Relic Rovers and Orbiters Current and Future Missions

Total Page:16

File Type:pdf, Size:1020Kb

Relic Rovers and Orbiters Current and Future Missions APOLLO 11 AT 50 | Next Steps Luna 2 Ranger 4 Ranger 6, 7 Luna 5, 7, 8 Ranger 8, 9 Luna 9 Luna 10, 11, 12 Surveyor 1 Luna 13 Lunar Orbiter 1 Surveyor 2 Lunar Orbiter 2, 3 Surveyor 3 Lunar Orbiter 4 Surveyor 4 Explorer 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1959 1962 1964 1965 1965 1966 1966 1966 1966 1966 1966 1966 1967 1967 1967 1967-73 Beresheet Surveyor 5, 6, 7 Relic Rovers Current and 17 2019 48 and Orbiters Future Missions 1967-68 Chang’e 4 Luna 14 FAR SIDE of MOON (mission launch date country/company) Soft Landings 2019 47 44 18 Intentional Crashes Lunar Reconnaissance Orbiter 2009 (operational) NASA 1968 Accidental Crashes Chandraayan-2, orbiter, lander, rover July 2019 India LADEE Apollo 10 Chang’e 5 sample-return December 2019 China 2014 46 45 19 24 10 Z-01 lander, commercial and NASA payloads 12 September 2020 Orbit Beyond MARE IMBRIUM 2 1969 Chang’e 3 48 Chang’e 6 lunar south pole sample-return 2020 China Luna 15 2013 1 45 MARE 20 MARE Lunar Flashlight cubesat to study volatiles in permanently 1969 28 SERENITATIS CRISIUM 47 9 32 shadowed craters 2020 NASA OCEANUS 36 PROCELLARUM 31 35 12 Artemis-1 (formerly Exploration Mission-1) uncrewed SLS/Orion GRAIL 46 Apollo 11 flight test around the Moon 2020-21 NASA 2012 29 4 MARE 21 TRANQUILLITATIS 26 6 4 3 CRASH SITE UNKNOWN Korea Pathfinder Lunar Orbiter technology testbed 5 23 December 2020 South Korea 44 4 17 41 7 20 1969 17 Peregrine lander, commercial and NASA payloads LCROSS 8 Apollo 12 15 21 June 2021 Astrobotic Technology 13 2511 14 26 22 Nova-C lander, commercial and NASA payloads 22 27 5 16 33 July 2021 Intuitive Machines 2009 43 3 30 1969 Selene 39 18 34 Chang’e 7 survey south polar region 2021 China Luna 16 MARE NUBIUM 42 Gateway Power and Propulsion Element first module for small 23 37 19 1970 lunar-orbiting station Late 2022 Maxar/NASA 28 2009 Starship private lunar flyby charter flight 2023 SpaceX Chang’e 1 43 17 42 Luna 17 Digital Extra Take an interactive look at 41 more about lunar missions past, present Artemis-2 SLS/Orion crewed flight test 2023 NASA 24 40 and future: AviationWeek.com/MoonMap Artemis-3 SLS/Orion crewed flight for lunar landing2024 NASA 41 38 2009 1970 Chandraayan-1 SMART-1 Lunar Prospector Hagomoro Hiten Luna 24 Luna 23 Luna 22 Explorer 49 Luna 21 Apollo 17 Apollo 16 Luna 20 Apollo 15 Apollo 14 Luna 18, 19 Apollo 13 booster 40 39 38 1990, ‘93 36 35 33 32 31 1972 30 29 28 26 1973 1972 1972 1971 1971 1974 1974 2008 2006 1998 37 34 1974 1973 1971 27 1970 25 30 AVIATION WEEK & SPACE TECHNOLOGY/JULY 15-28, 2019 AviationWeek.com/awst AviationWeek.com/awst AVIATION WEEK & SPACE TECHNOLOGY/JULY 15-28, 2019 31.
