USOO8182996 B2

(12) United States Patent (10) Patent No.: US 8,182,996 B2 Bergeron et al. (45) Date of Patent: May 22, 2012

(54) COMPOSITIONS AND METHODS FOR 5,523,217 A 6/1996 Lupski et al. DETECTING IKLEBSIELLA PNEUMONIAE 5,541.308 A * 7/1996 Hogan et al...... 536,231 5,574,145 A 1 1/1996 Barry et al. 5,595,874. A 1/1997 Hogan et al. (75) Inventors: Michel G. Bergeron, Quebec (CA); 5,599,665 A 2f1997 Barbieri et al. Maurice Boissinot, Quebec (CA); Ann 5,627,275 A 5, 1997 Ro11 Huletsky, Quebec (CA); Christian 5,652,102 A 7/1997 Fratamico et al. Ménard, Quebec (CA); Marc Ouellette, 5,708, 160 A 1/1998 Goh et al. 5,866,336 A * 2/1999 Nazarenko et al...... 435/6 Quebec (CA); Francois J. Picard, 5,994,066 A 1 1/1999 Bergeron et al. Quebec (CA); Paul H. Roy, Quebec 6,001,564. A 12/1999 Bergeron et al. (CA) 6,037,130 A * 3/2000 Tyagi et al...... 435/6 6,582,908 B2 6/2003 Fodor et al. (73) Assignee: Geneohm Sciences Canada Inc., 6,610,836 B1* 8/2003 Breton et al...... 536,231 Quebec (CA) 2003. O180733 A1 9/2003 Bergeron et al. 2004/O185478 A1 9/2004 Bergeron et al. 2005, OO42606 A9 2/2005 Bergeron et al. (*) Notice: Subject to any disclaimer, the term of this 2006/026381.0 A1 11/2006 Bergeron et al. patent is extended or adjusted under 35 2007/OOO9947 A1 1/2007 Bergeron et al. U.S.C. 154(b) by 63 days. 2007/0105129 A1 5/2007 Bergeron et al. 2009/0047671 A1 2/2009 Bergeron et al. (21) Appl. No.: 11/842,141 2009.0053702 A1 2/2009 Bergeron et al. 2009.0053703 A1 2/2009 Bergeron et al. 2009.0068641 A1 3/2009 Bergeron et al. (22) Filed: Aug. 21, 2007 2010/0267012 A1 10/2010 Bergeron et al. FOREIGN PATENT DOCUMENTS (65) Prior Publication Data CA 2052822 4f1992 EP O133 288 2, 1985 US 2012/0058487 A1 Mar. 8, 2012 EP O133 671 3, 1985 EP O 272009 6, 1988 Related U.S. Application Data EP O 277 237 A1 8, 1988 EP O 297 291 B1 1, 1989 (63) Continuation of application No. 1 1/236,785, filed on EP O 337 896 10, 1989 Sep. 27, 2005, which is a continuation of application EP O 364. 255 4f1990 No. 10/089,177, filed as application No. EP O 438 115 A2 7, 1991 PCT/CAO0/01 150 on Sep. 28, 2000, now abandoned. EP O133 671 7, 1991 (Continued) (30) Foreign Application Priority Data OTHER PUBLICATIONS Sep. 28, 1999 (CA) ...... 2283458 Bucket al. Biotechniques, 1999, 27:528-536.* May 19, 2000 (CA) ...... 2307010 Christensen et al. FEMS Microbiology letters. 1998. 161: 89-96.* Abdulkoarim, F. et al., “Homologous Recombination between that of Genes of Salmonella typhirmulum, ” J. Mol. Biol. 260.506-522. (51) Int. Cl. Academic Press (1996). CI2O I/68 (2006.01) Altschal, et al. “Basic Local Alignment Search Tool.” J. Mol.Biol. CI2P 19/34 (2006.01) 215: 403-410 (1990). C7H 2L/02 (2006.01) Amann, R. et al., “B-Subunit of ATP-synthase; a Useful Marker for C7H 2L/04 (2006.01) Studying the Phylogenetic Relationship of Eubacteria.” Journal of General tollosobiotogy 134: 22I5-2821, Soddy for General (52) U.S. Cl...... 435/6.15:435/6.1; 435/6.11: 435/6.12: Microbiology (1988). 435/91.2:536/23.7:536/24.32:536/24.33 Anborgh, P. et al., “New Antibiotic that acts specifically on the (58) Field of Classification Search ...... None GTP-bound form of elongation FactorTu.” The EMBO.J., vol. 10, No. See application file for complete search history. 4:779-784, IRL Press (1991). (56) References Cited (Continued) Primary Examiner — Carla Myers U.S. PATENT DOCUMENTS (74) Attorney, Agent, or Firm — Knobbe Martens Olson & 4,816,389 A 3, 1989 Sansonetti et al. Bear 5,030,556 A 7, 1991 Beaulieu et al. 5,041,372 A 8/1991 Lampel et al. (57) ABSTRACT 5,084,565 A 1/1992 Parodos et al. Four highly conserved genes, encoding translation elongation 5,089,386 A 2f1992 Stackebrandt et al. factor Tu, translation elongation factor G, the catalytic Sub 5,162,199 A 11/1992 Stern et al. unit of proton-translocating ATPase and the RecA recombi 5,232,831 A 8, 1993 Milliman et al. 5,292.874 A 3, 1994 Milliman nase, are used to generate species-specific, genus-specific, 5,298,392 A 3, 1994 Atlas et al. family-specific, group-specific and universal nucleic acid 5,334.501 A 8, 1994 Adams et al. probes and amplification primers to rapidly detect and iden 5,389,513 A 2/1995 Baquero et al. tify algal, archaeal, bacterial, fungal and parasitical patho 5,401,631 A 3, 1995 Lane et al. gens from clinical specimens for diagnosis. The detection of 5.437,978 A 8, 1995 Ubukata et al. associated antimicrobial agents resistance and toxin genes are 5,472,843. A 12/1995 Milliman 5,476,929 A 12/1995 Briles et al. also under the scope of the present invention. 5,523,205 A 6, 1996 Cossart et al. 9 Claims, 17 Drawing Sheets US 8,182,996 B2 Page 2

FOREIGN PATENT DOCUMENTS Brenner, D.J. et al., “Polynucleotide Sequence Divergence Among EP O 466 251 1, 1992 Strainsof Escherichia coli and Closely Related Organisms,” Journal EP O466 251 1, 1992 of Bacteriology, vol. 109, No. 3: 953-965, American Society for EP O 527 628 A1 2, 1993 Microbiology (1972). EP O337 896 7, 1993 Brenner, D.J. et al., “Enterobacter gergoviae sp. nov: a New Species EP O 577 523 1, 1994 ofEnterobacteriacae Found in Clinical Specimens and the Environ EP O 630973 A2 12, 1994 EP O 652291 A1 5, 1995 ment.” International Journal of Systematic Bacteriology, vol.30, No. EP O 695 803 A2 2, 1996 1: 1-6, Society for General Microbiology (1980). EP O 761815 3, 1997 Brenner D.J. et al., “Attempts to Classify Herbicola Group— EP O 786 519 7/1997 Enteroacter agglomerans Strains by Deoxyribonucleic Acid EP O 804 616 11, 1997 Hybridzation and Phenotype Tests.” International Journal of FR 2584419 A1 1, 1987 SystematicBacteriology, vol. 34, No. 1: 4-55, Society for General FR 2599743 A1 12, 1987 Microbiology (1984). FR 2636O75 3, 1990 FR 2685,334 A1 6, 1993 Brenner, D.J. et al., “Enterobacter asburiae sp. nov., a New Species FR 2686604 A1 7, 1993 Found in Clinical Specimens, and Reassignment of Erwinia dis FR 2699539 A1 6, 1994 solvens and Erwinia nimipressuralis to the Genus Enterobacter as JP 06-054700 3, 1994 Enterobacter dissolvens comb, nov. and Enterobacter nimipressoalis JP 06-090798 4f1994 comb. nov.” Journal of Clinical Microbiology, vol. 23, No. 6: 114 JP 06-165681 6, 1994 120, American Society for Microbiology (1986). JP O7-O67657 3, 1995 JP O7-209294 8, 1995 Brenner, D.J., “Introduction to the Family Enterobacteriaceas, in WO WO 90,14444 11, 1990 Balows, A. et al: “The Prokaryotes, A Handbook on the Biology of WO WO91,08305 6, 1991 : Ecophysiology, Isolation, Identification, Applications'. WO WO91f11531 8, 1991 2nd Edition, vol. III, Chapter 141, p. 2673-2695,Springer-verlag WO WO91f16454 10, 1991 (1992). WO WO91, 18926 12/1991 Brenner, D.J. Additional Genera of Enterobacteriaceae', in Balows, WO WO92fO3455 3, 1992 A. et al. “The Prokaryotes, A Handbook on the Biology of WO WO92/11273 7, 1992 WO WO92, 14488 9, 1992 Bacteria: Ecophysiology, Isolation, Identification, Applications'. 2nd WO WO93,03186 2, 1993 Edition,vol. III, Chapter 155, p. 2922-2937. Springer-Verlag (1992). WO WO93/1224.5 6, 1993 Brenner. D.J., “Calssification of Citrabacteria by DNA Hybridiza WO WO94f02645 2, 1994 tion: Designation of Citrobacter farneri sp. nov. Citrobacter WO WO94f17205 8, 1994 youngae sp. nov. Citrobacter braolai sp. nov. Citrobacter WO WO95/OO650 1, 1995 werkmaniisp. nov. Citrabactersedlakfisp. nov. and Three Unnamed WO WO95/09025 4f1995 Citrobacter Genomospecies.” International Journal of Systematic WO WO95/20055 7, 1995 WO WO 96.00298 1, 1996 Bacteriology, vol.43, No. 4645-658, Society for General Microbiol WO WO96,02648 2, 1996 ogy (1993). WO WO96,08582 3, 1996 Brenner, D.J., “Biochemical Identification of Citrobacter Species WO WO96, 18745 6, 1996 Defined by DNA Hybridization and Description of Citrobacter gil WO WO 98.2O157 5, 1998 lenil sp. nov. (Formerly Citrobacter Genomospecies 10) and WO WO99,24059 5, 1999 Citrobacter murltriae sp. nov. (Formerly Citrobacter Genomspecies WO WOOOf 14274 3, 2000 II)” Journal of Clinical Microbiology, vol. 37, No. 8: 2619-2624, WO WOO1,23604 4/2001 American Society for Microbiology (1999). WO WO 2004/055205 T 2004 Caldas, T.D. et al., “Chaperone Properties of Bacterial Elongation OTHER PUBLICATIONS FactorEF-Tu.” The Journal of Biological Chemistry, vol. 273, No. 19: Anderson, R.C., et al. (1998). “Micro Total Analysis Systems 98.” 11478-1 1482, American Society for Biochemistry and Molecular Kluwer Academic Publishers, Dordreoht, The Netherlands, pp. Biology (1998). 11-16, 221-224. Carrino, J.J., et al. (1997), “Ligation-Based Nucleic Acid Probe Belay, N. et al., “Methanogenic Bacteria from Human Dental Methods,” in Nucleic Acid Amplification Technology. Application to Plaque.” Applied and Environmental Microbiology, vol. 54, No. 2: Disease Diagnosis, Eaton Publishing, Boston, MA. pp. 61-123. 600-603, American Society for Microbiology (1988). Cha, R.S., and Thilly, W.G. (1995) “Specificity, Efficienty, and Bercovier, H. et al., “Intra- and Interspecies Relatedness of Yersinia Fidelity of PCR” in PCR Primer; A Laboratory Manual, Dieffenbach, pestis by DNA Hybridization and Its Relationship to Yersinia C.W., and Dveksler, G.S., eds. pp. 37-51, 53-62, 143-155, Cold pseudotubercuiosis.” Current Microbiology, vol. 4: 225-229, Spring Harbor Laboratory Press, Plainview, NY. Springer International (1980). Chen, K. et al., “Broad Range DNA probes for detecting and Berg, et al. Development of an amplification and hybridization assay amplifyingeubacterial nucleic acids.” FEMS Microbiology Letters, for the specific and sensitive detection of Mycoplasma fermenians 57:19-24, Elsevier/North Holland (1989). DNA. Molecular and Cellular Probes. 10:7-14 (1996). Chin, N.H.L. et al., “Mass Spectrometry of Nucleic Acids.” Clinical Bergeron, M.G. et al., “Diagnosing Bacterial Infectious Diseases In Chemistry,45. No. 9:1578, American Association for Clinical Chem OneHour: An Essential Upcoming Revolution.” Infection 23, No. 2: istry (1999). 5-8, Verlagsgesellschaft Otto Spatz (1995). Christenson, H. et al., “Phylogenetic relationships of Salmonella Bergeron, M.G. et al., “Preventing Antibiotic Resistance through based on DNA sequence comparison ofatp D encoding thef Subunit Rapid Genotypic Identification of Bacteria and of Their antibiotic of ATP synthase.” FEMS Microbiology Letters, 161: 89-96, Elsevier/ Resistance Genes in the Clinical Microbiology Laboratory.” Journal North Holland (1998). of Clinical Microbioloty, vol. 36, No. 8: 2169-2172, American Soci Cilja, V. et al., “Sequence Heterogeneities Among 16S Ribosornal ety for Microbiology (1998). RNA Sequences, and Their Effect on Phylogenetic Analyses at the Berkenkamp, S. et al., “Infrared MALDI Mass Spectrometry of Species Level.” Mol. Biol. Evol., 13(3): 451-461, Society for Molecu Large Nucleic Acids.” Science, vol. 281:260-262, American Asso lar Biology and Evolution (1996). ciation for the Advancement of Science (1998). Clayton, R.A. et al., “Intraspecific Variation in Small, Subunit rRNA Brenner, D.J. et al., “Polynucleotide Sequence Relatedness Among Sequences in GenBank: Why Single Sequences May Not Adequately ThreeGroups of Pathogenio Escherichia coli Strains.” Infection and Represent ProkaryoticTaxa.” International Journal of Systematic Immunity, vol. 6, No. 3:308-315. American Soceity for Microbiol Bacteriology, vol. 45, No. 3:59, Society for General Microbiology ogy (1972). (1995). US 8,182,996 B2 Page 3

Cousineau, B. et al., “On the Origin of Protein Synthesis Factors: A Ibrahim A. et al. (1993). “The phylogeny of the genus Yersinia based Gene Duplication/Fusion Model.” J. Mol. Evol. 45:661 on 16S rDNA sequences.” FEMS Microbiology Letters 114: 173-178 670,Springer-Verlag (1997). and correction published in FEMS Microbiology Letters 116 (1994) Crolzé J. (1995), “Les Méthodes automatisées d identification des at p. 243, IRL Press. bacteries a laube de 1995.” La Lettre de 1 Infectiologue, Tornek, No. Iwabe, N. et al., “Evolutionary relationship ofarchaebacteria, 4:109-113, Fivactis Media & Akoa. eubacteria, and inferred from phylogenetto trees of dupli Dickey, R.S. et al., “Ernended Descriptions of Enterobacter cancero cated genes.” Proc. Natl. Acad. Sci. USA, vol. 86: 9355-9359. enus comb. nov. Formerly Erwiniar cancerogena).” International National Academy of Sciences (1989). Journal of systematic Bacteriology, vol. 38, No. 4:371-374, Society Izard, D. et al., “Deoxyribonucicic Acid Relatedness Between Enterobacter cloacae and Enterobacter arnnigenus sp. for General Microbiology (1988). nov.” International Journal of Systematic Bacteriology, vol. 31: Egholm M. et al., “PNA hybridizes to complementaryol 35-42, Society for General Microbiology (1981). ligonucleotides obeying the Watson-Crick hydrogen-bonding rules.” Janda, J.M. et al., “Prototypal Diarrheagenic Strains of Hafnia alvei Nature vol. 365: 566-568, Nature Publishing Co. (1993). Are actually Members of the Genus Escherichia.” Journal of Clinical Farmer, J.J. et al., “Enterobacter salazakii: A New Species of Microbiology, vol. 37: 2399-2401, American Society for Microbiol "Enterobacteriaceau' Isolated from Clinical Specimens.” Interna ogy (1999). tional Journal of Systematic Bacteriology, vol. 30, No. 3: 569-584. Kellogg, D.E. et al., “TaqStart Antibody(TM): 'Hot Start PCR Society for General Microbiology (1980). Facilitated by a Neutralizing Monoclonal Antibody Directed Against Farmer, JJ, et al., (1985), "Biochemical Identification of New Spe Taq DNA Polymerase.” BioTechniques, vol. 16: 1134-1134, Eaton cies and Biogroups of Enterobacteriaceae Isolated from Clilnical Pulishing Company (1994). Specimens,” Journal of Clinical Microbiology, vol. 21, No. 1: 46-76, Kimura, M., “A Simple Method for Estimating Evolutionary Rates of American Society for Microbiology (1985). Base Substitutions Through Comparative Studies of Nucleotide Farmer J.J. et al., “Escheriachia fergusonil and Enterobacter Sequences.” J. Mol.Evol., vol. 16: 111-120, Springer-Verlag (1980). taylarae, Two New Species of Enterobacteriaceae Isolated from Kitch.T. et al., “Evaluation of RapID on E System for Identification of Clinical Specimens,” Journal of Clinical Microbiology, vol. 21, No. 379 Strains in the Family Enterobaciariaceae and Oxidase-Negative, 1: 77-81, American Society for Microbiology (1985). Gram-Negative Nonfermenters,” Journal of Clinical Microbiology, Farmer, J.J., “Proposed Rewording of Rule 10C of the vol. 32: 931-934, American Society for Microbiology (1994). Kloos, W.E. et al., “Simplified Scheme for Routine Identification of BacteriologicalCode.” International Journal of Systematic Bacteriol Human Staphylococcus Species,” Journal of Clinical Microbiology, ogy, vol. 35. No. 2, p. 222, Society for General Microbiology (1985). vol. 1: 82-88, American Society for Microbioloty (1975). Filer, D. et al., “Duplication of the tuf Gene, which encodes peptide Koenig C. et al., “Analyses of the FlashTrack DNA Probe and chain elongation factortu, is widespread in gram-negative bacteria.” UTIscreen Bioluminescence Tests for Bacteriuria.” Journal of Clini Journal of Bacteriology, vol. 148, No. 3:006-1011, American Society cal Microbiology, vol.30: 342-343, American Society for Microbiol for Microbiology (1981). ogy (1992). Fischer, D. et al., “Preducting structures for genome proteins.” Curr. Koshkin, A.A. et al., “LNA (Locked Nucleic Acids): Synthesis of the Opin. Struct. Biol. 9: 208-211, Current Biology (1999). Adenine, Cytosine, Guanine, 5-Methylcytosine, Thymine and Uracil Flores N. et al., “Recovery of DNA from Agurose Gels Stained with Bicyclonucleoside Monomers, Oligomerisation, and Unprecedented ethylene Blue.” Circle Reader Service No. 138, vol. 13:203-5, The Nucleic Acid Recognition.” Tetrahedron 54; 3607-3630, Pergamon Scientist (1992). Press (1998). Fox, G.E. et al., “How close is close: 16SrRNA Sequence identify Livak K.J. et al., “Oligonucleotides with Fluroescent Dyes at Oppo may not be sufficient to guarantee species Identify.” International site Ends Provide a Quenched Probe System Useful for Detecting Journal of Systematic Bacteriology, vol. 42, No. 1: 166-170, Society PCR Product and Nucleic Acid Hybridization.” PCR Methods and for General Microbiology (1992). Applications, vol. 4: 357-362, Cold Spring Harbor Laboratory Press Gavini, F. et al. “Transfer of Enterobacter agglomerous (Beljeriuck (1995). 1888) Ewing and Fife 1972 toPantoea geninov, as Pantoea Ludwig, W. et al., “Complete Nucleotide sequences of agglomerans comb.nov.and Description of Pantoea dispersa sp. Seveneubacteral genes coding for the elongation factorTu: Func tional, structural and phylogenetic evaluations.” Archives of Nov.”International Journal of Systematic Bacteriology, vol.39, No. Microbiology, vol. 153: 241-247. Springer-Verlag (1990). 3:337-345, Society for General Microbiology (1989). Miller, R.V. et al., “General Microbiology oftecA: Environmental Gogarten, J.P. et al. (1989), “Evolution of the vacuolar H+ATPase: and Evolutionary Significance.” Annu. Rev. Microbiol. 44:365-394. Implication for the origin ofeukaryotes.” Proc. Natl. Acad. Sci. USA, Annual Reviews, Inc. (1990). vol. 86: 6661-6665, National Academy of Sciences (1989). Mollet, C. et al., “rpoB sequence analysis as a novel basis for bacterial Greer, J., “Comparative Modeling of Homologous Proteins.” Meth identification.” Molecular Microbioloty, 26:1005-1011, Blackwell ods in Enzymology, vol. 202: 239-252, Academic Press (1991). Scientific Publications (1997). Grunberg-Manago, M., “Regulation of the Expression of Murakami, et al. "Identification of methicillin-resistant strains of Aminoactyl-tRNA Synthetases and Translation Factors'. in Staphylococci by polymerase chain reaction.” Journal of Clinical Neidhart, F.C. Ed. “Escherichia coli and Salmonella, Cellular and Microbioloty, 29(10): 2240-2244 (1991). Molecular Biology', 2nd Ed., vol. 1, ASM Press, Washington, DC, p. Nelson, N. et al., “The evolution of H+ ATPases', TIBS 14:113 1432-1457 (1996). 116, Elsevier (1989). Guex N. et al., “Protein modelling for all.” TIBS 24: 364 Nichols, R. et al., “A universal nucleoside for use of ambiguous sites 367.Elsevier (1999). in DNA rpimers.” Letters to Nature, 369: 492-493, Nature Publishing Gupta, R.S., “Protein Phylogenics and Signature Sequences: A Reap Co. (1994). praisal of Evolutionary Relationships among Archaebacteria, Pezzlo, M.T. et al., “Detection of Bacteriurla and Pyuria by Eubacteria, Eukaryotes.” Microbiology and Molecular Biology URISCREEN, a Rapid Enzymatic Screening Test”, Journal of Clini Reviews, vol. 62, No. 4: 1435-1941. American Society for Microbiol cal Microbioloty, 30:680-684, American Society for Microbiology ogy (1998). (1992). Hedegaard, J. et al., “Identification of Enterobacterlaoeae by partial Porcella, S.F. et al., “Identification of an EF-Tu protein that sequencing of the gene encoding translation initiation factor 2. Inter isperiplasm-associated and processed in Neissteria gonorrhoeae'. national Journal of Systematic Bacteriology, 49:1531-1538, Society Microbiology 142:2481-2489, Plenium Press (1996). for General Microbioloty (1999). Reeve, J.H., “Guest Commentary: Archaebacteria Then ... Archacs Hill, C.W. et al., “Inversions between ribosomal RNA genes of Now (Are There Really No Archaeal Pathogens?),” Journal of Bac Escherichia coli, ' Proc. Natl. Acad.Sci. USA, vol. 78, No. 11: teriology, 181:3613-3617. American society for Microbiology 7069-7072, National Academy of Sciences (1981). (1999). US 8,182,996 B2 Page 4

