Typical Spacecraft Contents

Total Page:16

File Type:pdf, Size:1020Kb

Typical Spacecraft Contents Appendix A: Typical Spacecraft This appendix contains descriptions and images of a dozen spacecraft selected from the many that are currently operating in interplanetary space or have successfully completed their missions, plus one that is now preparing for launch. Included is at least one representative of each of the eight spacecraft classifications described in Chapter 7 (see page 243). The scheme of limiting coverage of each spacecraft to a two-page spread in this appendix allows the reader to easily compare the various craft, their specifications, their missions, and their classifications, but it does not allow room to list all of a spacecraft’s activities, discoveries and questions raised; indeed entire books can and have been written on each. Complete profiles of these and other spacecraft are, how- ever, readily available at a single web site: http://nssdc.gsfc.nasa.gov/planetary. Contents: Spacecraft Classification Page Voyager Flyby 294 New Horizons Flyby 296 Spitzer Observatory 298 Chandra Observatory 300 Galileo Orbiter 302 Cassini Orbiter 304 Messenger Orbiter 306 Huygens Atmospheric 308 Phoenix Lander 310 Mars Science Laboratory Rover (launch: 2009) 312 Deep Impact Penetrator 314 Deep Space 1 Engineering 316 294 Appendix A: Typical Spacecraft The Voyager Spacecraft Fig. A.1. Each Voyager spacecraft measures about 8.5 meters from the end of the science boom across the spacecraft to the end of the RTG boom. The magnetometer boom is 13 meters long. Courtesy NASA/JPL. Classification: Flyby spacecraft Mission: Encounter giant outer planets and explore heliosphere Named: For their journeys Summary: The two similar spacecraft flew by Jupiter and Saturn. Voyager 2 continued on to encounter Uranus and Neptune. Both are on solar-system escape trajectories, and have penetrated the solar-wind termination shock. In 1998, Voyager 1 became the most distant human-made object. Payload: Imaging science wide-angle and narrow-angle cameras, UV spectrometer, IR spectrometer-radiometer, photopolarimeter, on scan platform. Low-energy charged parti- cle detector, plasma spectrometer, cosmic ray detector, magnetometers (4), plasma wave detector, planetary radio astronomy receiver, audio and video messages from Earth en- coded on gold record. Nation(s): USA Mass at Launch: 800 kg Radio Link: S- and X-band Stabilization: 3-Axis, thrusters Propulsion: Hydrazine Electrical power: RTG Launch date: 1977 Launch vehicle: Titan-IIIE/Centaur The Voyager Spacecraft 295 Fig. A.2. One of the Voyager spacecraft during vibration testing at JPL on March 25 1977. Mission module is attached atop the injection propulsion unit (IPU) which was later jettisoned. Science boom (right) and radioisotope thermoelectric generator (RTG) boom (left) are folded down in launch configuration. The 13-meter long magnetometer boom is stowed within canister above middle left. White cylinders are RTG mass simulators; actual RTGs were installed just prior to launch. Thermal control louvers were placed differently prior to flight; the golden record of messages from Earth was placed on the bay seen near the center of the image. Courtesy NASA/JPL-Caltech. 296 Appendix A: Typical Spacecraft The New Horizons Spacecraft Fig. A.3. The New Horizons Spacecraft measures about 3 meters overall at its widest dimension. Courtesy NASA/JPL. Classification: Flyby spacecraft Mission: Encounter Pluto and Charon then explore Kuiper Belt Named: For its journey Summary: New Horizons took a gravity-assist from Jupiter in 2007 and will fly by dwarf planet Pluto and its moon Charon in 2015. It is expected to encounter one or more additional objects in the Kuiper Belt. Image courtesy Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI). Payload: Seven instruments: Ralph, a 6-centimeter aperture telescope to feed its Mul- tispectral Visible Imaging Camera and Linear Etalon Imaging Spectral Array. Alice, an ultraviolet imaging spectrometer. LORRI, the Long Range Reconnaissance Imager, which consists of a 20.8-centimeter aperture telescope with a CCD imager. SWAP, the Solar Wind Analyzer around Pluto, which measures charged particles from the solar wind. PEPSSI, the Pluto Energetic Particle Spectrometer Investigation, which characterizes neutral atoms. SDC, the Student Dust Counter. REX, the Radio Science Experiment, which functions as a microwave radiometer. It also records the received spectrum of the DSN’s uplink during occultation experiments. Nation(s): USA Mass at Launch: 478 kg Radio Link: X-band Stabilization: 3-Axis thrusters or spin Propulsion: Hydrazine Electrical power: RTG Launch date: January 19, 2006 Launch vehicle: Atlas-V/Centaur The New Horizons Spacecraft 297 Fig. A.4. Artist’s conception of the New Horizons spacecraft encountering a Kuiper Belt object. The Sun, about 45 AU away, appears in the glow of the zodiacal dust. The many objects in the Kuiper Belt, normally not visible because they are so far apart, are shown here to give an impression of the large number of icy worlds beyond Neptune. Image cour- tesy Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI). 