa a Tierra. Zond V 1968 Soviética dos plantas y bacterias. Los seres vivos vuelven sin daño Apollo 8 Objetivo: Orbitar y regresar Alcanza la luna y orbita Diciembre EEUU Saturno V Logros : Primera misión tripulada / primeras fotografías en color y regresa. Misión 1968 de la Tierra desde la Luna / ensayo para alunizaje tripulado tripulada Planetario de Buenos Aires 3/6 Misiones espaciales Misiones que año Nación Lanzador Síntesis de la misión Recorrido lo visitaron Mayo Apollo 10 EEUU Objetivo: Orbitar y regresar Alcanza la luna, orbita y LUNA 1969 Saturno V Logros : Ensayos de separación y acoplamiento en órbita lunar regresa a la tierra. entre el Módulo de Comando Servicio (MCS) y el Modulo lunar (ML) Módulo Misión Lunar tripulada El ML (módulo lunar)aluniza en Mare Tranquilitatis mientras el Julio MC (módulo de comando) Apollo 11 EEUU Objetivo: Orbitar, alunizar y regresar 1969 Saturno V Logros : Primer alunizaje tripulado y primeros seres humanos en pisar queda orbitando. Para regresar la Luna, tomaron fotografías y recolectaron muestras ML se acopla con MC, trasbordan los astronautas y Módulo Misión Lunar tripulada regresan a la Tierra agosto Sobrevoló la Luna y sobrevolar y regresar Zond 7- 8 1969 Unión Proton- Objetivo: regresó a Tierra Soviética K/D Logros : Estudios del espacio circunlunar - tomó fotografías en octubre color de la Tierra y la Luna. 1970 Apollo 12 Nov.1969 Objetivo: Orbitar, alunizar y regresar El ML aluniza mientras el MC Logros : Apollo 12 alunizó en Oceanus Procellarum, muy cerca de la queda orbitando. EEUU sonda Surveyor III. Se realiza una caminata hasta el sitio, recogiendo Para regresar ML se acopla Apollo 14 En.1971 Saturno V parte de la sonda para su estudio en Tierra. / Apollo 14 alunizó en con MC, trasbordan los tierras altas cerca del cráter Fra Mauro. Se realizaron caminatas astronautas y regresan a la Tierra Módulo Misión tomando muestras de suelo y dejaron ALSEP en la superficie (equipos Lunar tripulada de experimentos científicos para el estudio de la superficie lunar) Sep 1970 Objetivo: Alunizar Alcanza la Luna y aluniza. Una parte queda en la Luna Unión Logros : Equipada con brazo mecánico para toma de muestras - Feb 1972 Proton- Luna, transmitiendo datos 16- 20- 24 Soviética K/D primera sonda que regresa a la Tierra con material de otro cuerpo Ag 1976 celeste y primer alunizaje nocturno - y otra regresa a Tierra con muestras. Objetivo: alunizar y operar todoterreno Nov.1970 Logros : Lunokhod 1 primer alunizaje de un todoterreno en la Luna. Alcanza la Luna y aluniza. Luna Unión Lunokhod 2 realizó estudios de niveles de luminosidad para determi- 17- 21 Soviética En.1973 Proton- nar la factibilidad de realizar observaciones astronómicas desde la Luna - el Lunojod 2 funcionó durante 4 meses y recorrió 37 km. El Lunokhod K/D Lunokhod 1, sorprendentemente respondió señales enviadas desde la 1 y 2 tierra en el año 2010. Objetivo: Orbitar, alunizar, operar todoterreno y regresar El ML aluniza mientras el MC queda orbitando. julio Logros : Aluniza en Mare Imbrium Apollo 15 EEUU Para regresar ML se acopla 1971 Utilización por primera vez de un vehículo todoterreno, tripulado . Saturno V Demostración en el vacío de la pluma y el martillo. Se realizaron con MC, trasbordan los caminatas tomando muestras de suelo y dejaron equipos de experi- astronautas y regresan a la Módulo Misión mentos científicos para el estudio de la superficie lunar. Tierra Lunar tripulada Planetario de Buenos Aires 4/6 Misiones espaciales Misiones que año Nación Lanzador Síntesis de la misión Recorrido lo visitaron Objetivo: Orbitar, alunizar, operar todoterreno y regresar El ML aluniza mientras el MC Logros : Aluniza en la región de Descartes queda orbitando.