Relmaa, D.A., and Persing, D.H., (1996) "Genotypic Methods for York, M.K. et al., “Evaluation of the autoSCAN-WIA Rapid System Microbial Identification.” In PCR Protocols for Emerging Infectious for Identification and Susceptibility Testing o Gram-Nagative Fer Diseases, a Supplement to Diagnostic Molecular Microbioloty and mentative Bacilli.” Journal of Clinical Microbiology, 30(1):2903 Applications, ASM Press, Washington, DC pp. 3-31. 2910, American Society for Microbiology (1992). Sali, A., “Modelling mutations and homologous proteins. Current Abe et al., A Sensitive Method for the Detection of Enterotoxigenic Opinion Biotechnology 6:437-451, Current Biology (1995). Escherichia coli by the Polymerase Chain Reaction Using Multiple Sanchez, R. et al., “Advances in comparative protein-structure Primer Pairs, Zentralbl Bakteriol. (1992) 277(2): 170-8 (Abstract). modelling.” Curr. Opin. Struct. Biol. 7:206-214. Current Biology Akaboshi et al., Nucleotide sequence of the recA gene of Proteus (1997). mirabilis, Nucleic Acids Res. (1989) 17(11): 4390-4390. Saraste, M.M. et al., “The alp operon: nucleotide sequence of the An et al., The Nucleotide Sequence of tufB and four nearby trNA Structural Genes of Escherichia coli. Gene, (1980) 12(1-2): 33-39. genes for they, B and Osubunits of Escherichia coli ATP synthase.” Ashimoto et al., Molecular epidemiology of Staphylococcus spp. Nucleic Acids Research 9:5287-5296, Oxford University Press contamination in the ward environment: study on mecA and fema (1981). genes in methicillin-resistant strains, Kasenshogaku Zasshi (1995) Sela, S. et al., “Duplication of the tuf Gene: a New Insight into the 69: 15-20. Phylogeny ofEubacteria.” Journal of Bacteriology, 171:581-584. Bäckman et al., Evaluation of an Extended Diagnostic PCRAssay for American Society for Microbiology (1989). Detection and Verification of the Common Causes of Bacterial Men Selander, R.K. et al., “Evolutionary Genetics opf Salmonella ingitis in CSF and other Biological Samples, Mol Cell Probes (1999) enterica” In Escherichia coli and Salmonella Cellular and Molecular 13: 49-60. Biology, 2nd Edition, vol. 2, 147:2691-2707, American Society for Bei et al., Multiplex PCR amplification and immobilized capture Microbioloty (1996). probes for detection of bacterial pathogens and indicators in water, Sharma, N.K. et al., “Identification of Yersinia Species by the API Mol. Cell. Probes (1990) 4: 353–365. 20E.” Journal of Clinical Microbioloty, 28:1443-1444, American Bellet al., Outer Membrane Protein H1 of Pseudomonas aeruginosa: Society for Microbiology (1990). Purification of the Protein and Cloning and Nucleotide Sequence of Sproer, C. et al., “The phylogenetic position of Serratia, Buttiauxella the Gene, J Bacteriol. (1989) 171(6): 3211-3217. and Some other genera of the family Entgerobacterfacae''. Interna Bentley et al., Development of PCR-based Hybridization Protocol tional Journal of Systematic Acteriology, 49: 1433-1438, Society for for Identification of Streptococcal Species, JClin Microbiol. (1995) General Microbiology (1999). 33(5): 1296-1301. Stackebrandt, E, et al., “Taxonomic Note: A Place for DNA-DNA Black et al., Detection of streptococcal pyrogenic exotoxin genes by Reassociation and 16S rRNA Sequence Analysis in the Present Spe a nested polymerase chain reaction, Mol. Cell. Probes, 7 (1993) cies Definition in Bacteriology”. International Journal of Systematic 255-259. Bacteriology, 44:846-849, Society for General Microbiology (1994). Brakstadet al., Detection of Staphylococcusa aureus by Polymerase Stager C.E. et al., “Automated systems for Identification of Micro Chain Reaction Amplification of the nuc Gene, J. Clin Microbiol. organisms’. Clinical Microbiology Reviews, 5:342-327. American (1992)30(7): 1654-1660. Soceity for Microbiology (1992). Brakstad et al., Comparison of Various Methods and Reagents for Stark, R.P. et al., "Baceriuria in the Catheterized Patient'. The New Species Identification of Staphylococcus aureus Positive or Negative England Journal of Medicine, 311:560-464, Massachusetts Medical for the mecA Gene, APMIS (1993) 101 (9):651-654. Soceity (1984). Brakstad et al., Multiplex Polymerase Chain Reaction for Detection Stelgerwalt, A.G. et al., “DNA relatedness among species of of Genes for Staphylococcus aureus Thermonuclease and Methicillin Enterobacter and Serratia, Can. J. Microbiol. 22:131-137, National Resistance and Correlation with Oxacilin Resistance, APMIS(1993) Research Council of Canada (1975). 101 (9): 681-688. Takezaki, N. et al., “Phylogenetic Test of the Molecular Clock Brakstad et al., Direct Identification of Staphylococcus aureus in andLinearized Trees.” Mol. Biol. Evol. 12(5):823-833, University of blood cultures by detection of the gene encoding the thermostable Chicago Press (1995). nuclease or the gene product, APMIS (1995) 103: 209-218. Tang.Y.-W., et al. (1999), "Molecular Detection and Identification of Bremaud et al Genetic and molecular analysis of the tRNA-tufB Microorganisms,” in Manual of Clinical Microbioloty, 7th Edition, operon of the myxobacterium Stigmatella aurantiaca, Nucleic Acids ASM Press, Washington, DC pp. 215-244. Res. (1995)23(10): 1737-1743. Taylor, W.R., “Remotely related sequences and structures: analysis Brenner et al., Encoded combinatorial chemistry, Proc Natl AcadSci, and predictivemodelling.” Trends Biotechnol. 12(5):154-158, USA (1992) 89: 5381-5383. Elsevier Science Publishers (1994). Brisson-Noël et al. Evidence for natural gene transfer from gram Tenover, F.C., and Unger, E.R.,(1993), "Nuclelo Acid Probes for positive cocci to Escherichia coli, J Bacteriol. (1988) 170(4): 1739 Detection and Identification of Infectious Agents.” in Diagnostic 1745. Molecular Microbiology. Principles and Applications, American Buck, et al., Design Strategies and Performance of Custom DNA Society for Microbiology, Washington, DC pp. 3-87. Sequencing Primers, Biotechniques (1999). 27(3): 528-536. Vigenboom, E. et al., “Three tuf like genes in the kirromycin pro Carlin et al., Monoclonal antibodies specific for elongation factor Tu ducer Streptomyces ramoscissioms', microbiology, 14):983-998. and complete nucleotide sequence of the tufgene in Mycobacterium Plenum Press (1994). tuberculosis, Infect Immun. (1992) 60(8): 3136-3142. Wang, R. et al., “Phylogenetin analysis and identification of Shigella Chamberland et al., Antibiotic susceptibility profiles of 941 gram spp. by molecular probes'. Molecular and Cellular Probes, 11:427 negative bacteria isolated from Septicemi patients throught Canada: 432, Academic Press (1997). The Canadian Study Group, Clin Infect Dis. (1992) 15(4): 615-628. Watson, J.D. et al., (1987) “Molecular Biology of the Gene', 4th Chen et al., Transcription and expression of the exotoxin a gene of Edition, The Benjamin/CummingPublishing Company, Inc., Menlo Pseudomonas aeruginosa, Gen Microbiol. (1987) 133 (11): 3081 Park, CA, pp. 431–462. 3091. Weaver, G.A. et al., “Incidence of methanogenic bacteria in a Cleuziat et al., Specific detection of Escherichia coli and Shigella sigmoidoscopy population: an association of nethanogenic bacteria species using fragments of genes coding for b-glucuronidase, FEMS and diverticulosis.' Gut 27:698-704, British Medical Association Microbiol. Letters, (1990) 72: 315-322. (1986). Cormican et al., Multiplex PCR for identifying mycobacterial iso Westin, L., et al., “Anchored multiplex amplification on a microelec lates, J. Clin Pathol. (1995) 48:203-205. tronic chip array.” Nature Biotechnology, 18:199-204. Nature Pub Cote et al. Molecular Typing of Haemophilus influenzae. Using a lishing Co. (2000). DNA Probe and Multiplex PCR, Mol Cell Probes, (1994)8(1): 23-37. Whitcombe, D. et al., “Detection of PCR products using self Deneer et al., Species-Specific Detection of Listeria monocytogens probingamplicons and fluorescence.” Nature Biotechnology, 17:804 by DNA amplification, Appl. Envion Mircobiol. (1991) 57(2): 606 807, Nature Publishing Co. (1999). 609. US 8,182,996 B2 Page 5

Designer PCR. The advertisement from Research Genetics. Nucleic Griffin et al., Eds. PCR Technology—Current Innovations; Shar Acids Res. 22(15), Aug. 11, 1994. rocks, Chapter 2: The Design of Primers for PCR; CRC Press (1994) Dieffenbach et al. Eds. PCR Primer: A laboratory manual, Kwok et 5-11. al., Design and use of mismatched and degenerate primers, Cold Guay et al., Detection of the Pathogenic Parasite Spring Harbor Laboratory Press (1995) pp. 143-155. by Specific Amplification of Ribosomal Sequences Using Dopazo, et al., A Computer Program for the Design of PCR Primers Comultiplex Polymerase Chain Reaction, J. Clin Microbiol. (1993) for Diagnosis of Highly Variable Genomes, J Virol Meth. (1993) 31(2): 203-207. 41: 157-165. Gutierrez et al., Point Mutations that Reduce the Expression of Drmanac et al., DNA Sequence Determination by Hybridization: A malPQ, a Positively Controlled Operon of Escherichia coli, J Mol strategy for efficient large-scale sequencing, Science (1993) 260: Biol. (1984) 177(1): 69-86. 1649-1652. Horii et al., Organization of the recA Gene of Escherichia coli, Proc Dutilh et al., Specific Amplifications of a DNA Sequence Common Natl AcadSci USA. (1980) 77(1): 313-317. Toall Chylamydia trachomatis Serovars using the Polymerase Chain Hotomi et al., Detection of Haemophilus influenzae in Middle Ear of Reaction, Res Microbiol., (1989) 140: 7-16. Otitis Media with Effusion by Polymerase Chain Reaction, Int J Dutka-Malen et al., Sequence of the vanC gene of Enterococcus Pediatr Otorhinolaryngol. (1993)27(2): 19-26. gallinarum BM4174 encoding a D-alanine: D-alanine ligase-related Houard, et al. Specific Identification of Bordetella pertussis by the protein necessary for Vancomycin resistance, Gene (1992) 112: Polymerase Chain Reaction, Res Microbio. (1989) 140: 477-487. 53-58. Hynes et al., PCR. Amplification of Streptococcal DNA Using Crude Dutka-Malenet al., Detection of Glycopeptide Resistance Genotypes Cell Lysates, FEMS Microbiol Lett. (1992)94: 139-142. and Identification to the Species Level of Clinically Relevant Innis et al., Eds. Statistical Refinement of Primary Design Param Enterococci by PCR, J Clin Microbiol. (1995)31(1): 24-27. eters, PCR Applications; Beasley et al., Statistical refinement of East et al., Cloning and Sequence Determination of six Staphylococ primer design parameters, Academic Press (1999) Chapter 5: 55-71. cus aureaus betalactamasses and their expression in Escherichia coli Johnson, et al. Urinary Tract Infections in Women: Diagnosis and and Staphylococcus aureus, J Gen Microbiol. (1989) 135(4): 1001 Treatment, Ann Intern Med. (1989) 111: 906-917. 15. Kamla, (1994) Database EMPRO EMBLAC: Z34275. Edwards et al., Multiplex PCR: Advantages, Development, and Kaper et al., Pathogenicity islands and Other Mobile Genetic Ele Applications, PCR Meth. Appl. (1994) 3: 565-575. ments of Diarrheagenic Escherichia coli, Am Soc Microbio. (1999) Emori et al. An Overview of Nosocomial Infections, Including the 3: 33-58. Role of Microbiology Laboratory. Clin Microbiol Rev. (1993) 6(4): Kaufhold et al., Identical Genes Confer High-Level Resistance to 428-442. Gentamicin upon Enterococcus faecalis, Enterococcus faecium, and Evers et al., Sequence of the vanB and ddl Genes Encoding Streptococcus agalactiae, Antimicrob Agents Chemother. (1992) D-alanine:D-lactate and D-alanine:D-alanine Ligases in 36(6): 1215-1218. Vancomycin-resistant Enterococcus faecalis V583. Gene. (1994) Kearns et al., Rapid Detection of Methicillin-Resistant Staphylococci 140(1): 97-102. by Multiplex PCR, J Hosp Infect. (1999)43: 33-37. Experimental Protocol concerning Enablement of EP-B1804 616 Khan et al., Detection of Pseudomonas aeruginosa from Clinical and signed by Martin Gagnon/Marc Ouellette on Mar. 24, 2004. Environmental Samples by Amplification of the Exotoxin A Gene Eykyn et al., The Causative Organisms of Septicaemia and Their Using PCR, Appl Environ Microbiol. (1994) 60(10): 3739-3745. Epidemiology. J Antimicrob Chemother. (1990) 25 Suppl C: 41-58. Kong et al., Co-detection of Three Species of Water-borne Bacteria Figueroa et al., Multiplex Polymerase Chain Reaction based Assay by Multiplex PCR, Marine Pollution Bulletin, (1995) 31 (4-12): for the Detection of bigemina, Babesia bovis andAnaplasma 317-324. marginale DNA in Bovine Blood, Vet Parasit., (1993) 50: 69-81. Kwok et al., Avoiding False Positive with PCR, Nature (1989) 339: Fischer et al., Mannitol-specific Phosphoenolpyruvate-dependent 237-238. Phosphotransferase System of Enterococcus faecalis: Molecular Le Bouguenec et al., Rapid and Specific Detection of the pap, afa, and Cloning and Nucleotide Sequences of the Enzyme III' Gene and Sfa Adhesin-encoding Operons in Uropathogenic Escherichia coli the Mannitol-1-phosphate Dehydrogenase Gene, Expression in Strains by Polymerase Chain Reaction, J. Clin Microbiol. (1992) Escherichia coli, and Comparison of the Gene Products with Similar 30(5): 1189-1193. Enzymes, J Bacteriol. (1991) 173(12): 3709-3715. Li et al., Identification of Bordetella pertussis Infection by Shared Fleischmann et al., Whole-genome Random Sequencing and Assem primer PCR, J. Clin Microbiol., (1994) 32(3): 783-789. bly of Haemophilus influenzae Rd. Science (1995) 269(5223): 496 Loechel et al., Nucleotide Sequence of the tuf Gene from 512. Mycoplasma genitalium, Nucleic Acids Res. (1989) 17(23): 10127. Fratamico et al., Detection of Escherichia coli O157:H7 by multiplex Lowe et al., Nucleotide Sequence of the Aliphatic Amidase Regulator PCR, J Clin Microbiol., (1995) 33(8): 2188-2191 Gene (amiR) of Pseudomonas aeruginosa, FEBS Lett. (1989) 246 Friedlandet al., Development of a Polymerase Chain Reaction Assay (1-2): 39-43. to Detect the Presence of Streptococcus pneumoniae DNA, Diagn Ludwig et al., (1994) Database EMPRO. EMPBL AC:X76863, Microbio Infect Dis. (1994) 20(4): 187-193. X76866, X76867, X76871, X76872. Gannon et al., Rapid and Sensitive Method for Detection of Shiga Ludwig et al., Phylogenetic relationships of Bacteria based on com like Toxin-producing Escherichia coli in Ground Beef Using the parative sequence analysis of elongation factor Tu and ATP-synthase Polymerase Chain Reaction. Appl Env Microbiol. (1992) 58(12): B-subunit genes, Antonie von Leeuwenhoek (1993) 64:285-305. 3809-3815. Malloy et al., Detection of Borrelia Burgdorferi Using Polymerase Gehaetal. Multiplex PCR for Identification of Methicillin-Resistant Chain Reaction, J Clin Microbiol. (1990), 28(6): 1089-1093. Staphylococci in the Clinical Labortory, J. Clin Microbiol. (1994), McIntosh et al., Detection of Pseudomonas aeruginosa in Sputum 32(7): 1768-72. from Cystic Fibrosis Patients by the Polymerase Chain Reactions, GenBANKGI: 147581 online Sep. 14, 1992 retrieved on Oct. 12, Mol Cell Probes (1992) 6(4): 299-304 Abstract. 2008), retrieved from http://www.ncbi.nlm.nik.gov/entrez/ McMillin et al., Simultaneous Detection of Toxin A and Toxin B viewerfcgi? 147581:OLDID: 114614 (4 pages). Genetic Determinants of Clostridium difficile Using the Multiplex Gillespie et al., Detection of Streptococcus pneumoniae in sputum Polymerase Chain Reaction, Can J Microbiol. (1992) 38: 81-83. samples by PCR, J Clin Microbiol. (1994) 32(5): 1308-11. Monod et al., Sequence and Properties of pIM13: A Macrollide Gray et al., Cloning, Nucleotide Sequence, and Expression in lincosamide-streptogramin B resistance Plasmid from Bacillus Escherichia coli of the Exotoxin A Structural Gene of Pseudomonas subtilis, J Bacteriol. (1986) 167(1): 138-147. aeruginosa, Proc Natl AcadSci USA. (1984) 81(9): 2645-2649. Murphy et al., (1986) Database EMPRO. EMBL. ACX03216. Greisen et al., PCR Primers and Probes for the 16S rRNA Gene of O'Callaghan et al., Development of a PCR Probe Test for Identifying Most Species of Pathogenic Bacteria, Including Bacteria Found in Pseudomonas aeruginosa and Pseudomonas (Burkholderia) Cerebospinal Fluid, J. Clin Microbiol. (1994) 32(2): 335-351. cepacia, J Clin Pathol. (1994) 47(3): 222-226. US 8,182,996 B2 Page 6