298 Appendix A: Typical Spacecraft The Spitzer Space Telescope Fig. A.5. The Spitzer Space Telescope measures about 5 meters in length overall. Tele- scope shell cut away to reveal cooled telescope assembly within. Adapted from images courtesy NASA/JPL-Caltech. Classification: Observatory spacecraft Mission: Observe objects deep in the universe, galaxy, and solar system Named: In honor of American astrophysicist Lyman Spitzer, Jr. (1914–1997). Originally Space Infrared Telescope Facility (SIRTF), renamed after launch. Summary: One of the four NASA Great Observatories including Hubble, Compton, and Chandra. Orbits the Sun in an Earth-trailing orbit at about 1 AU, keeping its solar panel facing the Sun to shield the entire spacecraft from infrared radiation. The telescope has an 85-centimeter diameter primary mirror cooled to 5.5 K by boiling off liquid helium from an onboard 50.4-kilogram supply. This cools the telescope’s optics via a vapor-cooled shell and also cools the instruments near the focal plane. Cooling permits Spitzer to observe deep into the infrared region of the spectrum without interference from warm optics. Upon exaustion of coolant in 2009, sunshade keeps telescope at 34 K (instruments 4 K cooler due to additional passive cooling). Payload: Spitzer’s Infrared Array Camera operates simultaneously at 3.6 μm, 4.5 μmm, 5.8 μmm and 8 μmm wavelengths. The Infrared Spectrograph observes from 5.3 μmto 37 μm. The Multiband Imaging Photometer works from 24 μm to 160 μm. Nation(s): USA Mass at Launch: 950 kg Radio Link: X-band Stabilization: 3-Axis reaction wheels Propulsion: Cold nitrogen Electrical power: Solar Launch date: August 25, 2003 Launch vehicle: Delta-II The Spitzer Space Telescope 299 Fig. A.6. Spitzer releases its aperture dust cover in this artist’s conception. Thermal blanketing on the warm spacecraft bus is not shown. The vapor-cooled shell which sur- rounds the whole telescope has an upper surface (facing the solar panel shield) of polished metal to reject heat. The lower half of the shell is painted black to best radiate heat (which can be better seen by searching online for image ID: sirtf0410 04). The parabolic high-gain antenna is affixed to the lower left end of the spacecraft bus and cannot be seen in this view. Image courtesy NASA/JPL-Caltech. 300 Appendix A: Typical Spacecraft The Chandra X-Ray Observatory Fig. A.7. The Chandra spacecraft measures 13.8 meters in length. Its solar arrays span a width of 19.5 meters end-to-end across the spacecraft. Courtesy NASA/CXC/SAO. Classification: Observatory spacecraft Mission: Capture images and spectra of high-energy events in the universe Named: In honor of Indian-American astrophysicist Subrahmanyan Chandrasekhar (1910–1995) (Not to be confused with lunar orbiter Chandra-yaan) Summary: One of the four NASA Great Observatories (including Hubble, Spitzer, and Compton). Its mirrors’ high angular resolution give Chandra one hundred times greater sensitivity than previous x-ray telescopes. Known as the Advanced X-ray Astrophysics Facility (AXAF) prior to launch. Operates in a 64.2-hour, 10,000-kilometer x 140,000- kilometer Earth orbit above the x-ray absorbing atmosphere. Data from Chandra has been greatly advancing the field of x-ray astronomy since August 1999. Payload: The Advanced CCD Imaging Spectrometer (0.2–10 keV) and the High Reso- lution Camera (0.1–10 keV), both within the Science Instrument Module. Either of two spectroscopic gratings may be swung into the optical path downstream of the mirrors: the High Energy Transmission Grating (0.4–10 keV) or the Low Energy Transmission Grating (0.09–3 keV). Nation(s): USA Mass at Launch: 4,620 kg Radio Link: S-band Stabilization: 3-Axis, reaction wheels Propulsion: Hydrazine Electrical power: Photovoltaic Launch date: July 23, 1999 Launch vehicle: STS Columbia/IUS The Chandra X-Ray Observatory 301 Fig. A.8. Artist’s conception of the Chandra spacecraft. Concentric rings below the open aperture cover are the leading-edge rims of the 1.2-meter and smaller diameter nested high-resolution modified-cylindrical