Recommended publications
  • Dsc Pub Edited
    1968 93) few craters, much like the mare sites, Surveyor 7 although the general area was rougher. About Nation: U.S. (43) 21 hours after landing, ground controllers Objective(s): lunar soft-landing fired a pyrotechnic charge to drop the alpha- Spacecraft: Surveyor-G scattering instrument on the lunar surface. Spacecraft Mass: 1,040.1 kg When the instrument failed to move, con- Mission Design and Management: NASA JPL trollers used the robot arm to force it down. Launch Vehicle: Atlas-Centaur (AC-15 / Atlas The scoop on the arm was used numerous 3C no. 5903C / Centaur D-1A) times for picking up soil, digging trenches, Launch Date and Time: 7 January 1968 / and conducting at least sixteen surface- 06:30:00 UT bearing tests. Apart from taking 21,274 pho- Launch Site: ETR / launch complex 36A tographs (many of them in stereo), Surveyor Scientific Instruments: 7 also served as a target for Earth-based 1) imaging system lasers (of 1-watt power) to accurately 2) alpha-scattering instrument measure the distance between Earth and the 3) surface sampler Moon. Although it was successfully reacti- 4) footpad magnet vated after the lunar night, Surveyor 7 Results: Since Surveyors 1, 3, 5, and 6 success- finally shut down on 21 February 1968. In fully fulfilled requirements in support of total, the five successful Surveyors returned Apollo, NASA opted to use the last remaining more than 87,000 photos of the lunar surface Surveyor for a purely scientific mission out- and demonstrated the feasibility of soft- side of exploring a potential landing site for landing a spacecraft on the lunar surface.
    [Show full text]
  • Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
    chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples.
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • ILWS Report 137 Moon
    Returning to the Moon Heritage issues raised by the Google Lunar X Prize Dirk HR Spennemann Guy Murphy Returning to the Moon Heritage issues raised by the Google Lunar X Prize Dirk HR Spennemann Guy Murphy Albury February 2020 © 2011, revised 2020. All rights reserved by the authors. The contents of this publication are copyright in all countries subscribing to the Berne Convention. No parts of this report may be reproduced in any form or by any means, electronic or mechanical, in existence or to be invented, including photocopying, recording or by any information storage and retrieval system, without the written permission of the authors, except where permitted by law. Preferred citation of this Report Spennemann, Dirk HR & Murphy, Guy (2020). Returning to the Moon. Heritage issues raised by the Google Lunar X Prize. Institute for Land, Water and Society Report nº 137. Albury, NSW: Institute for Land, Water and Society, Charles Sturt University. iv, 35 pp ISBN 978-1-86-467370-8 Disclaimer The views expressed in this report are solely the authors’ and do not necessarily reflect the views of Charles Sturt University. Contact Associate Professor Dirk HR Spennemann, MA, PhD, MICOMOS, APF Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury NSW 2640, Australia. email: [email protected] Spennemann & Murphy (2020) Returning to the Moon: Heritage Issues Raised by the Google Lunar X Prize Page ii CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 2 2. HUMAN ARTEFACTS ON THE MOON 3 What Have These Missions Left BehinD? 4 Impactor Missions 10 Lander Missions 11 Rover Missions 11 Sample Return Missions 11 Human Missions 11 The Lunar Environment & ImpLications for Artefact Preservation 13 Decay caused by ascent module 15 Decay by solar radiation 15 Human Interference 16 3.