Ohama et al., Organization and Codon Usage of the Streptomycin Tyler et al., Streptococcal Erythrogenic Toxin Genes: Detection by Operon in Microcuccus luteus, a Bacterium with a High Genomic Polymerase Chain Reaction and Association with Disease in Strains G+C Content, J Bacteriol. (1987) 169(10): 4770-4777. Isolated in Canada from 1940 to 1991, J. Clin Microbiol. (1992) Olcén et al., Rapid Diagnosis of Bacterial Meningitis by a 30(12): 3127-3131. Seminested PCRStrategy, ScandJ Infect Dis. (1995)27(5): 537-539. Ubukata et al., Rapid Detection of the mecA Gene in Methicillin Ouellette et al., Precise Insertion of Antibiotic Resistance Determi resistant Staphylococci by Enzymatic Detection of Polymerase nants into Tn21 like Transposons: Nucleotide Sequence oftheOXA-1 Chain Reaction Products, JClin Microbiol. (1992)30(7): 1728-1733. f5-lactamase Gene, Proc Natl Acad Sci. USA (1987) 84: 7378-7383. Ueyama et al., High Incidence of Haemophilus influenzae in Palm et al., Evolution of Catalytic and Regulatory Sites in Nasopharyngeal Secretions and Middle Ear Effusions as Detected by Phosphorylases, Nature (1985)313(6002): 500-502. PCR, J. Clin Microbiol. (1995) 33(7): 1835-1838. Perlee, et al. (1993) Database EMPRO EMBL, Translation elonga Unal et al., Detection of Methicillin-Resistant Staphylococci by tion factor EF-Tu of Borrelia burgdorferi—CA:L23125. Using the Polymerase Chain Reaction, J. Clin Microbio. (1992) Pezzlo, Detection of Urinary Tract Infections by Rapid Methods, 1685-1691. Clin Microbiol Rev. (1988) 1(2): 268-280. van Ketel, Detection of Haemophilus influenzae in Cerebrospinal Podbielski, Streptococcus agalactiae Camp Gene. Submitted to Fluids by Polymerase Chain Reaction DNA Amplification, J Med Genbank database on Mar. 22, 1993, Accession No. 72754. Microbiol. (1990) 33: 271-276. Podzorski et al., Molecular Detection and Identification of Microor Vannuffel et al., Specific Detection of Methicillin-Resistant ganisms in Manual of Clinical Microbiology, (1995) ASM Press, pp. Staphylococcus Species by Multiplex PCR. J. Clin Microbiology, 130-157. (1995) 2864-2867. Pollard et al., A Polymerase Chain Reaction (PCR) Protocol for the Wang et al. A 16S rDNA-based PCRMethod for Rapid and Specific Specific Detection of Chlamydia spp., Mol Cell Probes... (1989) 3: Detection of Clostridium perfringens in Food, Mol Cell Probes 383-389. (1994) 8(2): 131-137. Post et al., Molecular Analysis of Bacterial Pathogens in Otitis Media Watson et al., Molecular Biology of the Gene, 4th Ed. The Genetic with Effusion, JAMA (1995) 273(20): 1598-1604. Code: The Benjamin/Cummings Publishing Company, Inc., (1976) Priebe, et al., Nucleotide Sequence of the hexa Gene for DNA Mis Chapter 15, pp. 339-358. match Repair in Streptococcus pneumoniae and Homology of hexa Way et al., Specific Detection of Salmonella spp. By Multiplex Polymerase Chain Reaction, App Environ Microbiol. (1993) 59(5): to mutS of Escherichia coli and Salmonella typhimurium. J. 1473-1479. Bacteriol. (1988) 170: 190-196. Weickmann and Weickmann, Reference D34, European Opposition Pritchard et al., Possible Insertion Sequences in a Mosaic Genome for EP 0804616Spezifität der Primer, Annex II: Specific and ubiqui Organization Upstream of the Exotoxin A Gene in Pseudomonas tous primers for DNA amplification, 11 pages, (Sep. 13, 2007). aeruginosa, J Bacteriol. (1990) 172(4): 2020-2028. Weickmann and Weickmann, Reference D35, European Opposition Radström et al., Detection of Bacterial DNA in Cerebrospinal Fluid for EP 0804616, Vergleich: Bacterial species: Escherichia coli, 1 p. by an Assay for Simultaneous Detection of Neisseria meningitidis, (Sep. 13, 2007). Haemophilus influenzae, and Streptococci Using a Seminested PCR Weickmann and Weickmann, Reference D40, European Opposition Strategy, J. Clin Microbiol. (1994) 32(11): 2738-2744. for EP 0804616, Comparison of Sequences TRP0O3 and TRP004 of Rosa et al., A Specific and Sensitive Assay for the Lyme Disease W093/1224.5 with Seq ID No. 5 of EP 804616 (Sep. 13, 2007). Spirochete Borrelia burgdorferi Using the Polymerase Chain Reac Weickmann and Weickmann, Reference D43, European Opposition tion, J Infect Dis. (1989) 160(6): 1018-1028. for EP 0804616Comparison of Sequence E. coli malPQ operon, Rosa et al., Polymerase Chain Reaction Analyses Identify Two Dis 5'-end of Gutierrez et al., J. MoI. Biol. 177(1) (1984) 69-86 with Seq tinct Classes of Borrelia Burgodorferi, J. Clin Microbiol. (1991) ID No. 6 (glycogen phosphorylase) of EP804616; of Sequence E.coli 29(3): 524-532. recA gene, 5'-region of Zhao et al., Mol.Gen. Genet. 222(2-3) (1990) Rudolph et al., Evaluation of Polymerase Chain Reaction for Diag 369-376 with Seq ID No. 7 of EP804616, and of exotoxin A gene of nosis of Pneumococcal Pneumonia, JClin Microbiol. (1993)31(10): Chen et al., J. Gen. Microbiol. 133(11) (1987) 3081-3091 with Seq 2661-2666. ID No. 18 of EP 804616 (Sep. 13, 2007). Ryffel et al., Sequence Comparison of mecA Genes Isolated from Weickmann and Weickmann, Reference D49, European Opposition Methicillin-resistant Staphylococcus aureus and Staphylococcus for EP 0804616, Vergleich (Sequence Comparison) der Seq ID No. epidermidis, Gene (1990) 94(1): 137-8. 26 (Haemophilus influenzae omp P1 gene) aus EP804616 und Sonde Sambrook et al., Eds. Molecular Cloning: A Laboratory Manual, 2nd 106baus EP804616 mit Primer Homplund Homp3 aus Cote S. Etal. Ed. Cold Spring Harbor Laboratory Press, (1989) pp. 1.21-1.52. Mol. Cell. Probes (Feb. 1994) 8:23-37 (Sep. 13, 2007). 9.31-9.62, 10.1-10.70, and 11.1-11.61. Weickmann and Weickmann, Reference D50, European Opposition Sanger et al., DNA Sequencing with Chain-Terminating Inhibitors, for EP 0804616, Vergleich der Seq ID No. 27 (Haemophilus PN.A.S. (1977)74(12):5463-5467. influenzaetransformation gene cluster)und Primer 154 b/w 155bund Schaechter et al., Mechanisms of Microbial Disease. The Enteric Sonde 107b aus EP804616 mit Primer Htra3aus Cote S. et al., Mol. Bacteria: Diarrhea and Dysentery, Dept Microbiol Immunol. (1989), Cell. Probes (Feb. 1994) 8:23-37. 17: 256-265. Weickmann and Weickmann, Reference D52, European Opposition Shaw et al., Isolation, Characterization, and DNA Sequence Analysis for EP 0804616, Comparison of Seq ID No. 8 to 21 of EP577523 with of an ACC(6')-II Gene from Pseudomonas aeruginosa, Antimicro neuraminidase nanA of Streptococcus pneumoniae (cf. Seq ID No. Agents Chimo. 33(12): 2052-2062. 35 of EP804616). Silvestrini et al., Nitrite Reductase from Pseudomonas aeruginosa: Weickmann and Weickmann, Reference D54, European Opposition Sequence of the Gene and the Protein, FEBS Lett. (1989) 254(1-2): for EP 0804616, Comparison of Seq ID No. 1 and Primers YR2 and 33-38. YR6 of FR2686604 with primers Seq ID No. 141 and 142 of Spierings et al., Characterization of the Citrobacter freundii phoE EP804616 (Sep. 13, 2007). Gene and Development of C. freundii-specific Oligonucleotides, Weickmann and Weickmann, Reference D56, European Opposition FEMS Microbiol. Letters (1992) 99:199-204. for EP 0804616, Vergleich der Seq ID No. 33 (Streptococcus Stacy-Phipps et al. Multiplex PCR Assay and Simple Preparation pyogenes Exotoxin A gene) aus EP804616 und Primern Seq ID Nos. Method for Stool Specimans Detect Enterotoxigenic Escherichia 143 bzw. 144b (EP804616) mit speA-Primern P1-P4 aus Black C.M. Coli DNA during Course of Infection, JClin Microbio. (1995).33(5): et al., Mol. Cell. Probes (1993) 7:255-259 und speA-primern SPEA 1054-1059. 1, SPEA-2 aus Tyler S.D. et al., J.Clin.Microbiol. Dis. (1992) Su et al., Nucleotide Sequence of the Gelatinase Gene (gelE) from 30:3127-3131 (Sep. 13, 2007). Enterococcus faecalis subsp. Liquefaciens, Infect. Immun. (1991) Weickmann and Weickmann, Reference D58, European Opposition 59(1): 415-420. for EP 0804616, References for target genes (Sep. 13, 2007). US 8,182,996 B2 Page 7

Weickmann and Weickmann, Reference D72, European Opposition Paradis et al., The Potential of EF-Tu Sequences for Identification of for EP 0804616Vergleich der Seq ID Nos. 18 und 20 (Pseudomonas Clinically Important Enterobacteriaceae Species (Sep. 1999) 39: aeruginosa) aus EP804616 und der entSprechenden Probesequenzen 227; Abstract 1574. Seq ID Nos. 87-90 und 94 +95 mit Primer und Probesequenzen Post et al., Development and Validation of a Multiplex PCR-based ETA1-ETA7 aus Khan et al., Appl. Environment. Microbiol. Oct. Assay for the Upper Respiratory Tract Bacterial Pathogens 1994. Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella White et al., The Polymerase Chain Reaction: Clinical Applications, catarrhalis, (1996) 1(1): 29-39. Adv. Clin Chem. (1992) 29:161-196. Zhanel et al., Antimicrobial Resistance in Haemophilus influenzae Wilson et al., Detection of Enterotoxigenic Staphlococcus aureus in Dried Skimmed Milk: Use of the Polymerase Chain Reaction for and Moraxella catarrhalis Respiratory Tract Isolates: Results of the Amplification and Detection of Staphylococcal Enterotoxin Genes Canadian Respiratory Organizm Susceptibility Study, 1997 to 2002, entB and entCI and the Thermonuclease Gene nuc. Appl Environ Antimicrob Agents Chemother. (Jun. 2003)47(6): 1875-1881. Microbiol. (1991) 1793-1798. Ako-Nai et al., The Characterisation of Clinical Isolates of Wittwer et al., Rapid Cycle DNA Amplification: Time and Tempera Staphylococcus aureus in Ile-Ife, Nigeria, J Med Microbiol. (1991) ture Optimization, Biotechniques (1991) 10(1): 76-83. 34: 109-112. Yanofsky et al. The Complete Nucleotide Sequence of the Bongaerts et al. In Vitro Activities of BAYY3118, Ciprofloxacin, Tryptophan Operon of Escherichia coli. Nucleic Acids Res. (1981) Ofloxacin, and Fleroxacin against Gram-Positive and Gram-Nega 9(24): 6647-6668. tive Pathogens from Respiratory Tract and Soft Tissue Infections, Yoshikawa et al., Bacillus subtilis Genes for RNA Polymerase beta Antimicro Agents Chemother. (Sep. 1993) 37(9):2017-2019. Subunit, Ribosomal Proteins L 12 and S7, Elongation Factors G and Derecola et al. A 5-Year Surveillance Study of 44.691 Isolates of Tu and Ribosomal Proteins S10 and L3, EMBL. AC: D64127. Sub Haemophilus influenzae Project Beta-Alert 1993-1997, Antimicro mitted to DDB/EMBL/Genbank database on Apr. 14, 1995. Agen Chemothera. (Jan. 1999) 43(1):185-186. Zakrewska-Czerwinska et al., Identification of Staphylococcus GenBANK Accession No. M37185, Enterococcus faecalis epidermidis. Using a 16S rRNA-directed Oligonucleotide Probe, Gelatinase (gelE) Gene, Complete CDS (Apr. 1993). FEMS Microbiol Lett. (1992) 100: 51-58. GenBANK Accession No. Z26902, Phylogenetic Analysis. Using Zambardi et al., Laboratory Diagnosis of Oxacillin Resistance in 16S rDNA Sequencing of Staphylococci (Oct. 1993). Staphylococcus aureus by a Multiplex-polymerase Chain Reaction Guzmnan et al., Role of Adherence in Pathogenesis of Enterococcus Assay, Diagn Microbiol Infect Dis. (1994) 19:25-31. Zhang et al., Cloning, Sequencing, and Expression in Escherichia faecalis Urinary Tract Infection and Endocarditis, Infect Immun. coli of the Gene Encoding a 45-Kilodalton Protein, Elongation Factor (Jun. 1989) 57(6): 1834-1838. Tu, from Chlamydia trachomatis Serovar F. J. Bacteriol. (1994) Izumiya et al., Characterization of Multidrug-Resistant Salmonella 176(4): 1184-1187. enterica Serovar Typhimurium Isolated in Japan, J. Clin Microbio. Zhao et al., DNA Sequence Analysis of the recA Genes from Proteus (Jul 2001) 39(7): 2700-2703. vulgaris, Etwinia carotovora, Shigella flexneri and Escherichia coli Jenkins, F. J. Basic Methods for the Detection of PCR Products, B/r, Mol Gen Genet. (1990) 222(2-3): 369-376. Genome Res. (Apr. 1994)3:S77-S82. International Search Report dated Jul. 1, 1998 from PCT/CA97/ Jordá, et al. Diagnosis of Nosocomial Pneumonia in Mechanically 00829, filed Nov. 4, 1997. Ventilated Patients by the Blind Protected Telescoping Catheter, International Search Report dated Apr. 12, 2002 from PCT CA00/ Intensive Care Med. (1993) 19:377-382. 0 1 150, filed Sep. 28, 2000. Kim et al., Simultaneous Detection by PCR of Escherichia coli, Aragón et al., Increase in?-lactam-resistant Proteus mirabilis Strains Listeria monocytogenes and Salmonella typhimurium in Artificially due to CTX-M- and CMY-type as well as New VEB-and Inhibitor Inoculated Wheat Grain, Interl J Food Microbio. (Apr. 2006) resistant TEM-type B-Iactamases, J Antimicro Chemother. (2008) 111:21-25. 61: 1029-1032. Lewis et al., Emergence of Clinical Isolates of Staphylococcus aureus Bagley et al., Significance of Fecal Coliform-positive Klebsiella, Resistant to Gentamicin and Correlation of Resistance with App Environ Microbio. (May 1977) 33(5): 1141-1148. Bacteriophage Type, (Mar. 1978) 137(3): 314-317. Duncan, Susceptibility of 1,500 Isolates of Pseudomonas aeruginosa Miller et al., Community Acquired Lobar Pneumonia in Patients with to Gentamicin, Carbenicillin, Colistin, and Polymyxin B, Antimicro Agents Chemother. (Jan. 1974) 5(1): 9-15. HIV Infection and AIDS, Thorax (Apr. 1994) 49:367–368. Feizabadi, Drug Resistant Patterns of Enterococci Recovered from Neu, Harold C. The Crisis in Antibiotic Resistance, Science (Aug. Patients in Tehran During 2000-2003, Letters to the Editor; Int J 1992) 257:1064-1073. Antimicrob Agents (2004) 24: 521-522. Powers, Robert D., New Directions in the Diagnosis and Therapy of Fenoll et al., Serotype Distribution and Antimicrobial Resistance of Urinary Tract Infections, (1991) Am J ObstetGynecol., 164: 1387 Streptococcus pneumoniae Isolates Causing Systemic Infections in 1389. Spain, 1979-1989, (1991) 13: 56-60. Betzlet al., Identification of Lactococci and Enterococci by Colony Higashide et al., Methicillin-resistant Staphylococcus saprophyticus Hybridization with 23S rRNA-Targeted Oligonucleotide Probes, Isolates Carrying Staphylococcal Cassette Chromosome mec Have Appl Environ Microbio. (Sep. 1990) 56(9):2927-2929. Emerged in Urogenital Tract Infections, Antimicrob Agents Ehrlich et al., Eds. PCR-Based Diagnosis in Infectious Disease, Chemother. (Jun. 2008) 52(6): 2061-2068. Chapters 1,3, Blackwell Scientific Publications (1994), pp. 3-18 and Madico et al., Touchdown Enzyme Time Release-PCR for Detection 45-55. and Identification of Chlamydia trachomatic, C. pneumoniae, and C. Mitsuhashi M., Technical Report: Part 2. Basic Requirements for psittaci Using the 16S and 16S-23S Spacer rRNA Genes, J. Clin Designing Optimal PCR Primers, JClin Lab Anal., (1996) 10: 285 Microbiol. (Mar. 2000) 38(3): 1085-1093. 293. Metherell et al., Rapid, sensitive, mircobial detection by gene ampli Bei et al., Detection of coliform bacteria and Escherichia coli by fication using restriction endonuclease target sequences, Mol Cell multiplex polymerase chain reaction: Comparison with defined Sub Probes (1997) 11:297-308. strate and plating methods for water quality monitoring, Appl NCBI Blast: Nucleotide Sequence, Attachment for Sequence Com Environ Microbio. (Aug. 1991) 57(8): 2429-2432. parison between 5'-CCAGCTGTATTAGAAGTA-3' from Seq ID No. Cebula, et al., Simultaneous identification of strains of Escherichia 9 and Genomes of Bacteria bacillus cereus Q1 and AH187. (online: coli Serotype O157:H7 and their shiga-like toxin type by mismatch Apr. 12, 2009) 1 page. amplification mutation assay-multiplex PCR. J. Clin Microbio. (Jan. NCBI Blast: Nucleotide Sequence, Attachment for Sequence Com 1995) 33(1): 248-250. parison between 5'CTGAACATTATCTTTGAT-3' from Seq ID Frankel et al., Multi-gene amplification: simultaneous detection of No. 10 and Complete Genome of Streptococcus Mutans UA159, three virulence genes in diarrhoeal stool, Mol Microbio. (1989) (online: Apr. 12, 2009) 1 page. 3(12): 1729-1734. US 8,182,996 B2 Page 8