Recommended publications
  • Solar-Wind Proton Access Deep Into the Near-Moon Wake M
    GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L16103, doi:10.1029/2009GL039444, 2009 Click Here for Full Article Solar-wind proton access deep into the near-Moon wake M. N. Nishino,1 M. Fujimoto,1 K. Maezawa,1 Y. Saito,1 S. Yokota,1 K. Asamura,1 T. Tanaka,1 H. Tsunakawa,2 M. Matsushima,2 F. Takahashi,2 T. Terasawa,2 H. Shibuya,3 and H. Shimizu4 Received 3 June 2009; revised 22 July 2009; accepted 24 July 2009; published 28 August 2009. [1] We study solar wind (SW) entry deep into the near- wake were not known because there were no observation Moon wake using SELENE (KAGUYA) data. It has been data. Recently, a Japanese lunar orbiter SELENE known that SW protons flowing around the Moon access (KAGUYA) performed comprehensive measurements of the central region of the distant lunar wake, while their the plasma and electromagnetic environment around the intrusion deep into the near-Moon wake has never been Moon; in particular, entry of SW protons into the near- expected. We show that SW protons sneak into the deepest Moon wake was found [Nishino et al., 2009]. The SW lunar wake (anti-subsolar region at 100 km altitude), and protons are accelerated by the bipolar electric field around that the entry yields strong asymmetry of the near-Moon the wake boundary and come into the near-Moon wake by wake environment. Particle trajectory calculations their Larmor motion in the direction perpendicular to the demonstrate that these SW protons are once scattered at IMF. This entry mechanism, which we call ‘Type-I entry’, the lunar dayside surface, picked-up by the SW motional lets the SW protons come fairly deep into the wake (solar electric field, and finally sneak into the deepest wake.
    [Show full text]
  • The Cubesat Mission to Study Solar Particles (Cusp) Walt Downing IEEE Life Senior Member Aerospace and Electronic Systems Society President (2020-2021)
    The CubeSat Mission to Study Solar Particles (CuSP) Walt Downing IEEE Life Senior Member Aerospace and Electronic Systems Society President (2020-2021) Acknowledgements – National Aeronautics and Space Administration (NASA) and CuSP Principal Investigator, Dr. Mihir Desai, Southwest Research Institute (SwRI) Feature Articles in SYSTEMS Magazine Three-part special series on Artemis I CubeSats - April 2019 (CuSP, IceCube, ArgoMoon, EQUULEUS/OMOTENASHI, & DSN) ▸ - September 2019 (CisLunar Explorers, OMOTENASHI & Iris Transponder) - March 2020 (BioSentinnel, Near-Earth Asteroid Scout, EQUULEUS, Lunar Flashlight, Lunar Polar Hydrogen Mapper, & Δ-Differential One-Way Range) Available in the AESS Resource Center https://resourcecenter.aess.ieee.org/ ▸Free for AESS members ▸ What are CubeSats? A class of small research spacecraft Built to standard dimensions (Units or “U”) ▸ - 1U = 10 cm x 10 cm x 11 cm (Roughly “cube-shaped”) ▸ - Modular: 1U, 2U, 3U, 6U or 12U in size - Weigh less than 1.33 kg per U NASA's CubeSats are dispensed from a deployer such as a Poly-Picosatellite Orbital Deployer (P-POD) ▸NASA’s CubeSat Launch initiative (CSLI) provides opportunities for small satellite payloads to fly on rockets ▸planned for upcoming launches. These CubeSats are flown as secondary payloads on previously planned missions. https://www.nasa.gov/directorates/heo/home/CubeSats_initiative What is CuSP? NASA Science Mission Directorate sponsored Heliospheric Science Mission selected in June 2015 to be launched on Artemis I. ▸ https://www.nasa.gov/feature/goddard/2016/heliophys ics-cubesat-to-launch-on-nasa-s-sls Support space weather research by determining proton radiation levels during solar energetic particle events and identifying suprathermal properties that could help ▸ predict geomagnetic storms.