    [Show full text]
  • The Moon As a Laboratory for Biological Contamination Research
    The Moon As a Laboratory for Biological Contamina8on Research Jason P. Dworkin1, Daniel P. Glavin1, Mark Lupisella1, David R. Williams1, Gerhard Kminek2, and John D. Rummel3 1NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 2European Space AgenCy, Noordwijk, The Netherlands 3SETI InsQtute, Mountain View, CA 94043, USA Introduction Catalog of Lunar Artifacts Some Apollo Sites Spacecraft Landing Type Landing Date Latitude, Longitude Ref. The Moon provides a high fidelity test-bed to prepare for the Luna 2 Impact 14 September 1959 29.1 N, 0 E a Ranger 4 Impact 26 April 1962 15.5 S, 130.7 W b The microbial analysis of exploration of Mars, Europa, Enceladus, etc. Ranger 6 Impact 2 February 1964 9.39 N, 21.48 E c the Surveyor 3 camera Ranger 7 Impact 31 July 1964 10.63 S, 20.68 W c returned by Apollo 12 is Much of our knowledge of planetary protection and contamination Ranger 8 Impact 20 February 1965 2.64 N, 24.79 E c flawed. We can do better. Ranger 9 Impact 24 March 1965 12.83 S, 2.39 W c science are based on models, brief and small experiments, or Luna 5 Impact 12 May 1965 31 S, 8 W b measurements in low Earth orbit. Luna 7 Impact 7 October 1965 9 N, 49 W b Luna 8 Impact 6 December 1965 9.1 N, 63.3 W b Experiments on the Moon could be piggybacked on human Luna 9 Soft Landing 3 February 1966 7.13 N, 64.37 W b Surveyor 1 Soft Landing 2 June 1966 2.47 S, 43.34 W c exploration or use the debris from past missions to test and Luna 10 Impact Unknown (1966) Unknown d expand our current understanding to reduce the cost and/or risk Luna 11 Impact Unknown (1966) Unknown d Surveyor 2 Impact 23 September 1966 5.5 N, 12.0 W b of future missions to restricted destinations in the solar system.
    [Show full text]
  • Scientific Exploration of the Moon
    Scientific Exploration of the Moon DR FAROUK EL-BAZ Research Director, Center for Earth and Planetary Studies, Smithsonian Institution, Washington, DC, USA The exploration of the Moon has involved a highly successful interdisciplinary approach to solving a number of scientific problems. It has required the interactions of astronomers to classify surface features; cartographers to map interesting areas; geologists to unravel the history of the lunar crust; geochemists to decipher its chemical makeup; geophysicists to establish its structure; physicists to study the environment; and mathematicians to work with engineers on optimizing the delivery to and from the Moon of exploration tools. Although, to date, the harvest of lunar science has not answered all the questions posed, it has already given us a much better understanding of the Moon and its history. Additionally, the lessons learned from this endeavor have been applied successfully to planetary missions. The scientific exploration of the Moon has not ended; it continues to this day and plans are being formulated for future lunar missions. The exploration of the Moon undoubtedly started Moon, and Luna 3 provided the first glimpse of the with the naked eye at the dawn of history,1 when lunar far side. After these significant steps, the mankind hunted in the wilderness and settled the American space program began its contribution to earliest farms. Our knowledge of the Moon took a lunar exploration with the Ranger hard landers' quantum jump when Galileo Galilei trained his from 1964 to 1965. These missions provided us with telescope toward it. Since then, generations of the first close-up views (nearly 0.3 m resolution) of researchers have followed suit utilizing successively the lunar surface by transmitting pictures until just more complex instruments." The most significant before crashing.6 The pictures confirmed that the quantum jump in the knowledge of our only natural lunar dark areas, the maria, were relatively flat and satellite came with the advent of the space age, topographically simple.
    [Show full text]
  • Cooperation Or Competition?
    Exploring the Universe: Cooperation or Competition? European Forum Alpbach 2013 Shuang-Nan Zhang Director, Center for Particle Astrophysics Institute of High Energy Physics Chief Scientist, Space Science Division National Astronomical Observatories Chinese Academy of Sciences 1 Day 1 2 Ways of learning Write down one thing you think you are good at doing Write down how you learnt of doing this Choose and write down one of these answers: (1) From lecturing in classroom (2) By yourself: reading, asking, discussion, practicing (3) Other 3 Importance of asking and discussion The greatest scholar and teacher in Chinese history, Confucius (孔夫子), told us: “Among every three people, there must be someone who know more than me (三人一 行,必有我师)” The Nobel Laureate C.N. Yang (杨振宁) once said “Most of my knowledge comes from asking and discussing with my fellow students”. In Chinese, an intellectual is called “a person learning by asking (有学问的人)” 4 Nobel Laureate C.N. Yang (杨振宁) and me C.N. Yang is the “person learning by asking (有学问的人)” 5 Albert Einstein (爱因斯坦) and me I am the “person learning by asking (有学问的人)” 6 Traditional and interactive teaching Traditional teaching: one directional delivery of information from the teacher to students (notebooks) Role of teacher: information delivery Success measured by rate of information delivered Interactive teaching: asking + discussion Role of teacher: stimulate and moderate the process Success measured by rate of information received Just like communications: it only matters how much is received at the receiver’s end! Barriers must be removed for efficient communications. 7 Interruptions are invited during these seminars You are invited to interrupt me during at any time Asking questions, making points and comments, and even challenging me.