GenBank Accession No. FJ858146. Enterococcus faecium Strain Bergeron, M.G. et al., “Diagnosing Bacterial Infectious Diseases in QSE32 fsr Operon, Complete Sequence; and GelE (gelE) and SprE One Hour: An Essential Upcoming Revolution.” Infection 23, No. (sprE) Genes, Complete CDS. (Nov 2009) http://www.ncbi.nlm.nih. 2:5-8, Verlagsgesellschaft Otto Spatz (1995). gov/nuccore/226938234. Bergeron, M.G. et al., “Preventing Antibiotic Resistance through GenBank Accession No. AP000565, Homo Sapiens Genomic DNA, Rapid Genotypic Identification of Bacteria and of Their antibiotic Chromosome 21O22, clone:f79A10, D21S226-AML Region, Com Resistance Genes in the Clinical Microbiology Laboratory.” Journal plete Sequence, (Nov. 1999) http://www.ncbi.nlm.nih.gov/nuccore? of Clinical Microbiology, vol. 36, No. 8:2169-2172, American Soci 6O15482. ety for Microbiology (1998). Haas et al., Universal PCR primers for detection of phytopathogenic Berkenkamp, S. et al., “Infrared MALDI Mass Spectrometry of Agrobacterium strains, App Environ Microbio. (Aug. 1995) 61 (8): Large Nucleic Acids.” Science, vol. 281 260-262, American Asso ciation for the Advancement of Science (1998). 2879-2884. Birnboim, H.C. And Doly, J., Nucleic Acids Research, p. 1513-1523, Harth et al., Epidemiology of Vibrio parahaemolyticus Outbreaks, Oxford University Press (1979). Southern Chile, Emerg Infect Dis. (Feb. 2009) 15(2): 163-168 and Brenner, D.J. et al., “Polynucleotide Sequence Relatedness Among GenBank Accession No. EU185084 downloaded from http://ncbi. Three Groups of Pathogenic Escherichia coli Strains.” Infection and nlm.nih.gov/nuccore/158524083. Immunity, vol. 6, No. 3: 308-315. American Society for Microbiol Kaltenboecket al., Two-step polymerase chain reactions and restric ogy (1972). tion endonuclease analyses detect and differentiate Ompa DNA of Brenner, D.J. et al., “Polynucleotide Sequence Divergence Among Chlamydia spp., J. Clin Microbio. (May 1992) 30(5): 1098-1104. Strains of Escherichia coli and Closely Related Organisms,” Journal Lucotte et al. A multiple primer pairs polymerase chain reaction for of Bacteriology, vol. 109, No. 3:953-965, American Society for the detection of human genital papillomavirus types, Mol Cell Probes Microbiology (1972). (1993) 7: 339-344. Brenner, D.J. et al., “Enterobacter gergoviae sp. nov.: a New Species Opposition Brief by Infectio Diagnostic (I.D.I.) Inc. dated Sep. 14. of Enterobacteriaceae Found in Clinical Specimens and the Envi 2007 from EP Application No. 95931 109.3, filed Sep. 12, 1995. ronment.” International Journal of Systematic Bacteriology vol. 30, Opposition Brief by Roche Diagnostics GmbH dated Sep. 21, 2007 No. 1: 1-6, Society for General Microbiology (1980). from EP Application No. 95931 109.3, filed Sep. 12, 1995. Brenner, D.J. et al., “Escherichia vulneris: a New Species of Reply Brief by Roche Diagnostics GmbH dated Jan. 29, 2008 to Enterobacteriaceae Associated with Human Wounds,” Journal of Clinical Microbiology, vol. 15, No. 6: 1133-1140, American Society Opposition Brief by I.D.I. from EP Application No. 95931 109.3, for Microbiology (1982). filed Sep. 12, 1995 (w/English translation). Brenner D.J. et al., “Attempts to Classify Herbicola Group Reply Briefby I.D.I. dated Apr. 1, 2008 to Roche's Appeal Brief from Enterobacter agglomerans Strains by Deoxyribonucleic Acid EP Application No. 95931 109.3, filed Sep. 12, 1995. Hybridization and Phenotypic Tests.” International Journal of Sys EPONotice of Summons to Oral Proceedings and Preliminary Opin tematic Bacteriology, vol. 34, No. 1:4-55, Society for General ion dated May 20, 2010 from EP Application No. 95931 109.3, filed Microbiology (1984). Sep. 12, 1995. Brenner, D.J. et al., “Enterobacter asburiae sp. nov., a New Species Reply Brief by I.D.I. dated Sep. 6, 2010 to Summons/Preliminary Found in Clinical Specimens, and Reassignment of Erwinia dis Opinion from EP Application No. 95931 109.3, filed Sep. 12, 1995. solvens and Erwinia nimipressuralis to the Genus Enterobacter as Reply Brief by Roche dated Sep. 6, 2010 to Summons/Preliminary Enterobacter dissolvens comb. nov. and Enterobacter nimipres Opinion from EP Application No. 95931 109.3, filed Sep. 12, 1995 suralis comb. nov.” Journal of Clinical Microbiology, vol. 23, No. (w/English translation). 6:114-120, American Society for Microbiology (1986). EPO Notice of Decision of Appeal dated Oct. 6, 2010 from EP Brenner, D.J., “Introduction to the Family Enterobacteriaceae', in Application No. 95931 109.3, filed Sep. 12, 1995. Balows, A. et al: “The Prokaryotes, A Handbook on the Biology of Abdulkarim, F. et al., “Homologous Recombination between the tuf Bacteria: Ecophysiology, Isolation, Identification, Applications'. Genes of Salmonella typhimurium,'J. Mol. Biol. 260:506-522. Aca 2nd Edition vol. III, Chapter 141, p. 2673-2695, Springer-Verlag demic Press (1996). (1992). Altschul, S.F. et al., “Basic Local Alignment Search Tool.” J. Mol. Brenner, D.J. "Additional Genera of Enterobacteriaceae' in Balows, Biol. 215:403-410, Academic Press (1990). A. et al. “The Prokaryotes, A Handbook on the Biology of Bacteria: Amann, R. et al., "B-Subunit of ATP-synthase: a Useful Marker for Ecophysiology, Isolation, Identification, Applications'. 2nd Edition, Studying the Phylogenetic Relationship of Eubacteria.” Journal of vol. III, Chapter 155, p. 2922-2937, Springer-Verlag (1992). General Microbiology 134: 2815-2821, Society for General Brenner, D.J., “Classification of Citrabacteria by DNA Hybridiza Microbiology (1988). tion: Designation of Citrobacter fatmeri sp. nov. Citrobacter Aminov, et al. “Cloning, sequencing and complementation analysis youngae sp. nov, Citrobacter braakii sp. nov. Citrobacter Werkmanii of the recA gene from Prevotella ruminicola.” FEMS Microbiology sp. nov. Citrobacter sedlaki sp. nov. and Three Unnamed Letters. 144:53-59 (1996). Citrobacter Genomospecies.” International Journal of Systematic Anborgh, P. et al., “New antibiotic that acts specifically on the GTP Bacteriology, vol.43, No.4: 645-658, Society for General Microbiol bound form of elongation factor Tu.” The EMBO J., vol. 10, No. ogy (1993). 4:779-784, IRL Press (1991). Brenner, D.J., “Biochemical Identification of Citrobacter Species Anderson, R.C., et al. (1998). “Micro Total Analysis Systems Defined by DNA Hybridization and Description of Citrobacter gil '98.”Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. lenii sp. nov. (Formerly Citrobacter Genomospecies 10) and 11-16, 221-224. Citrobacter murliniae sp. nov. (Formerly Citrobacter Genomospe Belay, N. et al., “Methanogenic Bacteria from Human Dental cies 11)” Journal of Clinical Microbiology, vol. 37, No. 8: 2619 Plaque.” Applied and Environmental Microbiology, vol. 54, No. 2624, American Society for Microbiology (1999). 2:600-603, American Society for Microbiology (1988). Caldas, T.D. et al., “Chaperone Properties of Bacterial Elongation Belay N. et al., “Methanogenic Bacteria in Human Vaginal Samples.” Factor EF-Tu.” The Journal of Biological Chemistry, vol. 273, No. Journal of Clinical Microbiology, vol. 28 No. 7:1666-1668, Ameri 19:11478-11482, American Society for Biochemistry and Molecular can Society for Microbiology (1990). Biology (1998). Bercovier, H. et al., “Infra- and Interspecies Relatedness of Yersinia Carrino, J.J., et al. (1997), “Ligation-Based Nucleic Acid Probe pestis by DNA Hybridization and Its Relationship to Yersinia Methods,” in Nucleic Acid Amplification Technologies. Application pseudotuberculosis.” Current Microbiology, vol. 4: 225-229, to Disease Diagnosis, Eaton Publishing, Boston, MA. pp. 61-123. Springer International (1980). Cha, R.S., and Thilly, W.G. (1995) “Specificity, Efficiency, and Berg, et al. Development of an amplification and hybridization assay Fidelity of PCR” in PCR Primer; A Laboratory Manual, Dieffenbach, for the specific and sensitive detection of Mycoplasma fementans C.W., and Dveksler, G.S., eds., pp. 37-51, 53-62, 143-155, Cold DNA. Molecular and Cellular Probes. 10:7-14 (1996). Spring Harbor Laboratory Press, Plainview, NY. US 8,182,996 B2 Page 9

Chen, K, et al., “Broad range DNA probes for detecting and ampli Gogarten, J.P. et al. (1989), “Evolution of the vacuolar H+ATPase: fying eubacterial nucleic acids.” FEMS Microbiology Letters, 57:19 Implication for the origin of eukaryotes.” Pros. Natl. Acad. Sci. USA, 24, Elsevier/North Holland (1989). vol. 86: 6661-6665, National Academy of Sciences (1989). Chiu, N.H.L. at al., “Mass Spectrometry of Nucleic Acids.” Clinical Greer, J., “Comparative Modeling of Homologous Chemistry, 45, No. 9:1578, American Association for Clinical Chem Proteins.”Methods in Enzymology, vol. 202: 239-252, Academic istry (1999). Press (1991). Christensen, H. at al., “Phylogenetic relationships of Salmonella Grunberg-Manago, M., "Regulation of the Expression of Aminoacyl based on DNA sequence comparison of aipD encoding the f subunit tRNA Synthetases and Translation Factors', in Neidhart, F.C. Ed. of ATP synthase.” FEMS Microbiology Letters, 161: 89-96, Elsevier/ "Escherichia coli and Salmonella, Cellular and Molecular Biology”. North Holland (1998). 2nd Ed., vol. 1, ASM Press, Washington, DC, p. 1432-1457 (1996). Cilia, V. et al., “Sequence Heterogeneities Among 16S Ribosomal Guex N. et al., “Protein modelling for all.” TIBS 24: 364-367, RNA Sequences, and Their Effect on Phylogenetic Analyses at the Elsevier (1999). Species Level.” Mol. Biol. Evol., 13(3):451-461, Society for Molecu Gupta, R.S., “Protein Phylogenies and Signature Sequences: A lar Biology and Evolution (1996). Reappraisal of Evolutionary Relationships among Archaebacteria, Clayton, R.A. et al., “Intraspecific Variation in Small, Subunit rRNA Eubacteria, and Eukaryotes.” Microbiology and Molecular Biology Sequences in GenBank: Why Single Sequences May Not Adequately Reviews, vol. 62, No.4: 1435-1491, American Society for Microbiol Represent Prokaryotic Taxa.” International Journal of Systematic ogy (1998). Bacteriology, vol. 45, No. 3:59, Society for General Microbiology Hart, D.L. et al., “The Population Genetics of Escherichia coli.” Ann. (1995). Rev. Genet., 18: 31-68, Annual Reviews, Inc. (1984). Cousineau, B. et al., “On the Origin of Protein Synthesis Factors: A Hedegaard, J. et al., “Identification of Enterobacteriaceae by partial Gene Duplication/Fusion Model.” J. Mol. Evol. 45: 661-670, sequencing of the gene encoding translation initiation factor 2. Inter Springer-Verlag (1997). national Journal of Systematic Bacteriology, 49:1531-1538, Society Croizé J. (1995), “Les méthodes automatisees d identification des for General Microbiology (1999). bacteries a 1 aube de 1995.” La Lettre del Infectiologue, Tomek, No. Hill, C.W. et al., “Inversions between ribosomal RNA genes of 4:109-113, Vivactis Media & Akoa, Abstract. Only. Escherichia coli. Proc. Natl. Acad. Sci. USA, vol. 78, No. 11: Dickey, R.S. et al., “Emended Descriptions of Enterobacter cancero 7069-7072, National Academy of Sciences (1981). enus comb. nov. Formerly Erwinia cancerogena).”International Jour Ibrahim A. et al. (1993). “The phylogeny of the genus Yersinia based on I6S rDNA sequences.” FEMS Microbiology Letters 114: 173-178 nal of systematic Bacteriology, vol. 38, No. 4: 371-374. Society for and correction published in FEMS Microbiology Letters 116 (1994) General Microbiology (1988). at p. 243, IRL Press. Egholm M. et al., “PNA hybridizes to complementary Iwabe, N. et al., “Evolutionary relationship of archaebacteria, oligonucleotides obeying the Watson-Crick hydrogen-bonding eubacteria, and eukaryotes inferred from phylogenetic trees of dupli rules.” Nature vol. 365: 566-568, Nature Publishing Co. (1993). cated genes.” Proc. Natl. Acad. Sci. USA, vol. 86: 9355-9359. Ehrlich, G.D. et al. (1994), "PCR-Based Diagnostics in Infectious National Academy of Sciences (1989). Disease”. Blackwell Scientific Publications, Boston, MA. pp. 6-18, Izard, D. et al., “Deoxyribonucleic Acid Relatedness Between 47-55. Enterobacter cloacae and Enterobacter amnigenus sp. nov.” Inter Fani. R. et al., “Use of random amplified polymorphic DNA (RAPD) national Journal of Systematic Bacteriology, vol. 31:35-42, Society for generating specific DNA probes for Microorganisms. Molecular for General Microbiology (1981). Ecology, 2: 243-250, Blackwell Scientific Publications (1993). Janda, J.M. et al., “Prototypal Diarrheagenic Strains of Hafnia alvei Farmer, J.J. et al., “Enterobacter sakazakii: A New Species of Are actually Members of the Genus Escher Ichia.” Journal of Clinical ''Enterobacteriaceae" Isolated from Clinical Specimens.” Interna Microbiology, vol. 37: 2399-2401, American Society for Microbiol tional Journal of Systematic Bacteriology, vol. 30, No. 3:569-584. ogy (1999). Society for General Microbiology (1980). Kellogg, D.E. et al., “TaqStart Antibody(TM): 'Hot Start PCR Farmer, J.J. et al., (1985). "Biochemical Identification of New Spe Facilitated by a Neutralizing Monoclonal Antibody Directed Against cies and Biogroups of Enterobacteriaceae Isolated from Clinical Taq DNA Polymerase.” BioTechniques, vol. 16: 1134-1137, Eaton Specimens,” Journal of Clinical Microbiology, vol. 21, No. 1: 46-76, Publishing Company (1994). American Society for Microbiology (1985). Kimura, M., “A Simple Method for Estimating Evolutionary Rates of Farmer J.J. et al., “Escherichiafergusonii and Enterobacter taylorae, Base Substitutions Through Comparative Studies of Nucleotide Two New Species of Enterobacteriaceae Isolated from Clinical Sequences.” J. Mol. Evol., vol. 16: 111-120, Springer-Verlag (1980). Specimens,” Journal of Clinical Microbiology, vol. 21, No. I: 77-81. Kitch.T. et al., “Evaluation of RapID on E System for Identification of American Society for Microbiology (1985). 379 Strains in the Family Enterobacteriaceae and Oxidase-Negative, Farmer, J.J., “Proposed Rewording of Rule 10C of the Bacteriologi Gram-Negative Nonfermenters,” Journal of Clinical Microbiology, cal Code.” International Journal of Systematic Bacteriology, vol. 35. vol. 32: 931-934, American Society for Microbiology (1994). No. 2, p. 222, Society for General Microbiology (1985). Kloos, W.E. et al., “Simplified Scheme for Routine Identification of Filer, D. et al., “Duplication of the tuf Gene, which encodes peptide Human Staphylococcus Species,” Journal of Clinical Microbiology, chain elongation factor tu, is widespread in gram-negative bacteria.” vol. I: 82-88, American Society for Microbiology (1975). Journal of Bacteriology, vol. 148, No. 3:006-1011, American Society Koenig C. et al., “Analyses of the FlashTrack DNA Probe and for Microbiology (1981). UTlscreen Bioluminescence Tests for Bacteriuria.” Journal of Clini Fischer, D. et al., “Predicting structures for genome proteins.” Curr. cal Microbiology, vol. 30: 342-345 American Society for Microbiol Opin. Struct. Biol.9: 208-211, Current Biology (1999). ogy (1992). Flores N. et al., “Recovery of DNA from Agarose Gels Stained with Koshkin, A.A. et al., “LNA (Locked Nucleic Acids): Synthesis of the ethylene Blue.” Circle Reader Service No. 138, vol. 13:203-5, The Adenine, Cytosine, Guanine, 5-Methycytosine, Thymine and Uracil Scientist (1992). Bicyclonucleoside Monomers, Oligomerisation, and Unprecedented Fox, G.E. et al., “How close is close: 16S rRNA Sequence identity Nucleic Acid Recognition.” Tetrahedron 54; 3607-3630, Pergamon may not be sufficient to guarantee species Identity.” International Press (1998). Journal of Systematic Bacteriology, vol. 42, No. 1: 166-170, Society Lawrence, J.G. et al., “Molecular and evolutionary relationships for General Microbiology (1992). among enteric bacteria.” Journal of General Microbiology, vol. 131: Gavini, F. et al. “Transfer of Enterobacter agglomerans (Beijerinck 1911-1921, Society for General Microbiology (1991). 1888) Ewing and Fife 1972 to Pantoeagen, nov. as Pantoea Lewin, B. (1990), “Genes IV”, John Wiley & Sons, New York, NY. agglomerans comb. nov. and Description of Pantoea dispersa sp. pp. 41-56. Nov.” International Journal of Systematic Bacteriology, vol.39, No. Livak K.J. et al., “Oligonucleotides with Fluorescent Dyes at Oppo 3:337-345, Society for General. Microbiology (1989). site Ends Provide a Quenched Probe System Useful for Detecting US 8,182,996 B2 Page 10