    [Show full text]
  • Mars Express Orbiter Radio Science
    MaRS: Mars Express Orbiter Radio Science M. Pätzold1, F.M. Neubauer1, L. Carone1, A. Hagermann1, C. Stanzel1, B. Häusler2, S. Remus2, J. Selle2, D. Hagl2, D.P. Hinson3, R.A. Simpson3, G.L. Tyler3, S.W. Asmar4, W.I. Axford5, T. Hagfors5, J.-P. Barriot6, J.-C. Cerisier7, T. Imamura8, K.-I. Oyama8, P. Janle9, G. Kirchengast10 & V. Dehant11 1Institut für Geophysik und Meteorologie, Universität zu Köln, D-50923 Köln, Germany Email: [email protected] 2Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany 3Space, Telecommunication and Radio Science Laboratory, Dept. of Electrical Engineering, Stanford University, Stanford, CA 95305, USA 4Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91009, USA 5Max-Planck-Instuitut für Aeronomie, D-37189 Katlenburg-Lindau, Germany 6Observatoire Midi Pyrenees, F-31401 Toulouse, France 7Centre d’etude des Environnements Terrestre et Planetaires (CETP), F-94107 Saint-Maur, France 8Institute of Space & Astronautical Science (ISAS), Sagamihara, Japan 9Institut für Geowissenschaften, Abteilung Geophysik, Universität zu Kiel, D-24118 Kiel, Germany 10Institut für Meteorologie und Geophysik, Karl-Franzens-Universität Graz, A-8010 Graz, Austria 11Observatoire Royal de Belgique, B-1180 Bruxelles, Belgium The Mars Express Orbiter Radio Science (MaRS) experiment will employ radio occultation to (i) sound the neutral martian atmosphere to derive vertical density, pressure and temperature profiles as functions of height to resolutions better than 100 m, (ii) sound
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Flight Opportunities and Small Spacecraft Technology Program Updates NAC Technology, Innovation and Engineering Committee Meeting | March 19, 2020
    Flight Opportunities and Small Spacecraft Technology Program Updates NAC Technology, Innovation and Engineering Committee Meeting | March 19, 2020 Christopher Baker NASA Space Technology Mission Directorate Flight Opportunities and Small Spacecraft Technology Program Executive National Aeronautics and Space Administration 1 CHANGING THE PACE OF SPACE Through Small Spacecraft Technology and Flight Opportunities, Space Tech is pursuing the rapid identification, development, and testing of capabilities that exploit agile spacecraft platforms and responsive launch capabilities to increase the pace of space exploration, discovery, and the expansion of space commerce. National Aeronautics and Space Administration 2 THROUGH SUBORBITAL FLIGHT The Flight Opportunities program facilitates rapid demonstration of promising technologies for space exploration, discovery, and the expansion of space commerce through suborbital testing with industry flight providers LEARN MORE: WWW.NASA.GOV/TECHNOLOGY Photo Credit: Blue Origin National Aeronautics and Space Administration 3 FLIGHT OPPORTUNITIES BY THE NUMBERS Between 2011 and today… In 2019 alone… Supported 195 successful fights Supported 15 successful fights Enabled 676 tests of payloads Enabled 47 tests of payloads 254 technologies in the portfolio 86 technologies in the portfolio 13 active commercial providers 9 active commercial providers National Aeronautics and Space Administration Numbers current as of March 1, 2020 4 TECHNOLOGY TESTED IN SUBORBITAL Lunar Payloads ISS SPACE IS GOING TO EARTH ORBIT, THE MOON, MARS, AND BEYOND Mars 2020 Commercial Critical Space Lunar Payload Exploration Services Solutions National Aeronautics and Space Administration 5 SUBORBITAL INFUSION HIGHLIGHT Commercial Lunar Payload Services Four companies selected as Commercial Lunar Payload Services (CPLS) providers leveraged Flight Opportunities-supported suborbital flights to test technologies that are incorporated into their landers and/or are testing lunar landing technologies under Flight Opportunities for others.