mirrors of Chandra’s Wolter grazing-incidence (see page 197) 10-meter focal length telescope, which extends toward the science instrument module at right. Courtesy NASA/CXC/SAO. 302 Appendix A: Typical Spacecraft The Galileo Spacecraft Fig. A.9. Galileo spacecraft in flight configuration. Spacecraft height is 5.3 meters. Com- ponents below the Spin Bearing Assembly are de-spun to permit pointing while upper part spins. From image courtesy NASA/JPL. Classification: Orbiter spacecraft Mission: Explore Jupiter, its moons, and its magnetosphere Named: In honor of Galileo Galilei (1564–1642), who observed Jupiter and discovered its four largest moons in 1610 Summary: Observed Venus, Earth, and two asteroids en route; deployed Jupiter atmo- sphere probe; orbited Jupiter 1995–2003 and observed Jupiter and Galilean satellites at high resolution.
Recommended publications
  • EOOS Posters Abstracts
    Posters Submissions – EOOS Conference 21 23 November 2018 1. Sylvie Pouliquen Ifremer [email protected] Authors: "Gille Reverdin CNRS/INSU email: [email protected] , Pierre-Yves Le Traon Ifremer & Mercator-Ocean email: [email protected]) and the Coriolis 2014-2020 steering committee." Theme: From standalone to integrated ocean and coastal observing platforms Title: Coriolis: an integrated in-situ ocean observation infrastructure for operational oceanography and ocean/climate research "The Coriolis (www.coriolis.eu.org) structure gathers efforts of seven French institutes (CNES, CNRS, IFREMER, IPEV, IRD, Météo-France, SHOM, CEREMA) to organize the in-situ component of the French operational oceanography infrastructure. The objective is to organize the data acquisition and real- time/delayed mode data processing of in-situ measurements required for operational oceanography and ocean/climate research. Coriolis is focused on a limited number of physical and biogeochemical parameters that are acquired systematically and in real time or slightly delayed mode. Coriolis follows a fully open data policy. The framework of collaboration for Coriolis was renewed in 2014 and now covers the time period of 2014 up to 2020. By signing this new agreement, the eight directors of French institutes have clearly stated their willingness to sustain and consolidate further the Coriolis in-situ infrastructure. The new framework agreement strengthens the links between research and operational oceanography. The scope is also extended to integrate the main French contributions to the global and regional in-situ observing systems: Argo, gliders, research vessels, ship of opportunities, drifting buoys, marine mammals, tidal networks and high frequency coastal observatories.
    [Show full text]
  • Mars Reconnaissance Orbiter
    Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be­ used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations.
    [Show full text]
  • Dod Space Technology Guide
    Foreword Space-based capabilities are integral to the U.S.’s national security operational doctrines and processes. Such capa- bilities as reliable, real-time high-bandwidth communica- tions can provide an invaluable combat advantage in terms of clarity of command intentions and flexibility in the face of operational changes. Satellite-generated knowledge of enemy dispositions and movements can be and has been exploited by U.S. and allied commanders to achieve deci- sive victories. Precision navigation and weather data from space permit optimal force disposition, maneuver, decision- making, and responsiveness. At the same time, space systems focused on strategic nuclear assets have enabled the National Command Authorities to act with confidence during times of crisis, secure in their understanding of the strategic force postures. Access to space and the advantages deriving from operat- ing in space are being affected by technological progress If our Armed Forces are to be throughout the world. As in other areas of technology, the faster, more lethal, and more precise in 2020 advantages our military derives from its uses of space are than they are today, we must continue to dynamic. Current space capabilities derive from prior invest in and develop new military capabilities. decades of technology development and application. Joint Vision 2020 Future capabilities will depend on space technology programs of today. Thus, continuing investment in space technologies is needed to maintain the “full spectrum dominance” called for by Joint Vision 2010 and 2020, and to protect freedom of access to space by all law-abiding nations. Trends in the availability and directions of technology clearly suggest that the U.S.