PCR Product and Nucleic Acid Hybridization.” PCR Methods and Sharma, N.K. et al., “Identification of Yersinia Species by the API Applications, vol. 4: 357-362, Cold Spring Harbor Laboratory Press 20E.” Journal of Clinical Microbiology, 28:1443-1444, American (1995). Society for Microbiology (1990). Ludwig, W. et al., “Complete nucleotide sequences of seven Sproer, C. et al., “The phylogenetic position of Serratia, Buttiauxella and some other genera of the family Enterobacteriaceae'. Interna eubacteral genes coding for the elongation factor Tu: functional, tional Journal of Systematic Bacteriology, 49: 1433-1438, Society for structural and phylogenetic evaluations.” Archives of Microbiology, General Microbiology (1999). vol. 153: 241-247. Springer-Verlag (1990). Stackebrandt, E. et al., “Taxonomic Note: A Place for DNA-DNA Luneberg, et al. Detection of Mycoplasma pneumoniae by Reassociation and 16S rRNA Sequence Analysis in the Present Spe Polymerase Chain Reaction and Nonradioactive Hybridization in cies Definition in Bacteriology”. International Journal of Systematic Microtiter Plates. Journal of Clinical Microbiology, 31(5): 1088 Bacteriology, 44:846-849, Society for General Microbiology (1994). 1094 (1993). Stager C.E. et al., “Automated systems for Identification of Micro McCabe, K.M. et al., “Bacterial Species Identification after DNA organisms’. Clinical Microbiology Reviews, 5:342-327. American Amplification with a Universal Primer Pair.” Molecular Genetics and Society for Microbiology (1992). Metabolism, vol. 66: 205-211, Academic Press (1999). Stark, R.P. et al., “Bacteriuria in the Catheterized Patient'. The New Miller, R.V. et al., “General Microbiology of recA: Environmental England Journal of Medicine, 311:560-564, Massachusetts Medical and Evolutionary Significance.” Annu. Rev. Microbiol. 44:365-394. Society (1984). Annual Reviews, Inc. (1990). Steigerwalt, A.G. et al., “DNA relatedness among species of Mollet, C. et al., “rpoB sequence analysis as a novel basis forbacterial Enterobacter and Serratia, Can. J. Microbiol. 22:131-137, National identification.” Molecular Microbiology, 26:1005-1011, Blackwell Research Council of Canada (1975). Scientific Publications (1997). Takezaki, N. et al., “Phylogenetic Test of the Molecular Clock and Murakami, et al. “Identification of methicillin-resistant strains of Linearized Trees.” Mol. Biol. Evol. 12(5):823-833, University of Staphylococci by polymerase chain reaction.” Journal of Clinical Chicago Press (1995). Microbiology 29(10): 2240-2244 (1991). Tang.Y.-W., et al. (1999), “Molecular Detection and Identification of Nelson, N. et al., “The Evolution of H+ -ATPases', TIBS 14:113 Microorganisms,” in Manual of Clinical Microbiology, 7th Edition, 116, Elsevier (1989). ASM Press, Washington, DC pp. 215-244. Nichols, R. et al., “A universal nucleoside for use of ambiguous sites Taylor, W.R., “Remotely related sequences and structures: analysis in DNA primers.” Letters to Nature, 369: 492-493, Nature Publishing and predictive modelling.” Trends Biotechnol. 12(5):154-158, Co. (1994). Elsevier Science Publishers (1994). Nikiforov, T.T. et al., “The Use of Phosphorothioate Primers and Tenover, F.C., and Unger, E.R.,(1993), "Nucleic Acid Probes for Exonuclease hydrolysis for the Preparation of Single-stranded PCR Detection and Identification of Infectious Agents.” in Diagnostic Products and their Detection by Solid-phase Hybridization.” PCR Molecular Microbiology. Principles and Applications, American Methods and Applications, 3:285-291, Cold Spring Harbor Labora Society for Microbiology, Washington, DC pp. 3-87. tory Press (1994). Tyagi S. et al., “Molecular Beacons: Probes that Fluoresce upon Nikiforov, T.T. et al., “The Use of 96-Well Polystyrene Plates for Hybridization.” Nature Biotechnology, 14:303-308, Nature Publish DNA Hybridization-based Assays: an Evaluation of Different ing Co. (1996). Approaches to Oligonucleotide Immobilization.” Analytical Bio Van Bunk, J. et al., “Panfungal PCR Assay for detection of Fungal chemistry 227: 201-209, Academic Press (1995). Infection in Human Blood Specimens”, Journal of Clinical Pezzlo, M.T. et al., “Detection of Bacteriuria and Pyuria by Microbiology, 36 (S): 1169-1175, American Society for Microbiol URISCREEN, a Rapid Enzymatic Screening Test”, Journal of Clini ogy (1998). cal Microbiology, 30:680-684, American Society for Microbiology Vijgenboom, E. et al., “Three tuf like genes in the kirromycin pro (1992). ducer Streptomyces ramocissimus.” Microbiology, 14:983-998, Ple Porcella, S.F. et al., “Identification of an EF-Tu protein that is num Press (1994). periplasm-associated and processed in Neisseria gonorrhoeae'. Wang, R. et al., “Phylogenetic analysis and identification of Shigella Microbiology 142:2481-2489, Plenum Press (1996). spp. by Molecular probes”. Molecular and Cellular Probes, 11:427 Reeve, J.H., “Guest Commentary: Archaebacteria Then...Archaes 432, Academic Press (1997). Now (Are There Really No Archaeal Pathogens?),” Journal of Bac Watson, J.D. et al., (1987) “Molecular Biology of the Gene', 4th teriology, 181:3613-3617. American Society for Microbiology Edition, The Benjamin/Cummings Publishing Company, Inc., Menlo (1999). Park, CA, pp. 431–462. Relman, D.A., and Persing, D.H., (1996) "Genotypic Methods for Wayne, L.G. et al., “Report of the Ad Hoc Committee on Reconcili Microbial Identification.” in PCR Protocols for Emerging Infectious ation of Approaches to Bacterial Systematics.” International Journal Diseases, a Supplement to Diagnostic Molecular Microbiology and of Systematic Bacteriology, 37(4):463-464, Society for General Applications, ASM Press, Washington, DC pp. 3-31. Microbiology (1987). Sali, A., “Modelling mutations and homologous proteins. Current Weaver, G.A. et al., “Incidence of methanogenic bacteria in a Opinion in Biotechnology 6:437-451, Current Biology (1995). sigmoidoscopy population: an association of methanogenic bacteria Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory and diverticulosis.' Gut 27:698-704, British Medical Association Manual', 2nd Edition, Cold Spring Harbor Laboratory Press, Cold (1986). Spring Harbor, NY pp. 18.35-18.39. Westin, L., at al., “Anchored multiplex amplification on a microelec Sanchez, R. et al., “Advances in comparative protein-structure tronic chip army.” Nature Biotechnology, 18:199-204. Nature Pub modelling.” Curr. Opin. Struct. Biol. 7:206-21. Current Biology lishing Co. (2000). (1997). Whitcombe, D. et al., “Detection of PCR products using self probing Saraste, M.M. et al., “The atp operon: nucleotide sequence of the amplicons and fluorescence.” Nature Biotechnology, 17:804-807, genes for the Y, B and O. subunits of Escherichia coli ATP synthase.” Nature Publishing Co. (1999). Nucleic Acids Research 9:5287-5296, Oxford University Press Wittwer, C.T. et al., “The LightCycler (TM): A Microvolume (1981). Multisample Fluorimeter with Rapid Temperature Control.” Sela, S. et al., “Duplication of the tuf Gene: a New Insight into the BioTechniques, 22(1):176-181, Eaton Publishing Co. (1997). Phylogeny of Eubacteria.” Journal of Bacteriology, 171:581-584. York, M.K. et al., “Evaluation of the autoSCAN-WIA Rapid System American Society for Microbiology (1989). for Identification and Susceptibility Testing of Gram-Negative Fer Selander, R.K. et al., “Evolutionary Genetics of Salmonella enterica” mentative Bacilli,” Journal of Clinical Microbiology, 30(11):2903 in Escherichia coli and Salmonella Cellular and Molecular Biology, 2910, American Society for Microbiology (1992). 2nd Edition, vol. 2, 147:2691-2707, American Society for Microbiol ogy (1996). * cited by examiner

U.S. Patent May 22, 2012 Sheet 3 of 17 US 8,182,996 B2

U.S. Patent May 22, 2012 Sheet 5 Of 17 US 8,182,996 B2

Earliarists gas Elias wa, Enterococcal E.Frris Eigserger tufts genes Frritors EdisparEfficers

EdirisEas A ihirar £faeciuri t EA"E.3. Enterococcal EpseudaviurnFioratisa Eiga tufa genes East cert feetiis SE"Esfires

stagehermophia

me .05 changes FIGURES. U.S. Patent May 22, 2012 Sheet 6 of 17 US 8,182,996 B2

Kb.

- 3.1 - 2.0

- 1.0

FIGURE 6. U.S. Patent May 22, 2012 Sheet 7 Of 17 US 8,182,996 B2

FIGURE 7 SEQID 30 31 33 NO : coli GAGATCGGG AAGAAGAGCG CGATTCACCG (262O) agglomerans GACACGGG AAGAAGAGCG CGATCCACCG (2621) agglomerans GAGCTGAAAG AAGAAGATGG GAGATCGCCTCTATTCACCG (2622) dispersa GACCGAAAG AAGAAGACGG GAGGTTTCCT. CTATTCATCG (2623) ; ... ptyseos GACCGAAGA ACGAAGATGG GAGGTGAACT CTATTCACCG (2624) coli ruru rvGrw rvErv rv Erv resurr. In r-havn Rava (2625) agglomerans are ruro an as ErsaEmeras a In r-Hrva-Rose (2626) agglomerans MTarakar Err. Ear-Da GarrS In A Sr. r. In H. R. (2627) dispersa -----E-- E----G--S -W--S-I-S- - - -H----R---- (2628) :... ptyseos rwar more rNow ru Erv war win S wWawa r. Sir r a ruHava-Rav (2629) U.S. Patent May 22, 2012 Sheet 8 of 17 US 8,182,996 B2

pests Y, federiksef pseudofuberculosis 70 Y Y intereos midlit 73 OO . s dispersa Pa. A99 offears 93 f. DO Elgor 100 celee Far

75

O

T 0.01 changes FIGURE.8 (1/2) U.S. Patent May 22, 2012 Sheet 9 of 17 US 8,182,996 B2

Y. tis Y. pseudotu losis Y. iSiglia t Y enterocolitica dei Pa. agglom Pa,S di S5 T.ptyseos -a, dispersa Inorgani 68 L. g.ring hoshiae 100 Ed tarda Qe, lapage &e....g. Since.star 99 Energ5329sEle 96 E. Egeus. , ae En. SakazakiErasburlae 76

S. of A 96 interitidis 83 atyphi B . SSTrium Fara hi A Scholeraesuis subsp. arizona Iphi-100 S. i ari 62 'EEEcholeraesus subsp. i 59 flexeir "Schief 68 60 100 E-5i 93 52 KV. city R.E.5 K. pneumoniae subsp. rhinoscleroinéis 68 K. pneuforiae subsp. ozaenae K. prietiforia Subsp.pneumofiaer. agglomeras C.C. g koSeyi C. Werkrani... braakil 77 fundi 73 OLae 70 C. five a Tailoratics Liamensis 100 EW, anericana, lis Se. Tiefa 64 ge. l cars s S:8. naticaRealClels B7 80 times 51 84 Sentico rtibidaea Pg. fontium H. a Wisconsensis ... Wul s R Priabilispenert Psal 78 ... alalifagiens 89 89 PyrustigianiESSEE gElaciensVie W. Cholerae 0.01 changes - FIGURE 8 (2/2) U.S. Patent May 22, 2012 Sheet 10 of 17 US 8,182,996 B2

87 Y. pests Y. rhodei Y. enterocolitica 78 Pa. agglomerans T. plyseos 98 L. grimontil Ed tarda 93 K. Ornihirolitica K. planticola Kv. georgiana Er, aerogenes En, gergoviae C. braaic 79 C. Werikan C, fraudi 99 K, perioriae subsp. pneumoniae K.pneumoniae subsp. ozaerae 68 2 En, sakazaki 67 E. vulneris 89 - S. Enteritidis S. Typhi 83 Sh boydii 69 Sh, flexner 63Sh, Sonte 83 62E. to 1775T saf col2S922 E. Co. 43395 Sh. dysenteriae K. oxytoca 78 C. Sedaki. 52 C. fairner C. arraforatics 7B En astburiae En. annigenus EW, altericana R. aquatilis 2 Se. Odorifera Se.. ficaria Se, Irancescers Se.. plymuthica 97 Se.. girlesi Se fontcola Se, rubidaea H. have Pg. fontium P. vulgaris W. Choleras - 0.01 changes FIGURE 9a) U.S. Patent May 22, 2012 Sheet 11 of 17 US 8,182,996 B2

Y. pestis

Yerrerocolitica Pa. agglomeras T. ptyseas L. grimonti E. fairda K. oritialitica P. planticola 5 En. aerogenes Kw, georgiara En. gergovias En. annigerus E. astriae K. pneutroniae subsp. pneumoniae to K. pneu/FIOriae subsp. Ozaerae ... Sakazaki E. Wres S. Enteriticis o S. Typhi Sh. boydii Sh, ferrer Sh. Sonnel 7 31 E. col1775T E. co 43895 100 Sh. dysenterias E. co25922 K. oxyfoca C. seek C. braak C. Werkrani C. freirai C. after 8 C. annaforaticus Warnericana 1CO F. aquatilis Se.. odorifera Se.. ificaria Se. Faresces 57 Se.. plyrnuthica 85 Se.. grimesii 53 86 Ss, fonticola Se.. rubidaea H. Faye Pig, forturn P. vulgaris W. Colerae 0.01 changes - FIGURE 9b) U.S. Patent May 22, 2012 Sheet 12 of 17 US 8,182,996 B2

52 Y. pestis 9. Y. rhode Y. erraroccolitica 83 Pa. agglomerans T. plyseos L. grinori Pg. fortium Ed. far K. Ornithinolitica Kv. georgiana En. aerogenes E. gergoviae En. annigenus C. fraaki C. Werkrani 52 C. freiro Erasuriae OO K.pneumoniae subsp. pneumonias P. pneumoniae subsp. azasrae E. sakazaki S. Enteritidis S. Typhl Sh boydii Sh, flexner S. SOFre E. coli 11775T 75 B E. Williaris 96 E. 25922 Sh, dysenteriae E. Cof 43895 K. oxytoca 51 K. planticola C. Sedaki 99 C. farmer C. attalionaticus 64 EY. arnericara R, aquatis Se. Odorifera Se, ficaria Se. Francescers Se.. pyrnuthica Se.. grinnesi S. forticola Se. Fubidaea have P. vulgaris W. Cholarae 0.01 changes Figure 9 c) U.S. Patent May 22, 2012 Sheet 13 of 17 US 8,182,996 B2

FIGURE 10a)

C.25

.2

0.5

0.1

0.05

O 0.2 0.04 O.OS O.08 c.1 O.2 U.S. Patent May 22, 2012 Sheet 14 of 17 US 8,182,996 B2

FIGURE 10b)

0.35

A A 0.3 A AA A. A a A A AA 0.25 A.

8 0.2

s 0.15

Ewiners/ | 0.1 cgi-Shigella Ois

0.05

YS planticolav o Kornithinoleica O 0.02 0.04 0.08 0.08 C. 0.2 U.S. Patent May 22, 2012 Sheet 15 of 17 US 8,182,996 B2

FIGURE 10 c) 0.35 m-m-m-m-m-us-w-ul------grimonii/ P. vulgaris A 0.3 EaFay \ A AA P. vulgaris A a. Ai. 0.25 A. la P. vulgaris/ P. aggkornerans

8 0.2 C

0.15

Y. enterocodifica Y. pestis

Y, Phoev Y. pestis 0.05 D w Y. anterocolitica/ Y. rhodei

0 0.05 0. O.5 0.2 0.25 0.3 Ef distance U.S. Patent May 22, 2012 Sheet 16 of 17 US 8,182,996 B2

FIGURE 11: Position of the 5 new primer pairs selected from the M catarrhalis specific 466-bp DNA fragment (SEQIDNO:29).

SEQID No: 118+ SEQID No: 119(116 bp) HO OO 200 300 400 466

O-O WBmcatl-WBmcat? (93 bp) O-O WBmcats-VBmcat4 (140 bp) O-O WBmcats-VBmcató (219 bp) O-O VBmcat?-VBmcats (160 bp) VBmcats. WBmcatio (167 bp) 0-p

All SEQIDNOs, in this Figure are from US patent 6,001,564. 'Amplicon size is given in parenthesis. U.S. Patent May 22, 2012 Sheet 17 Of 17 US 8,182,996 B2

FIGURE 12: Position of the 5 new primer pairs selected from the S epidermidis specific 705-bp DNA fragment (SEQIDNO:36).

SEQIDNO: 145+ SEQIDNO: 146 (125bp SEQDNO: 147+ SEQIDNO; 148 (175bp) O-O O-O 1. 100 200 300 400 SOO 600 705

O-O VBSep3-VBSep4(208bp)

O-O VBSep3-VBScp6(208bp)

-O VBSep-VBSep8 (77 bp)