    [Show full text]
  • Astronomy News KW RASC FRIDAY JANUARY 8 2021
    Astronomy News KW RASC FRIDAY JANUARY 8 2021 JIM FAIRLES What to expect for spaceflight and astronomy in 2021 https://astronomy.com/news/2021/01/what-to-expect-for- spaceflight-and-astronomy-in-2021 By Corey S. Powell | Published: Monday, January 4, 2021 Whatever craziness may be happening on Earth, the coming year promises to be a spectacular one across the solar system. 2020 - It was the worst of times, it was the best of times. First landing on the lunar farside, two impressive successes in gathering samples from asteroids, the first new pieces of the Moon brought home in 44 years, close-up explorations of the Sun, and major advances in low-cost reusable rockets. First Visit to Jupiter's Trojan Asteroids First Visit to Jupiter's Trojan Asteroids In October, NASA is set to launch the Lucy spacecraft. Over its 12-year primary mission, Lucy will visit eight different asteroids. One target lies in the asteroid belt. The other seven are so-called Trojan asteroids that share an orbit with Jupiter, trapped in points of stability 60 degrees ahead of or behind the planet as it goes around the sun. These objects have been trapped in their locations for billions of years, probably since the time of the formation of the solar system. They contain preserved samples of water-rich and carbon-rich material in the outer solar system; some of that material formed Jupiter, while other bits moved inward to contribute to Earth's life-sustaining composition. As a whimsical aside: When meteorites strike carbon-rich asteroids, they create tiny carbon crystals.
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Misiones Espaciales Misiones Que Año Nación Lanzador Síntesis De La Misión Recorrido Lo Visitaron
    Una vez finalizada la Segunda Guerra Mundial, Estados Unidos y la Unión Soviética se enfrentaron ideológica y políticamente. El campo de batalla de los dos bloques fue llamado Guerra fría. Las dos super potencias se embarcaron en una carrera por la conquista del espacio en un despliegue de poderío científico, militar y tecnológico. En un comienzo los mayores éxitos fueron de la URSS pero fue EE UU el que logró llevar seres humanos a la Luna. Luego de ese suceso, pasaron varios años hasta que otros países lograron el sueño de llegar a nuestro satélite. LMiUNsiones espacAiales En la actual carrera espacial ingresan nuevos proyectos financiados de manera privada. Las misiones que tuvieron éxito en llegar a la Luna se pueden dividir en: las que sobrevolaron, las que orbitaron, las que descendieron con robots y las que lograron llevar humanos Sobrevuelos/Orbitadores: Luna | Ranger | Zond| Lunar Orbiter | Explorer | Clementine | Lunar prospector | Smart | Kaguya Selene|Chang`e| Chandrayaan| Lunar reconnaissance|Grail| Ladee Landers y Rovers: Luna 9| Surveyour|Luna13|Luna 16/20/24| Luna 17|Lunakhod|Yutu Misiones tripuladas: Apollo 8/10/11/12/14/15/16/17 Fuente: http://mars.jpl.nasa.gov/programmissions/missions/ Planetario de Buenos AiresPlanetario de la Ciudad de Buenos Aires Galileo Galilei - Av. Sarmiento y B. Roldán - Tel. 4772-9265 / 4771-6629 - e-mail: [email protected] 1/6 Misiones espaciales Misiones que año Nación Lanzador Síntesis de la misión Recorrido lo visitaron Objetivo: Impactar Sobrevoló la Luna. Luego ingresó en órbita al Sol R-7 Logros : Fue el primer vehículo en escapar de la gravedad Enero Unión terrestre.
    [Show full text]
  • Launch Availability Analysis for the Artemis Program
    Launch Availability Analysis for the Artemis Program Grant Cates and Doug Coley Kandyce Goodliff and William Cirillo The Aerospace Corporation NASA Langley Research Center 4851 Stonecroft Boulevard 1 North Dryden Blvd., MS462 Chantilly, VA 20151 Hampton, VA 23681 571-304-3915 / 571-304-3057 757-864-1938 [email protected] [email protected] [email protected] [email protected] Chel Stromgren Binera, Inc. 77 S. Washington St., Suite 206 Rockville, MD 20910 301-686-8571 [email protected] Abstract—On March 26, 2019, Vice President Pence stated that will be on achieving all of the launches in a timely fashion. the policy of the Trump administration and the United States of NASA and the commercial partners need quantitative America is to return American astronauts to the Moon within estimates for launch delay risks as they develop the lunar the next five years i.e., by 2024. Since that time, NASA has begun lander design and refine the concept of operations. Of the process of developing concepts of operations and launch particular importance will be understanding how long each campaign options to achieve that goal as well as to provide a sustainable human presence on the Moon. Whereas the Apollo lunar lander element will be in space and how long the program utilized one Saturn V rocket to carry out a single lunar integrated lander will have to wait in lunar orbit prior to the landing mission of short duration, NASA’s preliminary plans arrival of Orion and the crew. for the Artemis Program call for a combination of medium lift class rockets along with the heavy lift Space Launch System 2.