    [Show full text]
  • Chandrayaan-2 Completes a Year Around the Moon
    One-year completion of Chandrayaan-2 Lunar orbit insertion (August 20, 2019) Chandrayaan-2 completes a year around the Moon The Moon provides the best linkage to understand Earth’s early history and offers an undisturbed record of the inner Solar system environment. It could also be a base for future human space exploration of the solar system and a unique laboratory, unlike any on Earth, for fundamental physics investigations. In spite of several missions to the Moon, there remains several unanswered questions. Continued high resolution studies of its surface, sub-surface/interior and its low-density exosphere, are essential to address diversities in lunar surface composition and to trace back the origin and evolution of the Moon. The clear evidence from India’s first mission to the Moon, Chandrayaan-1, on the extensive presence of surface water and the indication for sub- surface polar water-ice deposits, argues for more focused studies on the extent of water on the surface, below the surface and in the tenuous lunar exosphere, to address the true origin and availability of water on Moon. With the goal of expanding the lunar scientific knowledge through detailed studies of topography, mineralogy, surface chemical composition, thermo-physical characteristics and the lunar exosphere, Chandrayaan-2 was launched on 22nd July 2019 and inserted into the lunar orbit on 20th August 2019, exactly one year ago. Though the soft-landing attempt was not successful, the orbiter, which was equipped with eight scientific instruments, was successfully placed in the lunar orbit. The orbiter completed more than 4400 orbits around the Moon and all the instruments are currently performing well.
    [Show full text]
  • Giotto Steals a Ride
    NEWS COM8ARYPROBE------------------------------------- JAPANESE UNIVERSITIES----­ Giotto steals a ride MurmUrS of complaint Washington Munich this is a bargain", says GEM project scien­ JAPAN's national university professors are THE Earth lost a minute fraction of its tist Gerhard Schwehm. Schwehm said that all employees of the government, which orbital velocity earlier this week as the the second flyby would be a unique oppor­ puts them in an odd position when they European Space Agency (ESA) Giotto tunity to expand knowledge of comets. It want to protest to the government about space probe stole a little of the Earth's will be especially interesting, he said, to university conditions. But last month, the energy to help it on its way to a rendezvous study the interaction of the coma of the Association of National Universities finally with the comet Grigg Skjellerup. It was comet and the solar wind, as well as to succeeded, after years of trying, in winning the first time the manoeuvre, the same compare the distribution and optical funds from the Ministry of Education, "gravity assist" that helped the NASA properties of dust around Comet Grigg Culture and Science to set up a committee Voyager probe on its journey from Jupiter Skjellerup with that around Comet to study their own financial difficulties. out to Saturn and Neptune, had been exe­ Halley, which had at least 100 times more The association represents all the 93 cuted using the gravitation field of Earth. of it. national universities directly supported by According to ESA researcher Trevor Giotto was one of five spacecraft to the government and has responsibility for Morley, Giotto will gain 3.1 km/sec in approach Comet Halley in 1986, but it setting up the general entrance examination.