WBSep9-VBsep10(153 bp) O-O

VBSep11-VBSepl2(135bp) O-O

'Amplicon'All SEQED size NOS. is given in this in Figure parenthesis. are from US patent 6,001,564. US 8,182,996 B2 1. 2 COMPOSITIONS AND METHODS FOR of non-conclusive identifications with bacterial species other DETECTING IKLEBSIELLA PNEUMONIAE than Enterobacteriaceae (Croizé J., 1995, Lett. Infectiol. 10:109-113; York et al., 1992, J. Clin. Microbiol. 30:2903 CROSS-REFERENCE TO RELATED 2910). For Enterobacteriaceae, the percentage of non-conclu APPLICATIONS sive identifications was 2.7 to 11.4%. The list of microorgan isms identified by commercial systems based on classical This application is a continuation of application Ser. No. identification methods is given in Table 15. 1 1/236,785, filed Sep. 27, 2005, which is a continuation of A wide variety of bacteria and fungi are routinely isolated application Ser. No. 10/089,177, filed Mar. 27, 2002, which is and identified from clinical specimens in microbiology labo the U.S. national phase under 35 U.S.C. S371 of prior PCT 10 ratories. Tables 1 and 2 give the incidence for the most com International Application No. PCT/CA00/01150, filed Sep. monly isolated bacterial and fungal pathogens from various 28, 2000, which claims the benefit of Canadian Application types of clinical specimens. These pathogens are the main No. 2,307,010 filed May 19, 2000, and Canadian Application organisms associated with nosocomial and community-ac No. 2283458, filed Sep. 28, 1999. quired human infections and are therefore considered the 15 most clinically important. SEQUENCE LISTING Clinical Specimens Tested in Clinical Microbiology Labora The present application is being filed along with a tories Sequence Listing in electronic format. The Sequence Listing Most clinical specimens received in clinical microbiology is provided as a file entitled GENOM.048NPCC2.TXT, cre laboratories are urine and blood samples. At the microbiology ated May 24, 2010, which is 1.99 MB in size. The information laboratory of the Centre Hospitalier de l’Université Laval in the electronic format of the Sequence Listing is incorpo (CHUL), urine and blood account for approximately 55% and rated herein by reference in its entirety. 30% of the specimens received, respectively (Table 3). The remaining 15% of clinical specimens comprise various bio BACKGROUND OF THE INVENTION 25 logical fluids including sputum, pus, cerebrospinal fluid, Syn ovial fluid, and others (Table 3). Infections of the urinary Classical Methods for the Identification of Microorganisms tract, the respiratory tract and the bloodstream are usually of Microorganisms are classically identified by their ability to bacterial etiology and require antimicrobial therapy. In fact, utilize different Substrates as a source of carbon and nitrogen all clinical samples received in the clinical microbiology through the use of biochemical tests such as the API2OETM 30 system (bioMérieux). For susceptibility testing, clinical laboratory are tested routinely for the identification of bacte microbiology laboratories use methods including disk diffu ria and antibiotic susceptibility. Sion, agar dilution and broth microdilution. Although identi Conventional Pathogen Identification from Clinical Speci fications based on biochemical tests and antibacterial Suscep CS tibility tests are cost-effective, generally two days are 35 Urine Specimens required to obtain preliminary results due to the necessity of The search for pathogens in urine specimens is so prepon two Successive overnight incubations to identify the bacteria derant in the routine microbiology laboratory that a myriad of from clinical specimens as well as to determine their Suscep tests have been developed. However, the gold standard tibility to antimicrobial agents. There are some commercially remains the classical semi-quantitative plate culture method available automated systems (i.e. the MicroScanTM system 40 in which 1 uL of urine is streaked onagarplates and incubated from Dade Behring and the VitekTM system from bioMérieux) for 18-24 hours. Colonies are then counted to determine the which use Sophisticated and expensive apparatus for faster total number of colony forming units (CFU) per liter of urine. microbial identification and Susceptibility testing (Stager and A bacterial urinary tract infection (UTI) is normally associ Davis, 1992, Clin. Microbiol. Rev. 5:302-327). These sys ated with a bacterial count of 107 CFU/L or more in urine. tems require shorter incubation periods, thereby allowing 45 However, infections with less than 107 CFU/L in urine are most bacterial identifications and Susceptibility testing to be possible, particularly in patients with a high incidence of performed in less than 6 hours. Nevertheless, these faster diseases or those catheterized (Stark and Maki, 1984, N. systems always require the primary isolation of the bacteria or Engl.J.Med. 3 11:560-564). Importantly, approximately 80% fungi as a pure culture, a process which takes at least 18 hours of urine specimens tested in clinical microbiology laborato for a pure culture or 2 days for a mixed culture. So, the 50 ries are considered negative (i.e. bacterial count of less than shortest time from sample reception to identification of the 10 CFU/L. Table 3). Urine specimens found positive by pathogen is around 24 hours. Moreover, fungi other than culture are further characterized using standard biochemical yeasts are often difficult or very slow to grow from clinical tests to identify the bacterial pathogen and are also tested for specimens. Identification must rely on labor-intensive tech susceptibility to antibiotics. The biochemical and susceptibil niques such as direct microscopic examination of the speci 55 ity testing normally require 18-24 hours of incubation. mens and by direct and/or indirect immunological assays. Accurate and rapid urine screening methods for bacterial Cultivation of most parasites is impractical in the clinical pathogens would allow a faster identification of negative laboratory. Hence, microscopic examination of the specimen, specimens and a more efficient treatment and care manage a few immunological tests and clinical symptoms are often ment of patients. Several rapid identification methods the only methods used for an identification that frequently 60 (UriscreenTM, UTIscreenTM, Flash TrackTM DNA probes and remains presumptive. others) have been compared to slower standard biochemical The fastest bacterial identification system, the autoSCAN methods, which are based on culture of the bacterial patho Walk-AwayTM system (Dade Behring) identifies both gram gens. Although much faster, these rapid tests showed low negative and gram-positive bacterial species from standard sensitivities and poor specificities as well as a high number of ized inoculum in as little as 2 hours and gives Susceptibility 65 false negative and false positive results (Koening et al., 1992, patterns to most antibiotics in 5 to 6 hours. However, this J. Clin. Microbiol. 30:342-345; Pezzlo et al., 1992, J. Clin. system has a particularly high percentage (i.e. 3.3 to 40.5%) Microbiol. 30:640-684). US 8,182,996 B2 3 4 Blood Specimens invention are Superior in terms of both rapidity and accuracy The Blood Specimens Received In The Microbiology to standard biochemical methods currently used for routine Laboratory Are Always Submitted For Culture. Blood Cul diagnosis from any clinical specimens in microbiology labo ture Systems May Be Manual, Semi-Automated Or Com ratories. Since these tests can be performed in one hour or pletely Automated. The BACTECTM System (From Becton 5 less, they provide the clinician with new diagnostic tools Dickinson) And The BactalertTM System (From Organon which should contribute to a better management of patients Teknika Corporation) Are The Two Most Widely Used Auto with infectious diseases. Specimens from sources other than mated Blood Culture Systems. These Systems Incubate humans (e.g. other primates, birds, plants, mammals, farm Blood Culture Bottles Under Optimal Conditions For Growth animals, livestock, food products, environment Such as water Of Most Bacteria. Bacterial Growth Is Monitored Continu 10 or soil, and others) may also be tested with these assays. ously To Detect Early Positives By Using Highly Sensitive A High Percentage of Culture-Negative Specimens Bacterial Growth Detectors. Once Growth Is Detected, A Among all the clinical specimens received for routine diag Gram Stain Is Performed Directly From The Blood Culture nosis, approximately 80% of urine specimens and even more And Then Used To Inoculate Nutrient Agar Plates. Subse (around 95%) for other types of normally sterile clinical quently, Bacterial Identification And Susceptibility Testing 15 specimens are negative for the presence of bacterial patho Are Carried Out From Isolated Bacterial Colonies With Auto gens (Table 3). It would also be desirable, in addition to mated Systems. As Described Previously. Blood Culture identify bacteria at the species or genus or family or group Bottles Are Normally Reported As Negative If No Growth Is level in a given specimen, to screen out the high proportion of Detected After An Incubation Of 6 To 7 Days. Normally, The negative clinical specimens with a DNA-based test detecting Vast Majority Of Blood Cultures Are Reported Negative. For the presence of any bacterium (i.e. universal bacterial detec Example, The Percentage OfNegative Blood Cultures At The tion). As disclosed in the present invention, Such a screening Microbiology Laboratory Of The CHUL For The Period Feb test may be based on DNA amplification by PCR of a highly ruary 1994-January 1995 Was 93.1% (Table 3). conserved genetic target found in all bacteria. Specimens Other Clinical Samples negative for bacteria would not be amplified by this assay. On Upon receipt by the clinical microbiology laboratory, all 25 the other hand, those that are positive for any bacterium body fluids other than blood and urine that are from normally would give a positive amplification signal. Similarly, highly sterile sites (i.e. cerebrospinal, Synovial, pleural, pericardial conserved genes of fungi and parasites could serve not only to and others) are processed for direct microscopic examination identify particular species or genus or family or group but also and Subsequent culture. Again, most clinical samples are to detect the presence of any fungi or parasite in the specimen. negative for culture (Table 3). In all these normally sterile 30 Towards the Development of Rapid DNA-Based Diagnostic sites, tests for the universal detection of algae, archaea, bac Tests teria, fungi and parasites would be very useful. A rapid diagnostic test should have a significant impact on Regarding clinical specimens which are not from sterile the management of infections. DNA probe and DNA ampli sites such as sputum or stool specimens, the laboratory diag fication technologies offer several advantages over conven nosis by culture is more problematic because of the contami 35 tional methods for the identification of pathogens and anti nation by the normal flora. The bacterial or fungal pathogens microbial agents resistance genes from clinical samples potentially associated with the infection are grown and sepa (Persing et al., 1993, Diagnostic Molecular Microbiology: rated from the colonizing microbes using selective methods Principles and Applications, American Society for Microbi and then identified as described previously. Of course, the ology, Washington, D.C.; Ehrlich and Greenberg, 1994, PCR DNA-based universal detection of bacteria would not be use 40 based Diagnostics in Infectious Disease, Blackwell Scientific ful for the diagnosis of bacterial infections at these non-sterile Publications, Boston, Mass.). There is no need for culture of sites. On the other hand, DNA-based assays for species or the pathogens, hence the organisms can be detected directly genus or family or group detection and identification as well from clinical samples, thereby reducing the time associated as for the detection of antimicrobial agents resistance genes with the isolation and identification of pathogens. Further from these specimens would be very useful and would offer 45 more, DNA-based assays are more accurate for microbial several advantages over classical identification and Suscepti identification than currently used phenotypic identification bility testing methods. systems which are based on biochemical tests and/or micro DNA-Based Assays with Any Specimen scopic examination. Commercially available DNA-based There is an obvious need for rapid and accurate diagnostic technologies are currently used in clinical microbiology labo tests for the detection and identification of algae, archaea, 50 ratories, mainly for the detection and identification of fastidi bacteria, fungi and parasites directly from clinical specimens. ous bacterial pathogens Such as Mycobacterium tuberculosis, DNA-based technologies are rapid and accurate and offer a Chlamydia trachomatis, Neisseria gonorrhoeae as well as for great potential to improve the diagnosis of infectious diseases the detection of a variety of viruses (Tang Y. and Persing D. (Persing et al., 1993, Diagnostic Molecular Microbiology: H. Molecular detection and identification of microorgan Principles and Applications, American Society for Microbi 55 isms, In: P. Murray et al., 1999, Manual of Clinical Microbi ology, Washington, D.C.; Bergeron and Ouellette, 1995, ology, ASM press, 7" edition, Washington D.C.). There are Infection 23:69-72; Bergeron and Ouellette, 1998, J. Clin also other commercially available DNA-based assays which Microbiol. 36:2169-72). The DNA probes and amplification are used for culture confirmation assays. primers which are objects of the present invention are appli Others have developed DNA-based tests for the detection cable for the detection and identification of algae, archaea, 60 and identification of bacterial pathogens which are objects of bacteria, fungi, and parasites directly from any clinical speci the present invention, for example: Staphylococcus sp. (U.S. men such as blood, urine, sputum, cerebrospinal fluid, pus, Pat. No. 5,437,978), Neisseria sp. (U.S. Pat. No. 5,162,199 genital and gastro-intestinal tracts, skin or any other type of and European patent serial no. 0.337,896,131) and Listeria specimens (Table 3). These assays are also applicable to monocytogenes (U.S. Pat. Nos. 5,389,513 and 5,089.386). detection from microbial cultures (e.g. blood cultures, bacte 65 However, the diagnostic tests described in these patents are rial or fungal colonies on nutrient agar, or liquid cell cultures based either on rRNA genes or on genetic targets different in nutrient broth). The DNA-based tests proposed in this from those described in the present invention. To our knowl US 8,182,996 B2 5 6 edge there are only four patents published by others mention from public databases such as GenBank. From the sequences ing the use of any of the four highly conserved gene targets readily available from those public databases, there is no described in the present invention for diagnostic purposes indication therefrom as to their potential for diagnostic pur (PCT international publication number WO92/03455 and poses. For determining good candidates for diagnostic pur WO00/14274, European patent publication number 0 133 5 poses, one could select sequences for DNA-based assays for 671 B1, and European patent publication number 0 133 288 (i) the species-specific detection and identification of com A2). WO92/03455 is focused on the inhibition of Candida monly encountered bacterial, fungal and parasitical patho species for therapeutic purposes. It describes antisense oligo gens, (ii) the genus-specific detection and identification of nucleotide probes hybridizing to Candida messenger RNA. commonly encountered bacterial, fungal or parasitical patho Two of the numerous mRNA proposed as targets are coding 10 gens, (iii) the family-specific detection and identification of for translation elongation factor 1 (tefl) and the beta subunit commonly encountered bacterial, fungal or parasitical patho of ATPase. DNA amplification or hybrization are not under gens, (iv) the group-specific detection and identification of the scope of their invention and although diagnostic use is commonly encountered bacterial, fungal or parasitical patho briefly mentioned in the body of the application, no specific gens, (v) the universal detection of algal, archaeal, bacterial, claim is made regarding diagnostics. WO00/14274 describes 15 fungal or parasitical pathogens, and/or (vi) the specific detec the use of bacterial recA gene for identification and speciation tion and identification of antimicrobial agents resistance of bacteria of the Burkholderia cepacia complex. Specific genes, and/or (vii) the specific detection and identification of claims are made on a method for obtaining nucleotide bacterial toxin genes. All of the above types of DNA-based sequence information for the recA gene from the target bac assays may be performed directly from any type of clinical teria and a following comparison with a standard library of 20 specimens or from a microbial culture. nucleotide sequence information (claim 1), and on the use of In our assigned U.S. Pat. No. 6,001,564 and our WO98/ PCR for amplification of the recA gene in a sample of interest 20157 patent publication, we described DNA sequences suit (claims 4 to 7, and 13). However, the use of a discriminatory able for (i) the species-specific detection and identification of restriction enzyme in a RFLP procedure is essential to fulfill clinically important bacterial pathogens, (ii) the universal the speciation and WO00/14274 did not mention that multiple 25 detection of bacteria, and (iii) the detection of antimicrobial recA probes could be used simultaneously. Patent EP 0 133 agents resistance genes. 288A2 describes and claims the use of bacterial tuf (and fus) The WO98/20157 patent publication describes proprietary sequence for diagnostics based on hybridization of a tuf (or tuf DNA sequences as well as tuf sequences selected from fus) probe with bacterial DNA. DNA amplification is not public databases (in both cases, fragments of at least 100 base under the scope of EPO 133 288A2. Nowhere it is mentioned 30 pairs), as well as oligonucleotide probes and amplification that multiple tuf (or fus) probes could be used simultaneously. primers derived from these sequences. All the nucleic acid No mention is made regarding speciation using tuf (or fus) sequences described in that patent publication can enter in the DNA nucleic acids and/or sequences. The sensitivities of the composition of diagnostic kits or products and methods tuf hybrizations reported are 1x10° bacteria or 1-100 ng of capable of a) detecting the presence of bacteria and fungi b) DNA. This is much less sensitive than what is achieved by our 35 detecting specifically at the species, genus, family or group assays using nucleic acid amplification technologies. levels, the presence of bacteria and fungi and antimicrobial Although there are phenotypic identification methods agents resistance genes associated with these pathogens. which have been used for more than 125 years in clinical However, these methods and kits need to be improved, since microbiology laboratories, these methods do not provide the ideal kit and method should be capable of diagnosing information fast enough to be useful in the initial manage- 40 close to 100% of microbial pathogens and associated antimi ment of patients. There is a need to increase the speed of the crobial agents resistance genes and toxins genes. For diagnosis of commonly encountered bacterial, fungal and example, infections caused by Enterococcus faecium have parasitical infections. Besides being much faster, DNA-based become a clinical problem because of its resistance to many diagnostic tests are more accurate than standard biochemical antibiotics. Both the detection of these bacteria and the evalu tests presently used for diagnosis because the microbial geno- 45 ation of their resistance profiles are desirable. Besides that, type (e.g. DNA level) is more stable than the phenotype (e.g. novel DNA sequences (probes and primers) capable of rec physiologic level). ognizing the same and other microbial pathogens or the same Bacteria, fungi and parasites encompass numerous well and additional antimicrobial agents resistance genes are also known microbial pathogens. Other microorganisms could desirable to aim at detecting more target genes and comple also be pathogens or associated with human diseases. For 50 ment our earlier patent applications. example, achlorophylious algae of the Prototheca genus can The present invention improves the assigned application infect humans. Archae, especially methanogens, are present by disclosing new proprietary tuf nucleic acids and/or in the gut flora of humans (Reeve, J. H., 1999, J. Bacteriol. sequences as well as describing new ways to obtain tuf 181:3613-3617). However, methanogens have been associ nucleic acids and/or sequences. In addition we disclose new ated to pathologic manifestations in the colon, vagina, and 55 proprietary atpD and recA nucleic acids and/or sequences. In mouth (Belay et al., 1988, Appl. Enviro. Microbiol. 54:600 addition, new uses of tuf, atp) and recA DNA nucleic acids 603: Belay et al., 1990, J. Clin. Microbiol. 28:1666-1668: and/or sequences selected from public databases (Table 11) Weaver et al., 1986, Gut 27:698-704). are disclosed. In addition to the identification of the infectious agent, it is Highly Conserved Genes for Identification and Diagnostics often desirable to identify harmful toxins and/or to monitor 60 Highly conserved genes are useful for identification of the sensitivity of the microorganism to antimicrobial agents. microorganisms. For bacteria, the most studied genes for As revealed in this invention, genetic identification of the identification of microorganisms are the universally con microorganism could be performed simultaneously with served ribosomal RNA genes (rRNA). Among those, the prin toxin and antimicrobial agents resistance genes. cipal targets used for identification purposes are the Small Knowledge of the genomic sequences of algal, archaeal, 65 subunit (SSU) ribosomal 16S rRNA genes (in prokaryotes) bacterial, fungal and parasitical species continuously and 18S rRNA genes (in eukaryotes) (Relman and Persing, increases as testified by the number of sequences available Genotyping Methods for Microbial Identification, In: D. H. US 8,182,996 B2 7 8 Persing, 1996, PCR Protocols for Emerging Infectious Dis ubiquitously detect the targeted algal, archaeal, bacterial, fun eases, ASM Press, Washington D.C.). The rRNA genes are gal or parasitical nucleic acids. also the most commonly used targets for universal detection In a particularly preferred embodiment, oligonucleotides of bacteria (Chen et al., 1988, FEMS Microbiol. Lett. 57:19 of at least 12 nucleotides in length have been derived from the 24; McCabe et al., 1999, Mol. Genet. Metabol. 66:205-211) longer DNA fragments, and are used in the present method as and fungi (Van Buriket al., 1998, J. Clin. Microbiol.36:1169 probes or amplification primers. To be a good diagnostic 1175). candidate, an oligonucleotide of at least 12 nucleotides However, it may be difficult to discriminate between should be capable of hybridizing with nucleic acids from closely related species when using primers derived from the given microorganism(s), and with Substantially all strains and 16S rRNA. In some instances, 16S rRNA sequence identity 10 representatives of said microorganism(s); said oligonucle may not be sufficient to guarantee species identity (Fox et al., otide being species-, or genus-, or family-, or group-specific 1992, Int. J. Syst. Bacteriol. 42:166-170) and it has been or universal. shown that inter-operon sequence variation as well as Strainto In another particularly preferred embodiment, oligonucle strain variation could undermine the application of 16S rRNA otides primers and probes of at least 12 nucleotides in length for identification purposes (Clayton et al., 1995, Int. J. Syst. 15 are designed for their specificity and ubiquity based upon Bacteriol. 45:595-599). The heat shock proteins (HSP) are analysis of our databases of tuf, atpD and recA sequences. another family of very conserved proteins. These ubiquitous These databases are generated using both proprietary and proteins in bacteria and eukaryotes are expressed in answer to public sequence information. Altogether, these databases external stress agents. One of the most described of these HSP forma sequence repertory useful for the design of primers and is HSP60. This protein is very conserved at the amino acid probes for the detection and identification of algal, archaeal, level, hence it has been useful for phylogenetic studies. Simi bacterial, fungal and parasitical microorganisms. The reper lar to 16S rRNA, it would be difficult to discriminate between tory can also be subdivided into subrepertories for sequence species using the HSP60 nucleotide sequences as a diagnos analysis leading to the design of various primers and probes. tic tool. However, Goh et al. identified a highly conserved The tuf, atpD and recA sequences databases as a product to region flanking a variable region in HSP60, which led to the 25 assist the design of oligonucleotides primers and probes for design of universal primers amplifying this variable region the detection and identification of algal, archaeal, bacterial, (Gohet al., U.S. Pat. No. 5,708, 160). The sequence variations fungal and parasitical microorganisms are also covered. in the resulting amplicons were found useful for the design of The proprietary oligonucleotides (probes and primers) are species-specific assays. also another object of this invention. 30 Diagnostic kits comprising probes or amplification prim SUMMARY OF THE INVENTION ers such as those for the detection of a microbial species or genus or family or phylum or group selected from the follow It is an object of the present invention to provide a specific, ing list consisting of Abiotrophia adiacens, Acinetobacter ubiquitous and sensitive method using probes and/or ampli baumanii, Actinomycetae, Bacteroides, Cytophaga and fication primers for determining the presence and/or amount 35 Flexibacter phylum, Bacteroides fragilis, Bordetella pertus of nucleic acids: sis, Bordetella sp., Campylobacter jejuni and C. coli, Can from any algal, archaeal, bacterial, fungal or parasitical dida albicans, Candida dubliniensis, Candida glabrata, Can species in any sample Suspected of containing said dida guilliermondii, Candida krusei, Candida lusitaniae, nucleic acids, and optionally, Candida parapsilosis, Candida tropicalis, Candida zeyl from specific microbial species or genera selected from the 40 anoides, Candida sp., Chlamydia pneumoniae, Chlamydia group consisting of the species or genera listed in Table trachomatis, Clostridium sp., Corynebacterium sp., Crypo 4, and optionally, coccus neoformans, Cryptococcus sp., par from an antimicrobial agents resistance gene selected from vum, Entamoeba sp., Enterobacteriaceae group, Enterococ the group consisting of the genes listed in Table 5, and cus casselliflavus-flavescens-gallinarum group, Enterococcus optionally, 45 faecalis, Enterococcus faecium, Enterococcus gallinarum, from a toxin gene selected from the group consisting of the Enterococcus sp., Escherichia coli and Shigella sp. group, genes listed in Table 6, Gemella sp., Giardia sp., Haemophilus influenzae, Klebsiella wherein each of said nucleic acids or a variant or part pneumoniae, Legionella pneumophila, Legionella sp., Leish thereof comprises a selected target region hybridiz mania sp., Mycobacteriaceae family, Mycoplasma pneumo able with said probes or primers; 50 niae, Neisseria gonorrhoeae, platelets contaminants group said method comprising the steps of contacting said (see Table 14), Pseudomonas aeruginosa, Pseudomonads sample with said probes or primers and detecting the group, Staphylococcus aureus, Staphylococcus epidermidis, presence and/or amount of hybridized probes or Staphylococcus haemolyticus, Staphylococcus hominis, Sta amplified products as an indication of the presence phylococcus saprophyticus, Staphylococcus sp., Streptococ and/or amount of said any microbial species, specific 55 cus agalactiae, Streptococcus pneumoniae, Streptococcus microbial species or genus or family or group and pyogenes, Streptococcus sp., Trypanosoma brucei, Trypano antimicrobial agents resistance gene and/or toxin Soma Cruzi, Trypanosoma sp., Trypanosomatidae family, are gene. also objects of the present invention. In a specific embodiment, a similar method directed to each Diagnostic kits further comprising probes or amplification specific microbial species or genus or family or group detec 60 primers for the detection of an antimicrobial agents resistance tion and identification, antimicrobial agents resistance genes gene selected from the group listed in Table 5 are also objects detection, toxin genes detection, and universal bacterial of this invention. detection, separately, is provided. Diagnostic kits further comprising probes or amplification In a more specific embodiment, the method makes use of primers for the detection of a toxin gene selected from the DNA fragments from conserved genes (proprietary 65 group listed in Table 6 are also objects of this invention. sequences and sequences obtained from public databases), Diagnostic kits further comprising probes or amplification selected for their capacity to sensitively, specifically and primers for the detection of any other algal, archaeal, bacte US 8,182,996 B2 10 rial, fungal or parasitical species than those specifically listed tance gene and toxin gene PCR primers under uniform herein, comprising or not comprising those for the detection cycling conditions. Furthermore, various combinations of of the specific microbial species or genus or family or group primer pairs may be used in multiplex PCR assays. listed above, and further comprising or not comprising probes It is also an object of the present invention that tuf, atp) and and primers for the antimicrobial agents resistance genes recA sequences could serve as drug targets and these listed in Table 5, and further comprising or not comprising sequences and means to obtain them revealed in the present probes and primers for the toxin genes listed in Table 6 are invention can assist the screening, design and modeling of also objects of this invention. these drugs. In a preferred embodiment, such a kit allows for the sepa It is also an object of the present invention that tuf, atp) and rate or the simultaneous detection and identification of the 10 recA sequences could serve for vaccine purposes and these above-listed microbial species or genus or family or group; or sequences and means to obtain them revealed in the present universal detection of algae, archaea, bacteria, fungi or para invention can assist the screening, design and modeling of sites; orantimicrobial agents resistance genes; or toxin genes; these vaccines. or for the detection of any microorganism (algae, archaea, We aim at developing a universal DNA-based test or kit to bacteria, fungi or parasites). 15 screen out rapidly samples which are free of algal, archaeal, In the above methods and kits, probes and primers are not bacterial, fungal or parasitical cells. This test could be used limited to nucleic acids and may include, but are not restricted alone or combined with more specific identification tests to to analogs of nucleotides such as: inosine, 3-nitropyrrole detect and identify the above algal and/or archaeal and/or nucleosides (Nichols et al., 1994, Nature 369:492-493), bacterial and/or fungal and/or parasitical species and/or gen Linked Nucleic Acids (LNA) (Koskin et al., 1998, Tetrahe era and/or family and/or group and to determine rapidly the dron 54:3607-3630), and Peptide Nucleic Acids (PNA) (Eg bacterial resistance to antibiotics and/or presence of bacterial holm et al., 1993, Nature 365:566-568). toxins. Although the sequences from the selected antimicro In the above methods and kits, amplification reactions may bial agents resistance genes are available from public data include but are not restricted to: a) polymerase chain reaction bases and have been used to develop DNA-based tests for (PCR), b) ligase chain reaction (LCR), c) nucleic acid 25 their detection, our approach is unique because it represents a sequence-based amplification (NASBA), d) self-sustained major improvement over current diagnostic methods based sequence replication (3SR), e) Strand displacement amplifi on bacterial cultures. Using an amplification method for the cation (SDA), f) branched DNA signal amplification simultaneous or independent or sequential microbial detec (bDNA), g) transcription-mediated amplification (TMA), h) tion-identification and antimicrobial resistance genes detec cycling probe technology (CPT), i) nested PCR, j) multiplex 30 tion, there is no need for culturing the clinical sample prior to PCR, k) solid phase amplification (SPA), 1) nuclease depen testing. Moreover, a modified PCR protocol has been devel dent signal amplification (NDSA), m) rolling circle amplifi oped to detect all target DNA sequences in approximately one cation technology (RCA), n) Anchored strand displacement hour under uniform amplification conditions. This procedure amplification, o) Solid-phase (immobilized) rolling circle should save lives by optimizing treatment, should diminish amplification. 35 antimicrobial agents resistance because less antibiotics will In the above methods and kits, detection of the nucleic be prescribed, should reduce the use of broad spectrum anti acids of target genes may include real-time or post-amplifi biotics which are expensive, decrease overall health care cation technologies. These detection technologies can costs by preventing or shortening hospitalizations, and side include, but are not limited to, fluorescence resonance energy effects of drugs, and decrease the time and costs associated transfer (FRET)-based methods such as adjacent hybridiza 40 with clinical laboratory testing. tion to FRET probes (including probe-probe and probe In another embodiment, sequence repertories and ways to primer methods), TaqMan, Molecular Beacons, Scorpions, obtain them for other gene targets are also an object of this nanoparticle probes and Sunrise (Amplifluor). Other detec invention, such is the case for the heXA nucleic acids and/or tion methods include target genes nucleic acids detection via sequences of Streptococci. immunological methods, Solid phase hybridization methods 45 In yet another embodiment, for the detection of mutations on filters, chips or any other solid support, whether the associated with antibiotic resistance genes, we built reperto hybridization is monitored by fluorescence, chemilumines ries to distinguish between point mutations reflecting only cence, potentiometry, mass spectrometry, plasmon reso gene diversity and point mutations involved in resistance. nance, polarimetry, colorimetry, or scanometry. Sequencing, Such repertories and ways to obtain them for pbp1a, pbp2b including sequencing by dideoxy termination or sequencing 50 and pbp2X genes of sensitive and penicillin-resistant Strep by hybridization, e.g. sequencing using a DNA chip, is tocCOccus pneumoniae and also for gyra and parC gene frag another possible method to detect and identify the nucleic ments from various bacterial species are also an object of the acids of target genes. present invention. In a preferred embodiment, a PCR protocol is used for The diagnostic kits, primers and probes mentioned above nucleic acid amplification, in diagnostic method as well as in 55 can be used to identify algae, archaea, bacteria, fungi, para method of construction of a repertory of nucleic acids and sites, antimicrobial agents resistance genes and toxin genes deduced sequences. on any type of Sample, whether said diagnostic kits, primers In a particularly preferred embodiment, a PCR protocol is and probes are used for in vitro or in situ applications. The provided, comprising, an initial denaturation step of 1-3 min said samples may include but are not limited to: any clinical utes at 95°C., followed by an amplification cycle including a 60 sample, any environment sample, any microbial culture, any denaturation step of one second at 95°C. and an annealing microbial colony, any tissue, and any cell line. step of 30 seconds at 45-65 C., without any time allowed It is also an object of the present invention that said diag specifically for the elongation step. This PCR protocol has nostic kits, primers and probes can be used alone or in con been standardized to be suitable for PCR reactions with most junction with any other assay Suitable to identify microorgan selected primer pairs, which greatly facilitates the testing 65 isms, including but not limited to: any immunoassay, any because each clinical sample can be tested with universal, enzymatic assay, any biochemical assay, any lysotypic assay, species-specific, genus-specific, antimicrobial agents resis any serological assay, any differential culture medium, any US 8,182,996 B2 11 12 enrichment culture medium, any selective culture medium, pump ATPase and a protein responsible for the homologous any specific assay medium, any identification culture recombination of genetic material. The alignments of tuf, medium, any enumeration culture medium, any cellular stain, atpD and recA sequences used to derive the universal primers any culture on specific cell lines, and any infectivity assay on include both proprietary and public database sequences. The animals. universal primer strategy allows the rapid screening of the In the methods and kits described herein below, the oligo numerous negative clinical specimens (around 80% of the nucleotide probes and amplification primers have been specimens received, see Table 3) submitted for microbiologi derived from larger sequences (i.e. DNA fragments of at least cal testing. 100 base pairs). All DNA fragments have been obtained either Table 4 provides a list of the archaeal, bacterial, fungal and from proprietary fragments or from public databases. DNA 10 parasitical species for which tuf and/or atp) and/or recA fragments selected from public databases are newly used in a nucleic acids and/or sequences are revealed in the present method of detection according to the present invention, since invention. Tables 5 and 6 provide a list of antimicrobial agents they have been selected for their diagnostic potential. resistance genes and toxin genes selected for diagnostic pur In another embodiment, the amino acid sequences trans poses. Table 7 provides the origin of tuf, atpl) and recA lated from the repertory of tuf, atpl) and recA nucleic acids 15 nucleic acids and/or sequences listed in the sequence listing. and/or sequences are also an object of the present invention. Tables 8-10 and 12-14 provide lists of species used to test the It is clear to the individual skilled in the art that other specificity, ubiquity and sensitivity of some assays described oligonucleotide sequences appropriate for (i) the universal in the examples. Table 11 provides a list of microbial species detection of algae, archaea, bacteria, fungi or parasites, (ii) for which tufand/or atp) and/or recA sequences are available the detection and identification of the above microbial species in public databases. Table 15 lists the microorganisms iden or genus or family or group, and (iii) the detection of antimi tified by commercial systems. Tables 16-18 are part of crobial agents resistance genes, and (iv) the detection of toxin Example 42, whereas Tables 19-20 are part of Example 43. genes, other than those listed in Tables 39-41, 59-60, 70-76, Tables 21-22 illustrate Example 44, whereas Tables 23-25 77-79, and 81-92 may also be derived from the proprietary illustrate Example 45. fragments or selected public database sequences. For 25 example, the oligonucleotide primers or probes may be BRIEF DESCRIPTION OF THE DRAWINGS shorter or longer than the ones chosen; they may also be selected anywhere else in the proprietary DNA fragments or FIGS. 1 and 2 illustrate the principal subdivisions of the tuf in the sequences selected from public databases; they may be and atp) sequences repertories, respectively. For the design also variants of the same oligonucleotide. If the target DNA or 30 of primers and probes, depending on the needs, one may want a variant thereof hybridizes to a given oligonucleotide, or if to use the complete data set illustrated on the top of the the target DNA or a variant thereof can be amplified by a pyramid or use only a subset illustrated by the different given oligonucleotide PCR primer pair, the converse is also branching points. Smaller Subdivisions, representing groups, true; a given target DNA may hybridize to a variant oligo families, genus and species, could even be made to extend to nucleotide probe or be amplified by a variant oligonucleotide 35 the bottom of the pyramid. Because the tuf and atp) PCR primer. Alternatively, the oligonucleotides may be sequences are highly conserved and evolved with each spe designed from any DNA fragment sequences for use in ampli cies, the design of primers and probes does not need to fication methods other than PCR. Consequently, the core of include all the sequences within the database or its subdivi this invention is the identification of universal, species-spe sions. As illustrated in Tables 42 to 58, 61 to 69, 76 and 80, cific, genus-specific, family-specific, group-specific, resis 40 depending on the use, sequences from a limited number of tance gene-specific, toxin gene-specific genomic or non-ge species can be carefully selected to represent: i) only the main nomic DNA fragments which are used as a source of specific phylogenetic branches from which the intended probes and and ubiquitous oligonucleotide probes and/or amplification primers need to be differentiating, and ii) only the species for primers. Although the selection and evaluation of oligonucle which they need to be matching. However, for ubiquity pur otides suitable for diagnostic purposes requires much effort, it 45 poses, and especially for primers and probesidentifying large is quite possible for the individual skilled in the art to derive, groups of species (genus, family, group or universal, or from the selected DNA fragments, oligonucleotides other sequencing primers), the more data is included into the than the ones listed in Tables 39-41, 59-60, 70-76, 77-79, and sequence analysis, the better the probes and primers will be 81-92 which are suitable for diagnostic purposes. When a suitable for each particular intended use. Similarly, for speci proprietary fragment or a public databases sequence is 50 ficity purposes, a larger data set (or repertory) ensures optimal selected for its specificity and ubiquity, it increases the prob primers and probes design by reducing the chance of employ ability that subsets thereof will also be specific and ubiqui ing nonspecific oligonucleotides. tOuS. FIG. 3 illustrates the approach used to design specific Since a high percentage of clinical specimens are negative amplification primers from fuSA as well as from the region for bacteria (Table 3), DNA fragments having a high potential 55 between the end of fusA and the beginning of tuf in the for the selection of universal oligonucleotide probes or prim streptomycin (str) operon (referred to as the fusA-tuf inter ers were selected from proprietary and public database genic spacer in Table 7). Shown is a schematic organization of sequences. The amplification primers were selected from universal amplification primers (SEQID NOS. 1221-1229) in genes highly conserved in algae, archaea, bacteria, fungi and the stroperon. Amplicon sizes are given in bases pairs. Draw parasites, and are used to detect the presence of any algal, 60 ing not to scale, as the fuSA-tuf intergenic spacer size varies archaeal, bacterial, fungal or parasitical pathogen in clinical depending on the bacterial species. Indicated amplicon specimens in order to determine rapidly whether it is positive lengths are for E. coli. or negative for algae, archaea, bacteria, fungi or parasites. The FIGS. 4 to 6 are illustrations to Example 42, whereas FIGS. selected genes, designated tuf, fus, atp) and recA, encode 7 to 10 illustrate Example 43. respectively 2 proteins (elongation factors Tu and G) involved 65 FIG. 4. Abridged multiple amino acid sequence alignment in the translational process during protein synthesis, a protein of the partial tuf gene products from selected species illus (beta subunit) responsible for the catalytic activity of proton trated using the program Alscript. Residues highly conserved US 8,182,996 B2 13 14 in bacteria are boxed in grey and gaps are represented with design of universal amplification and sequencing primers. dots. Residues in reverse print are unique to the enterococcal Moreover, within the fragment amplified by these primers, tufB as well as to Streptococcal and lactococcal tuf gene highly conserved and more variable regions are also present products. Numbering is based on E. coli EF-Tu and secondary hence Suggesting it might be possible to rapidly obtain structure elements of E. coli EF-Tu are represented by cylin sequence information from various microbial species to ders (C.-helices) and arrows (B-strands). The sequences design universal as well as species-, genus-, family-, or shown correspond to SEQID NO’s: 2630 to 2667. group-specific primers and probes of potential use for the FIG. 5. Distance matrix tree of bacterial EF-Tu based on detection and identification and/or quantification of microor amino acid sequence homology. The tree was constructed by ganisms. the neighbor-joining method. The tree was rooted using 10 Translation elongation factors are members of a family of archeal and eukaryotic EF-1C. genes as the outgroup. The GTP-binding proteins which intervene in the interactions of scale bar represents 5% changes in amino acid sequence, as tRNA molecules with the ribosome machinery during essen determined by taking the sum of all of the horizontal lines tial steps of protein synthesis. The role of elongation factor Tu connecting two species. is to facilitate the binding of aminoacylated tRNA molecules FIG. 6. Southern hybridization of BglII/Xbal digested 15 to the A site of the ribosome. The eukaryotic, archaeal (ar genomic DNAS of some enterococci (except for E. Cassellifia chaebacterial) and algal homolog of EF-Tu is called elonga vus and E. gallinarum whose genomic DNA was digested tion factor 1 alpha (EF-1C.). All protein synthesis factors with BamHI/PvulI) using the tufA gene fragment of E. originated from a common ancestor via gene duplications and faecium as probes. The sizes of hybridizing fragments are fusions (Cousineau et al., 1997, J. Mol. Evol. 45:661-670). In shown in kilobases. Strains tested are listed in Table 16. particular, elongation factor G (EF-G), although having a FIG. 7. Pantoea and Tatumella species specific signature functional role in promoting the translocation of aminoacyl indel in atp genes. The nucleotide positions given are for E. tRNA molecules from the A site to the Psite of the ribosome, coli atp) sequence (GenBank accession no. V00267). Num shares sequence homologies with EF-Tu and is thought to bering starts from the first base of the initiation codon. have arisen from the duplication and fusion of an ancestor of FIG. 8: Trees based on sequence data from tuf (left side) 25 the EF-Tu gene. and atpD (right side). The phylogenetic analysis was per In addition, EF-Tu is known to be the target for antibiotics formed using the Neighbor-Joining method calculated using belonging to the elfamycin’s group as well as to other struc the Kimura two-parameter method. The value on each branch tural classes (Anborgh and Parmeggiani, 1991, EMBO J. indicates the occurence (%) of the branching order in 750 10:779-784; Luiten et al., 1992, European patent application bootstrapped trees. 30 serial No. EP0466 251 A1). EF-G for its part, is the target of FIG.9: Phylogenetic tree of members of the family Entero the antibiotic fusidic acid. In addition to its crucial activities bacteriaceae based on tuf (a), atp) (b), and 16S rRNA (c) in translation, EF-Tu has chaperone-like functions in protein genes. Trees were generated by neighbor-joining method cal folding, protection against heat denaturation of proteins and culated using the Kimura two-parameter method. The value interactions with unfolded proteins (Caldas et al., 1998, J. on each branch is the percentage of bootstrap replications 35 Biol. Chem. 273:11478-11482). Interestingly, a form of the supporting the branch. 750 bootstrap replications were cal EF-Tu protein has been identified as a dominant component culated. of the periplasm of Neisseria gonorrhoeae (Porcella et al., FIG.10: Plot of tuf distances versus 16S rRNA distances 1996, Microbiology 142:2481-2489), hence suggesting that (a), atp) distances versus 16S rDNA distances (b), and atpl) at least in Some bacterial species, EF-Tu might be an antigen distances versus tuf distances (c). Symbols: O, distances 40 with vaccine potential. between pairs of strains belonging to the same species; O. FF type ATP-synthase belongs to a superfamily of pro distances between E. coli Strains and Shigella strains; D. ton-translocating ATPases divided in three major families: P. distances between pairs belonging to the same genus; , V and F (Nelson and Taiz, 1989, TIBS 14:113-116). P-AT distances between pairs belonging to different genera; A. Pases (or E-E type) operate via a phosphorylated interme distances between pairs belonging to different families. 45 diate and are not evolutionarily related to the other two fami FIGS. 11 and 12 are illustrations to Example 44. lies. V-ATPases (or VV type) are present on the vacuolar and other endomembranes of eukaryotes, on the plasma DETAILED DESCRIPTION OF THE PREFERRED membrane of archaea (archaebacteria) and algae, and also on EMBODIMENT the plasma membrane of some eubacteria especially species 50 belonging to the order Spirochaetales as well as to the The present inventors reasoned that comparing the pub Chlamydiaceae and Deinococcaceae families. F-ATPases (or lished Haemophilus influenzae and Mycoplasma genitalium FoF type) are found on the plasma membrane of most eubac genomes and searching for conserved genes could provide teria, on the inner membrane of mitochondria and on the targets to develop useful diagnostic primers and probes. This thylakoid membrane of chloroplasts. They function mainly in sequence comparison is highly informative as these two bac 55 ATP synthesis. They are large multimeric enzymes sharing teria are distantly related and most genes present in the mini numerous structural and functional features with the V-AT mal genome of M.genitalium are likely to be present in every Pases. F and V-type ATPases have diverged from a common bacterium. Therefore genes conserved between these two ancestor in an event preceding the appearance of eukaryotes. bacteria are likely to be conserved in all other bacteria. The B subunit of the F-ATPases is the catalytic subunit and it Following the genomic comparison, it was found that sev 60 possesses low but significant sequence homologies with the eral protein-coding genes were conserved in evolution. catalytic A subunit of V-ATPases. Highly conserved proteins included the translation elonga The translation elongation factors EF-Tu, EF-G and EF-1 or tion factors G (EF-G) and Tu (EF-Tu) and the B subunit of and the catalytic subunit of F or V-types ATP-synthase, are FF type ATP-synthase, and to a lesser extent, the RecA highly conserved proteins sometimes used for phylogenetic recombinase. These four proteins coding genes were selected 65 analysis and their genes are also known to be highly con amongst the 20 most conserved genes on the basis that they all served (Iwabe et al., 1989, Proc. Natl. Acad. Sci. USA possess at least two highly conserved regions suitable for the 86: 9355-9359, Gogarten et al., 1989, Proc. Natl. Acad. Sci. US 8,182,996 B2 15 16 USA 86.6661-6665, Ludwig et al., 1993, Antonie van Leeu nucleic acids and/or sequencess. The eukaryotic (mito wenhoek 64:285-305). A recent BLAST (Altschul et al., chondrial) FF type ATP-synthase beta subunit gene is 1997, J. Mol. Biol. 215:403-410) search performed by the named atp2 in yeast. For the purpose of the current invention, present inventors on the GenBank, European Molecular Biol the genes of catalytic sub-unit of either F or V-type ATP ogy Laboratory (EMBL), DNA Database of Japan (DDBJ) synthase will hereafter be designated as > are the pieces of information derived from genetic marker to reconstruct bacterial phylogeny (Miller and (inherent to) these