    [Show full text]
  • Developing Technologies for Biological Experiments in Deep Space
    Developing technologies for biological experiments in deep space Sergio R. Santa Maria Elizabeth Hawkins Ada Kanapskyte NASA Ames Research Center [email protected] NASA’s life science programs STS-1 (1981) STS-135 (2011) 1973 – 1974 1981 - 2011 2000 – 2006 – Space Shuttle International Skylab Bio CubeSats Program Space Station Microgravity effects - Nausea / vomit - Disorientation & sleep loss - Body fluid redistribution - Muscle & bone loss - Cardiovascular deconditioning - Increase pathogenicity in microbes Interplanetary space radiation What type of radiation are we going to encounter beyond low Earth orbit (LEO)? Galactic Cosmic Rays (GCRs): - Interplanetary, continuous, modulated by the 11-year solar cycle - High-energy protons and highly charged, energetic heavy particles (Fe-56, C-12) - Not effectively shielded; can break up into lighter, more penetrating pieces Challenges: biology effects poorly understood (but most hazardous) Interplanetary space radiation Solar Particle Events (SPEs) - Interplanetary, sporadic, transient (several min to days) - High proton fluxes (low and medium energy) - Largest doses occur during maximum solar activity Challenges: unpredictable; large doses in a short time Space radiation effects Space radiation is the # 1 risk to astronaut health on extended space exploration missions beyond the Earth’s magnetosphere • Immune system suppression, learning and memory impairment have been observed in animal models exposed to mission-relevant doses (Kennedy et al. 2011; Britten et al. 2012) • Low doses of space radiation are causative of an increased incidence and early appearance of cataracts in astronauts (Cuccinota et al. 2001) • Cardiovascular disease mortality rate among Apollo lunar astronauts is 4-5-fold higher than in non-flight and LEO astronauts (Delp et al.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Presentazione Standard Di Powerpoint
    Copyright © Argotec S.r.l. 2020. All right Co reserved. - author and presenter: Cotugno presenter: Biagioand author Main author: author: SimoneMainSimonetti flight ofSLS towards the Moon Italian CubeSat technology to record the maiden ArgoMoon 1 Copyright © Argotec S.r.l. 2020. All right reserved. ARGOTEC Introduction 2 ARGOTEC Units and Locations Turin (IT) Headquarter – Engineering & R&D Labs Payloads SmallSat Avionics Cologne (DE) EAC – Training, Services and Operations Noordwijk (NL) ESTEC – Technical Support Training, Ops. R&D . 2020. All rightAll . 2020. 2020. All rightAll 2020. and Services S.r.l S.r.l Riverdale, MD (US) Argotec Argotec Argotec Inc – US brench © © 3 Copyright Copyright reserved.reserved. ARGOTEC Facilities Electronic Lab MultiLab Prototype Lab Thermal Lab Clean Room ISO 5 Mission Control Centre . 2020. All rightAll . 2020. S.r.l Argotec © COMPANY CONFIDENTIAL 4 Copyright reserved. Copyright © Argotec S.r.l. 2020. All right reserved. PLATFORM OVERVIEW 5 PLATFORM OVERVIEW Concept All-in-house . 2020. All rightAll . 2020. S.r.l Argotec © 6 Copyright reserved. PLATFORM OVERVIEW HAWK 6 - Deep Space Platform Deep Space communication Advanced maneuvering & attitude control and ranging capability High performance thruster with integrated RCS Compatible with DSN Exchangeable payload Tailored on mission needs 1.5 U of available volume Customized EPS and OBC with highly reliable space rated components . 2020. All rightAll . 2020. 2020. All rightAll 2020. S.r.l S.r.l Optimized for Deep space Radiation Argotec High protection structure Argotec © © 7 Copyright Copyright reserved.reserved. Copyright © Argotec S.r.l. 2020. All right reserved. HAWK 6 HAWK PLATFORM OVERVIEW - Deep Deep Space Platform 6U 8 Copyright © Argotec S.r.l.
    [Show full text]