    [Show full text]
  • Smiths 0 N U N Ins Ti Tu Tion Astrophysical Observatory
    SMITHS0 NUN INS TITU TION ASTROPHYSICAL OBSERVATORY OPTICAL SATELLITE- TRACKING PROGRAM Grant Number NGR 09-015-002 Semiannual Progress Report No. 20 1 January 1969 to 30 June 1969 Project Director: Fred L. Whipple Prepared for National Aeronautics and Space Administration Washington, D. C. 20546 Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts 021 38 SMITHSONIAN INS TITU TION ASTROPHYSICAL OBSERVATORY OPTICAL SATELLITE- TRACKING PROGRAM Grant Number NGR 09-015-002 Semiannual Progress Report No. 20 1 January 1969 to 30 June 1969 Project Director: Fred L. Whipple Prepared for National Ae r onauti cs and Space Administration Washington, D. C. 20546 Smithsonian Institution A s t r o phy s i cal Ob s e rvatory Cambridge, Massachusetts 021 38 908-2 TABLE OF CONTENTS Page INTRODUCTION .................................. 1 RESEARCHPROGRAMS ............................. .2 GEODETIC INVESTIGATIONS ...................... 3 ATMOSPHERIC INVESTIGATIONS ................... 6 DATAACQUISITION ............................... 8 SATELLITE- TRACKING AND DATA-ACQUISITION DEPARTMENT ................................ 9 COMMUNICATIONS ............................. 21 DATAPROCESSING ................................ 23 DATA PROCESSING ............................. 24 PHOTOREDUCTION DIVISION ...................... 27 PROGRAMMING DIVISION. ........................ 29 EDITORIAL AND PUBLICATIONS. ...................... 31 ii INTRODUCTION In support of the scientific and operational requirements under the Satellite- Tracking Program grant, the
    [Show full text]
  • Rosetta Craft Makes Historic Comet Rendezvous European Space Agency's Comet-Chasing Mission Arrives After 10-Year Journey
    NATURE | NEWS Rosetta craft makes historic comet rendezvous European Space Agency's comet-chasing mission arrives after 10-year journey. Elizabeth Gibney 06 August 2014 ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Comet 67P/Churyumov–Gerasimenko, as seen by Rosetta from a distance of 285 kilometres. No one can deny that it was an epic trip. The European Space Agency's comet-chasing Rosetta spacecraft has arrived at its quarry, after launching more than a decade ago and travelling 6.4 billion kilometres through the Solar System. That makes it the first spacecraft to rendezvous with a comet, and takes the mission a step closer to its next, more ambitious goal of making the first ever soft landing on a comet. Speaking from mission control in Darmstadt, Germany, Matt Taylor, Rosetta project scientist for the European Space Agency (ESA), called the space mission “the sexiest there’s ever been”. Rosetta is now within 100 kilometres of its target, comet 67P/Churyumov–Gerasimenko (or 67P for short), which in July was discovered to be shaped like a rubber duck. After a six-minute thruster burn, at 11:29 a.m. local time on 6 August, ESA scientists confirmed that Rosetta had moved into the same orbit around the Sun as the comet. Rosetta is now moving at a walking pace relative to the motion of 67P — though both are hurtling through space at 15 kilometres per second. Unlike NASA’s Deep Impact and Stardust craft, and ESA’s Giotto mission, which flew by their target comets at high speed, Rosetta will now stay with the comet, taking a ring-side seat as 67P approaches the Sun, and eventually swings around it in August 2015.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Annualreport2005 Web.Pdf
    Vision Statement The Space Science Institute is a thriving center of talented, entrepreneurial scientists, educators, and other professionals who make outstanding contributions to humankind’s understanding and appreciation of planet Earth, the Solar System, the galaxy, and beyond. 2 | Space Science Institute | Annual Report 2005 From Our Director Excite. Explore. Discover. These words aptly describe what we do in the research realm as well as in education. In fact, they defi ne the essence of our mission. Our mission is facilitated by a unique blend of on- and off-site researchers coupled with an extensive portfolio of education and public outreach (EPO) projects. This past year has seen SSI grow from $4.1M to over $4.3M in grants, an increase of nearly 6%. We now have over fi fty full and part-time staff. SSI’s support comes mostly from NASA and the National Sci- ence Foundation. Our Board of Directors now numbers eight. Their guidance and vision—along with that of senior management—have created an environment that continues to draw world-class scientists to the Institute and allows us to develop educa- tion and outreach programs that benefi t millions of people worldwide. SSI has a robust scientifi c research program that includes robotic missions such as the Mars Exploration Rovers, fl ight missions such as Cassini and the Spitzer Space Telescope, Hubble Space Telescope (HST), and ground-based programs. Dr. Tom McCord joined the Institute in 2005 as a Senior Research Scientist. He directs the Bear Fight Center, a 3,000 square-foot research and meeting facility in Washington state.