TABLE 5 Antimicrobial agents resistance genes selected for diagnostic purposes

Gene Antimicrobial ACCESSION ID NO. agent Bacteria' NO. SEQ ID NO. aac(3)-Ib? Aminoglycosides Enterobacteriaceae LO6157 Pseudomonads aac(3)-IIb’ Aminoglycosides Enterobacteriaceae, M97172 Pseudomonads aac(3)-IVa’ Aminoglycosides Enterobacteriaceae XO1385 aac(3)-VIa’ Aminoglycosides Enterobacteriaceae, M88O12 Pseudomonads aac(2)-1a Aminoglycosides Enterobacteriaceae, XO4555 Pseudomonads aac(6')-aph(2") Aminoglycosides Enterococcus sp., 83-86 Staphylococci is sp. aac(6')-Ia, Aminoglycosides Enterobacteriaceae, M18967 Pseudomonads aac(6')-Ic’ Aminoglycosides Enterobacteriaceae, M94O66 Pseudomonads aac(6')-IIa Aminoglycosides Pseudomonads 1124 aadB Aminoglycosides Enterobacteriaceae 53-54 ant(2")-Ia aacC1 Aminoglycosides Pseudomonads 55-563 aac(3)-Ia aacC2 Aminoglycosides Pseudomonads 57-58 aac(3)-IIa aacC3 Aminoglycosides Pseudomonads 59-60 aac(3)-III aacA4 Aminoglycosides Pseudomonads 65-66 aac(6')-Ib’ ant(3")-Ia Aminoglycosides Enterobacteriaceae, XO2340 Enterococci is sp., M10241 Staphylococci is sp. ant(4)-Ia’ Aminoglycosides Staphylococci is sp. WO1282 aph(3')-Ia Aminoglycosides Enterobacteriaceae, JO1839 Pseudomonads aph(3')-IIa) Aminoglycosides Enterobacteriaceae, WOO618 Pseudomonads aph(3)-IIIa Aminoglycosides Enterococcus sp., VO1547 Staphylococci is sp. aph(3)-VIa Aminoglycosides Enterobacteriaceae, XO7753 Pseudomonads rpsL’ Streptomycin M. tuberculosis, X8O120 M. avium complex U14749 X70995 LO8O11 &laOXAS.6 B-lactams Enterobacteriaceae, Y10693 1104 Pseudomonads AJ238349 AJOO9819