    [Show full text]
  • The Race to the Moon
    The Race to the Moon Jonathan McDowell Yes, we really did go there... July 2009 imagery of Fra Mauro base from Lunar Reconnaissance Orbiter. Sergey Korolev's Program At Podlipki, in the Moscow suburbs, Korolev's factory churns out rockets and satellites Sputnik Luna moon probes Vostok spaceships Mars and Venus probes Spy satellites America's answer: the captured Nazi rocket team led by Dr. Wernher von Braun, based in Huntsville, Alabama America's answer: naturalized US citizen Dr. Wernher von Braun, based in Huntsville, Alabama October 1942: First into space The A-4 (V-2) rocket reaches over 50 miles high – the first human artifact in space. This German missile, ancestor of the Scud and the Shuttle, was designed to hit London and was later mass- produced by concentration camp labor – but the general in charge said at its first launch: “Today the Space Age is born”. First Earth Satellite: Sputnik Oct 1957 First Living Being in Orbit: Laika, Nov 1957 First Probe to Solar orbit: Luna-1 Jan 1959 First Probe to hit Moon: Luna-2 Sep 1959 First intact return to Earth from orbit: Discoverer 13 Aug 1960 First human in space: Yuriy Gagarin in Vostok-1 Apr 1961 Is America losing the Space Race? Time to up the stakes dramatically.... “In this decade...” I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth. John F Kennedy, address to Congress, May 25, 1961 1958-1961 MOON PROGRAM – USSR USA SEP 1958: E-1 No.
    [Show full text]
  • Typical Spacecraft Contents
    Appendix A: Typical Spacecraft This appendix contains descriptions and images of a dozen spacecraft selected from the many that are currently operating in interplanetary space or have successfully completed their missions, plus one that is now preparing for launch. Included is at least one representative of each of the eight spacecraft classifications described in Chapter 7 (see page 243). The scheme of limiting coverage of each spacecraft to a two-page spread in this appendix allows the reader to easily compare the various craft, their specifications, their missions, and their classifications, but it does not allow room to list all of a spacecraft’s activities, discoveries and questions raised; indeed entire books can and have been written on each. Complete profiles of these and other spacecraft are, how- ever, readily available at a single web site: http://nssdc.gsfc.nasa.gov/planetary. Contents: Spacecraft Classification Page Voyager Flyby 294 New Horizons Flyby 296 Spitzer Observatory 298 Chandra Observatory 300 Galileo Orbiter 302 Cassini Orbiter 304 Messenger Orbiter 306 Huygens Atmospheric 308 Phoenix Lander 310 Mars Science Laboratory Rover (launch: 2009) 312 Deep Impact Penetrator 314 Deep Space 1 Engineering 316 294 Appendix A: Typical Spacecraft The Voyager Spacecraft Fig. A.1. Each Voyager spacecraft measures about 8.5 meters from the end of the science boom across the spacecraft to the end of the RTG boom. The magnetometer boom is 13 meters long. Courtesy NASA/JPL. Classification: Flyby spacecraft Mission: Encounter giant outer planets and explore heliosphere Named: For their journeys Summary: The two similar spacecraft flew by Jupiter and Saturn.
    [Show full text]
  • Water on the Moon, I. Historical Overview Arlin Crotts (Columbia University)
    Water on The Moon, I. Historical Overview Arlin Crotts (Columbia University) By mid-19th century, astronomers strongly suspected that the Moon was largely dry and airless, based on the absence of any observable weather. [1] In 1892, William H. Pickering made a series of careful occultation measurements that allowed him to conclude that the lunar surface’s atmospheric pressure was less than 1/4000th of Earth’s. [2] Any number of strange ideas arose to contradict this, including Danish astronomer/mathematician Peter Andreas Hansen’s hypothesis, that the Moon’s center of mass is offset by its center of figure by 59 kilometers, meaning that one or two scale-heights of atmosphere could hide on the far side of the Moon, where it might support water oceans and life. [3] Hans Hörbiger’s 1894 Welteislehre (“World Ice”) theory, that the Moon and much of the cosmos is composed of water ice, became the favored cosmology of leaders of Third Reich Germany. [4] Respectable scientists realized that significant amounts of water on the Moon’s surface would rapidly sublime into the vacuum. [1] “The absence of any bodies of water on the moon is placed beyond doubt, both by actual telescopic examination and by inference from absence of clouds. There are no streams, lakes or seas. An eminent astronomer has remarked that the heat of the surface exposed to the sun would occasion a transfer of any water the moon might contain to its dark side, and that there may be frosts in this part, and perhaps running water near the margin of the illuminated portion.