    [Show full text]
  • Deep Space 2: the Mars Microprobe Project and Beyond
    First International Conference on Mars Polar Science 3039.pdf DEEP SPACE 2: THE MARS MICROPROBE PROJECT AND BEYOND. S. E. Smrekar and S. A. Gavit, Mail Stop 183-501, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasa- dena CA 91109, USA ([email protected]). Mission Overview: The Mars Microprobe Proj- System Design, Technologies, and Instruments: ect, or Deep Space 2 (DS2), is the second of the New Telecommunications. The DS2 telecom system, Millennium Program planetary missions and is de- which is mounted on the aftbody electronics plate, signed to enable future space science network mis- relays data back to earth via the Mars Global Surveyor sions through flight validation of new technologies. A spacecraft which passes overhead approximately once secondary goal is the collection of meaningful science every 2 hours. The receiver and transmitter operate in data. Two micropenetrators will be deployed to carry the Ultraviolet Frequency Range (UHF) and data is out surface and subsurface science. returned at a rate of 7 Kbits/second. The penetrators are being carried as a piggyback Ultra-low-temperature lithium primary battery. payload on the Mars Polar Lander cruise ring and will One challenging aspect of the microprobe design is be launched in January of 1999. The Microprobe has the thermal environment. The batteries are likely to no active control, attitude determination, or propulsive stay no warmer than -78° C. A lithium-thionyl pri- systems. It is a single stage from separation until mary battery was developed to survive the extreme landing and will passively orient itself due to its aero- temperature, with a 6 to 14 V range and a 3-year shelf dynamic design (Fig.
    [Show full text]
  • Transmittal of Geotail Prelaunch Mission Operation Report
    National Aeronautics and Space Administration Washington, D.C. 20546 ss Reply to Attn of: TO: DISTRIBUTION FROM: S/Associate Administrator for Space Science and Applications SUBJECT: Transmittal of Geotail Prelaunch Mission Operation Report I am pleased to forward with this memorandum the Prelaunch Mission Operation Report for Geotail, a joint project of the Institute of Space and Astronautical Science (ISAS) of Japan and NASA to investigate the geomagnetic tail region of the magnetosphere. The satellite was designed and developed by ISAS and will carry two ISAS, two NASA, and three joint ISAS/NASA instruments. The launch, on a Delta II expendable launch vehicle (ELV), will take place no earlier than July 14, 1992, from Cape Canaveral Air Force Station. This launch is the first under NASA’s Medium ELV launch service contract with the McDonnell Douglas Corporation. Geotail is an element in the International Solar Terrestrial Physics (ISTP) Program. The overall goal of the ISTP Program is to employ simultaneous and closely coordinated remote observations of the sun and in situ observations both in the undisturbed heliosphere near Earth and in Earth’s magnetosphere to measure, model, and quantitatively assess the processes in the sun/Earth interaction chain. In the early phase of the Program, simultaneous measurements in the key regions of geospace from Geotail and the two U.S. satellites of the Global Geospace Science (GGS) Program, Wind and Polar, along with equatorial measurements, will be used to characterize global energy transfer. The current schedule includes, in addition to the July launch of Geotail, launches of Wind in August 1993 and Polar in May 1994.
    [Show full text]
  • 2001 Mars Odyssey 1/24 Scale Model Assembly Instructions
    2001 Mars Odyssey 1/24 Scale Model Assembly Instructions This scale model of the 2001 Mars Odyssey spacecraft is designed for anyone interested, although it might be inappropriate for children younger than about ten years of age. Children should have adult supervision to assemble the model. Copyright (C) 2002 Jet Propulsion Laboratory, California Institute of Technology. All rights reserved. Permission for commercial reproduction other than for single-school in- classroom use must be obtained from JPL Commercial Programs Office. 1 SETUP 1.1 DOWNLOAD AND PRINT o You'll need Adobe Acrobat Reader software to read the Parts Sheet file. You'll find instructions for downloading the software free of charge from Adobe on the web page where you found this model. o Download the Parts file from the web page to your computer. It contains paper model parts on several pages of annotated graphics. o Print the Parts file with a black & white printer; a laser printer gives best results. It is highly recommended to print onto card stock (such as 110 pound cover paper). If you can't print onto card stock, regular paper will do, but assembly will be more difficult, and the model will be much more fragile. In any case, the card stock or paper should be white. The Parts file is designed for either 8.5x11-inch or A4 sheet sizes. o Check the "PRINTING CALIBRATION" on each Parts Sheet with a ruler, to be sure the cm or inch scale is full size. If it isn't, adjust the printout size in your printing software.
    [Show full text]