    [Show full text]
  • Beyond Earth a CHRONICLE of DEEP SPACE EXPLORATION, 1958–2016
    Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 Asif A. Siddiqi Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 by Asif A. Siddiqi NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Office of Communications NASA History Division Washington, DC 20546 NASA SP-2018-4041 Library of Congress Cataloging-in-Publication Data Names: Siddiqi, Asif A., 1966– author. | United States. NASA History Division, issuing body. | United States. NASA History Program Office, publisher. Title: Beyond Earth : a chronicle of deep space exploration, 1958–2016 / by Asif A. Siddiqi. Other titles: Deep space chronicle Description: Second edition. | Washington, DC : National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2018] | Series: NASA SP ; 2018-4041 | Series: The NASA history series | Includes bibliographical references and index. Identifiers: LCCN 2017058675 (print) | LCCN 2017059404 (ebook) | ISBN 9781626830424 | ISBN 9781626830431 | ISBN 9781626830431?q(paperback) Subjects: LCSH: Space flight—History. | Planets—Exploration—History. Classification: LCC TL790 (ebook) | LCC TL790 .S53 2018 (print) | DDC 629.43/509—dc23 | SUDOC NAS 1.21:2018-4041 LC record available at https://lccn.loc.gov/2017058675 Original Cover Artwork provided by Ariel Waldman The artwork titled Spaceprob.es is a companion piece to the Web site that catalogs the active human-made machines that freckle our solar system. Each space probe’s silhouette has been paired with its distance from Earth via the Deep Space Network or its last known coordinates. This publication is available as a free download at http://www.nasa.gov/ebooks. ISBN 978-1-62683-043-1 90000 9 781626 830431 For my beloved father Dr.
    [Show full text]
  • Solar System Tight
    Images courtesy of: NASA Probe routes courtesy of: NASA and National Geographic Information courtesy of: Wikipedia, NASA, NSSDC, This infographic focuses on the exploration of our UNISEC, ISAS, BMDO, ESA, SAS, CSA, ASI, DLR, RKA, Solar System through the lens of space exploration ISRO, JAXA, HGS, BWF that took place since its inception sixty years ago. The routes of eight space probes are tracked and select- ed images from its vantage points are shown to pro- vide you with a view of our solar system through the MOON PHOBOS DEIMOS IO EUROPA CALLISTO GANYMEDE MIMAS ENCELADUS TETHYS DIONE RHEA TITAN HYPERION IAPETUS lens of the space probes. MIRANDA ARIEL UMBRIEL TITANIA OBERON NAIAD THALASSA DESPINA GALATEA LARISSA PROTEUS TRITON NEREID HALIMEDE SAO LAOMEDEIA PSAMANTHE NESO DEIMOS This segment shows the FAILED NASA CSA DLR ISAS BMDO amount of space probes released from the different SUCCESS USSR SAS RKA UNISEC HGS space stations on earth. ESA ASI ISRO JAXA BWF The lines represent the route of the space probes as they SOLAR PROBES MARINER 10 GALILEO VOYAGER 1 PIONER 1O PIONEER 11 make their way to explore our solar system. MARS PROBES CASSINI VOYAGER 2 PIONEER 11 NEW HORIZONS PIONEER 11 1985 - 02 1990 INSTRUMENT POWER SHARING PASSED THE ORBIT OF PLUTO BEGAN DUE TO DECLINING GENERATOR POWER OUTPUT 1995 - 09 - 30 PIONEER 11 ROUTINE DAILY MISSION OPERATIONS STOPPED. 1995 - 11 - 30 OPERATOR: NASA/ARC LAST SIGNAL RECIEVED SOLAR PROBES MERCURY PROBES VENUS PROBES LUNAR PROBES MARS PROBES ASTEROID PROBES JUPITER PROBES SATURN PROBES URANUS PROBES COSPAR ID: 1973-019A/SATCAT NO: 6421 NEPTUNE PROBES PLUTO PROBES 04/06/1973, 02:11:00 UTC - LAUNCH DATE VOYAGER 2 PIONEER 10 12/03/1974 - CLOSESTER APPROACH TO JUPITER PIONEER 5 MARINER 10 SPUTNIK 7 LUNA E-1 NO.
    [Show full text]