US 8,182,996 B2 103 104 TABLE 5-continued Antimicrobial agents resistance genes Selected for diagnostic purposes

Gene Antimicrobial ACCESSION ID NO. agent Bacteria' NO. SEQ ID NO. F047171 F1881.99 F157553 F190694 F190695 F190693 F190692 bioCARB B-lactams Pseudomonas sp., S162 Enterobacteriaceae S46063 69058 4749 86225 3210 8955 FO71555 F153200 FO30945 &laCTX-M-15 B-lactams Enterobacteriaceae 92SO6 &laCTX-M-25 B-lactams Enterobacteriaceae 92.507 bioCMY-2 B-lactams Enterobacteriaceae 91840 OO7826 O11293 O11291 7716 6783 6781

blimp f-lactams Enterobacteriaceae, AJ2236O4 Pseudomonas S71932 aeruginosa DSO438 D29636 X98393 ABO10417 D783.75 bioPER-1 5 B-lactams Enterobacteriaceae, Z21957 Pseudomodanaceae &la PER-27 B-lactams Enterobacteriaceae X93314 blaZ12 B-lactams Enterococci is sp., 1114 Staphylococci is sp. mecA B-lactams Staphylococci is sp. 97-98 pbp1a' B-lactams Streptococcus M90527 1004-1018, pneumoniae X67872 1648, BOO6868 2056-2064, BOO6874 2273-2276 67873 BOO6878 BOO6875 BOO6877 BOO6879 FO46237 FO4623S FO26431 FO46232 FO46233 FO46236 67871 ZA 9095 FO46234 BOO6873 67866 6.7868 BOO6870 BOO6869 BOO6872 67870 BOO6871 67867 67869 BOO6876 FO46230 US 8,182,996 B2 105 106 TABLE 5-continued Antimicrobial agents resistance genes Selected for diagnostic purposes

Gene Antimicrobial ACCESSION ID NO. agent Bacteria' NO. SEQ ID NO. AFO46238 ZA9094 B-lactams Streptococcus X16022 1019-1033 pneumoniae M2SS16 M2SS18 M25515 U2OO71 U2OO84 U2O082 U2OO67 U20079 Z22.185 U2OO72 B-lactams Streptococcus U2O083 pneumoniae U2O081 M25522 U20075 U20070 U20077 U2OO68 Z22184 U20069 U20078 M25521 M255.25 M25519 Z21981 M25523 M2S526 U2OO76 U20074 M2552O M25517 M2SS24 Z22230 U20073 U2008O B-lactams Streptococcus 6367 1034-1048 pneumoniae 65135 BO11204 BO11209 BO11,199 BO11200 BO112O1 BO112O2 BO11,198 BO11208 BO1120S BO15852 BO11210 BO15849 BO158SO BO15851 BO15847 BO15846 BO112O7 BO15848 ZA9096 int B-lactams, Enterobacteriaceae, 99-1023 trimethoprim Sul aminoglycosides, Pseudomonads 103-106 antiseptic, chloramphenicol ermA' Macrollides, Staphylococci is sp. 1134 lincosamides, streptogramin B ermB' Macrollides, Enterobacteriaceae, 1144 lincosamides, Staphylococci is sp. streptogramin B Enterococci is sp. Streptococci is sp. ermC Macrollides, Enterobacteriaceae, 1154 lincosamides, Staphylococci is sp. streptogramin B US 8,182,996 B2 107 108 TABLE 5-continued Antimicrobial agents resistance genes Selected for diagnostic purposes

Gene Antimicrobial ACCESSION ID NO. agent Bacteria' NO. SEQ ID NO. ereA' Macrollides Enterobacteriaceae, M11277 Staphylococci is sp. EO1199 ereB? Macrollides Enterobacteriaceae Staphylococci is sp. msrA'? Macrollides Staphylococci is sp. 77-803 mefA, mefE Macrollides Streptococci is sp. U70055 U836.67 mph.A Macrollides Enterobacteriaceae, D16251 Staphylococci is sp. U34344 U36578 linA/linA' Lincosamides Staphylococci is sp.

linB 9 Lincosamides Enterococcits faecium vga' Streptrogramin Staphylococci is sp. M900S6 89-90 vgb' Streptrogramin Staphylococci is sp. wati Streptrogramin Staphylococci is sp. LO7778 87-88 watB Streptrogramin Staphylococci is sp. U19459 L38.809 sat A Streptrogramin Enterococci is faecium L12033 81-82 mup A Mupirocin Staphylococcits X75439 (iiietS XS9478 X59477 gyra Quinolones Gram-positive and X95718 1255, gram-negative XO6744 1607-1608, bacteria X571.74 1764-1776, X16817 2013-2014, X71437 2277-228O AFO651S2 AFO60881 D322S2 Quinolones Gram-positive and ABOOSO36 1777-1785 gram-negative AFOS6287 bacteria X95 717 AF129764 ABO17811 Quinolones Gram-positive X95 717 bacteria AFO65153 AFOS892O norA Quinolones Staphylococci is sp. D901.19 M97169 mexR(nalB) Quinolones Pseudomonas U23763 aeruginosa infxB16 Quinolones Pseudomonas X65646 aeruginosa cat? Chloramphenicol Gram-positive and MSS 620 gram-negative X151OO bacteria A24651 M28717 AOOS68 AOOS69 X74948 YOO723 A24362 AOOS69 M931.13 M62822 MS8516 VO1277 XO2166 M77169 X53796 JO1841 XO7848 ppflo-like Chloramphenicol AFO71555 embB7 Ethambutol Mycobacterium tuberculosis US 8,182,996 B2 109 110 TABLE 5-continued Antimicrobial agents resistance genes Selected for diagnostic purposes

Gene Antimicrobial ACCESSION ID NO. agent Bacteria' NO. SEQ ID NO. Pyrazinamide Mycobacterium U59967 tuberculosis rpoB7 Rifampin Mycobacterium AFOSS891 tuberculosis AFOSS892 S71246 L27989 AFOSS893 Isoniazid Mycobacterium AF106O77 tuberculosis UO2492 Vancomycin Enterococci is sp. 67-703 1049-1057 Vancomycin Enterococci is sp. 116 Vancomycin Enterococcits 1174 gallinartin 1058-1059 Vancomycin Enterococcits U94521 1060-1063 casseifiavits U94522 U94523 U94524 U94525 L296.38 vanC32 Vancomycin Enterococcits L29639 1064-1066 fiavescens vanD8 Vancomycin Enterococcits AF13.0997 faecium vanE2 Vancomycin Enterococcits AF136925 faecium tetB Tetracycline Gram-negative JO1830 bacteria AF162223 APOOO342 S83213 U81141 WOO611 tetMI9 Tetracycline Gram-negative and X52632 Gram-positive AF116348 bacteria USO983 X92947 M211136 UO8812 XO4388 sul II29 Sulfonamides Gram-negative M36657 bacteria AFO17389 AFO17391 Trimethoprim Gram-negative A2383SO bacteria X17477 KOOOS2 UO9476 XOO926 Trimethoprim Gram-negative Z50805 bacteria ZSO804 Trimethoprim Gram-negative X12868 bacteria Trimethoprim Gram-negative bacteria Trimethoprim Gram-negative U31119 bacteria AF139109 XS8425 hfrVIII20 Trimethoprim Gram-negative U101.86 bacteria UO9273 Trimethoprim Gram-negative X57730 bacteria Trimethoprim Gram-negative Z21672 bacteria AF1752O3 AF180731 M84522 hfrXIII-20 Trimethoprim Gram-negative ZSO802 bacteria Trimethoprim Gram-negative Z833.31 bacteria hfrXVII.20 Trimethoprim Gram-negative AF170088 bacteria AF180469 AF169041 Trimethoprim Staphylococci is sp. AFO4S472 U4O259 AFOS1916 X13290 US 8,182,996 B2 111 112 TABLE 5-continued Antimicrobial agents resistance genes Selected for diagnostic purposes

Gene Antimicrobial ACCESSION ID NO. agent Bacteria' NO. SEQ ID NO. YO7536 Z16422 ZA-8233 Bacteria having high incidence for the specified antibiotic resistance gene. The presence of the antibiotic resistance genes in other bacteria is not excluded. *Shaw, K. J., P.N. Rather, R. S. Hare, and G.H. Miller, 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138-163. Antibiotic resistance genes from our assigned U.S. Pat. No. 6,001,564 for which we have selected PCR primer 81S, These SEQID NOs, refer to a previous patent (publication W098, 20157). Bush, K., G. A. Jacoby and A. Medeiros. 1995. A functional classification scheme for B-lactamase and its correlation with molecular structure. Antimicrob, Agents. Chemother, 39:1211-1233. ucleotide mutations in blast, blate, and blao, are associated with extended-spectrum B-lactamase or inhibitor-resistant B-lactamase. Bauerfeind, A.Y. Chong, and K. Lee. 1998. Plasmid-encoded AmpC beta-lactamases; how far have we gone 10 ears after discovery? Yonsei Med. J. 39:520-525. Sutcliffe, J., T. Grebe, A. Tait-Kamradt, and L. Wondrack. 1996. Detection of erythromycin-resistant deter minants by PCR. Antimicrob, Agent Chemother, 40:2562-2566. Leclerc, R., A., Brisson-Noël, J. Duval, and P. Courvalin. 1991. Phenotypic expression and genetic hetero eneity of lincosamide inactivation in Staphylococcus sp. Antimicrob, Agents. Chemother, 31:1887-1891. Bozdogan, B., L. Berrezouga, M.-S. Kuo, D. A. Yurek, K. A. Farley, B. J. Stockman, and R. Leclercq, 1999. A new gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob, Agents. Chemother, 43:925-929. 'Cockerill III, F.R. 1999. Genetic methods for assessing antimicrobial resistance, Antimicrob, Agents, Chemother, 43:199-212. 'Tenover, F.C., T. Popovic, and O Olsvik, 1996. Genetic methods for detecting antibacterial resistance genes. pp. 1368-1378. In Murray, P.R.E. J. Baron, M. A. Pfaller, F. C. Tenover, R. H. Yolken (eds). Manual of clinical microbiology, 6th ed., ASM Press, Washington, D.C., USA 'Dowson, C. G., T. J. Tracey, and B. G. Spratt, 1994. Origin and molecular epidemiology of penicillin binding-protein-mediated resistance to B-lactam antibiotics. Trends Molec. Microbiol.2: 361-366. 'Jensen, L. B., N. Frimodt-Moller, F. M. Aarestrup, 1999. Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol. 170:151-158. Thal, L. A., and M. J. Zervos, 1999. Occurrence and epidemiology of resistance to virginimycin and streptrogramins. J. Antimicrob, Chemother, 43:171-176. Martinez J. L.A. Alonso, J.M. Gomez-Gomez, and F. Bacquero, 1998. Quinolone resistance by mutations in chromosomal gyrase genes, Just the tip of the iceberg? J. Antimicrob, Chemother, 42:683-688 'Cockerill III, F.R. 1999. Genetic methods for assessing antimicrobial resistance, Antimicrob, Agents, Chemother, 43:199-212. 'Casadewall, B, and P. Courvalin, 1999 Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM 4339, J. Bacteriol. 181:3644-3648. 'Roberts, M.C. 1999. Genetic mobility and distribution of tetracycline resistance determinants. Ciba Found. Symp. 207:206-222. 2 Huovinen, P.L. Sundström, G. Swedberg, and O. Sköld. 1995. Trimethoprim and sulfonamide resistance. Antimicrob, Agent Chemother, 39:279-289.

TABLE 6 TABLE 6-continued List of bacterial toxins selected for diagnostic purposes. List of bacterial toxins selected for diagnostic purposes. 40 Accession Accession Organism Toxin number Organism Toxin number Actinobacilius Cytolethal distending AFOO6830 Bordeteia Pertussis toxin (S1 subunit, tox) AJO06151 actinomycetemcomitans toxin (cdtA, coltB, coltC) pertissis AJOO6153 Leukotoxin (ItXA) M27399 AJOO615S Actinomyces Hemolysin (pyolysin) U84782 45 AJOO6157 pyogeneS AJOO61.59 Aeromonas Aerolysin (aerA) M16495 AJOO7363 hydrophila Haemolysin (hly A) U81555 M14378, Cytotonic enterotoxin (alt) L77573 M16494 Bacilius anthracis Anthrax toxin (cya) M23179 AJOO7364 Bacilius cereus Enterotoxin (bceT) D17312 50 M13223 AF192766, X16347 AF192767 Adenyl cyclase (cya) 18323 Enterotoxic hemolysin BL AJ237785 Dermonecrotic toxin (dnt) U10527 Non-haemolytic enterotoxins Y19005 Campylobacter Cytolethal distending toxin US 1121 A.B and C (nhe) jeiini (cdtA, coltB, ccdtC) Bacilius mycoides Hemolytic enterotoxin HBL AJ243150 to 55 Citrobacter Shiga-like toxin (silt-IIcA) X67514, A243153 freundi SS32O6 Bacilius Hemolytic enterotoxin HBL AJ243154 to Cliostridium Botulism toxin (BoNT) (A, X52066, pseudomycoides AJ243156 bointinum B, E and F serotypes XS2088 Bacteroides Enterotoxin (bftP) U67735 are neurotoxic for humans; X73423 fragilis Matrix metalloproteasef S75941, the other serotypes M301.96 enterotoxin (fragilysin) AFO38459 60 have not been considered) X70814 Metalloprotease toxin-2 U90931 X70819 AFO81785 X71343 Metalloprotease toxin-3 AFOS6297 Z11934 Bordeteia Adenylate cyclase Z37112, X70817 bronchiseptica hemolysin (cyaA) U22953 M81186 Dermonecrotic toxin (dnt) U59687 65 X70818 ABO2OO2S X70815 US 8,182,996 B2 113 114 TABLE 6-continued TABLE 7-continued List of bacterial toxins Selected for diagnostic purposes. Origin of the nucleic acids and/or Sequences in the Sequence listing. Accession SEQ Archaeal, bacterial, fungal Organism Toxin number 5 ID NO. or parasitical species Source Gene X62089 6 Bacilius anthracis This paten X62683 7 Bacilius cereus This paten S76749 8 Bacteroides distasonis This paten X81714 9 Enterococcus casselliflavus This paten X70816 10 10 Staphylococci is saprophyticits This paten X7082O 11 Bacteroides ovatus This paten X70281 12 Bartoneia henseiae This paten L3S496 13 Bifidobacterium adolescentis This paten M92906 14 Bifidobacterium dentium This paten Cliostridium A toxin (enterotoxin) ABO12304 15 Bruceiia aborius This paten difficile (tcdA) (cdtA) AFOS3400 15 16 Burkholderia cepacia This paten Y12616 17 Cedecea davisae This paten X51797 18 Cedecea neieri This paten X171.94 19 Cedecea lapagei This paten M30307 20 Chlamydia pneumoniae This paten B toxin (cytotoxin) Z23277 21 Chlamydia psittaci This paten (toxB) (cdtB) X531.38 22 Chlamydia trachomatis This paten Cliostridium Alpha (phospholipase L43S45 2O 23 Chryseobacterium This paten perfingens C) (cpa) L43546 meningosepictim L43S47 24 Citrobacter amationaicus This paten L43548 25 Citrobacter braaki This paten X13608 26 Citrobacter koseri This paten X173OO 27 Citrobacter farmeni This paten D10248 25 28 Citrobacter fieundii This paten Beta (dermonecrotic L131.98 29 Citrobactersediaki This paten protein) (cpb) X83275 30 Citrobacter werkmani This paten L77965 31 Citrobacter youngae This paten Enterotoxin (cpe) AJOOO766 32 Clostridium perfingens This paten M98O37 33 Comamonas acidovorans This paten X81849 30 34 Corynebacterium bovis This paten X71844 35 Corynebacterium cervicis This paten Y16009 36 Corynebacterium flavescens This paten Enterotoxin pseudogene AFO37328 37 Corynebacterium kutscheri This paten (not expressed) AFO37329 38 Corynebacterium This paten AFO37330 mintitissini in Epsilon toxin (etXD) M8O837 35 39 Corynebacterium mycetoides This paten M952O6 40 Corynebacterium This paten X60694 pseudogenitalium Iota (Ia and Ib) X73562 41 Corynebacterium renale This paten Lambda (metalloprotease) D45904 42 Corynebacterium ulcerans This paten Theta (perfringolysin O) M36704 43 Corynebacterium urealyticum This paten Cliostridium sordei Cytotoxin L X82638 44 Corynebacterium xerosis This paten Cliostridium tetani Tetanos toxin XO6214 40 45 Coxieia burnetii This paten XO4436 46 Edwardsielia hoshinae This paten Corynebacterium Diphtheriae toxin XOO703 47 Edwardsielia tarda This paten diphtheriae 48 Eikeneia corrodens This paten Corynebacterium Phospholipase C A21336 49 Enterobacter aerogenes This paten pseudotuberculosis 50 Enterobacter agglomerans This paten Eikeneia corrodens lysine decarboxylase (cada) U89166 45 51 Enterobacter amnigenus T his 8t Enterobacter cloacae Shiga-like toxin II Z50754, 52 Enterobacter asburiae his paten U335O2 53 Enterobacter cancerogenus This paten Enterococci is faecalis Cytolysin B (cylB) M38052 : first cloacae Inis paten Escherichia coi Hemolysin toxin (hlyA AFO43471 interopactergergovae Inis paren 56 Enterobacter hormaechei S 8Cl (EHEC) and ehkA) X94129 50 57 Enterobacter Sakazaki S 8Cl X79839 58 Enterococcus casselliflavus This paten X86087 59 Enterococcus Cecorum This paten ABO11549 60 Enterococcus dispar This paten AFO74613 61 Enterococcus durans This paten 62 Enterococcus faecalis This paten 55 63 Enterococcus faecalis This paten 64 Enterococcus faecium This paten TABLE 7 65 Enterococcus flavescens This paten 66 Enterococcus gallinarum This paten Origin of the nucleic acids and/or Sequences in the Sequence listing. a. Elects Tail T his paten le:OCOCO2S fiti S 8Cl SEQ Archaeal, bacterial, fungal 60 69 Enterococcus pseudoavium This paten ID NO. or parasitical species Source Gene 70 Enterococcus raffinosus This paten 71 Enterococcus saccharolyticus This paten 1 Acinetobacter battmannii This patent tuf 72 Enterococcus solitarius This paten 2 Actinomyces meyeri This patent tuf 73 Enterococcus casselliflavus This paten tuf (C) 3 Aerococcus viridans This patent tuf 74 Staphylococci is saprophyticits This paten unknown 4 Achromobacter xylosoxidans This patent tuf 75 Enterococcus flavescens This paten tuf (C) Subsp. denitrificans 65 76 Enterococcus gallinarum This paten tuf (C) 5 Anaerorhabdits fircosus This patent tuf 77 Ehrichia Canis This paten US 8,182,996 B2 115 116 TABLE 7-continued TABLE 7-continued Origin of the nucleic acids and/or Sequences in the Sequence listing. Origin of the nucleic acids and/or Sequences in the Sequence listing. SEQ Archaeal, bacterial, fungal SEQ Archaeal, bacterial, fungal ID NO. or parasitical species Source Gene 5 ID NO. or parasitical species Source Gene 78 Escherichia coli This paten 40 Porphyromonas This paten 79 Escherichiafergusonii This paten asaccharolytica 80 Escherichia hermannii This paten 41 Porphyromonas gingivais This paten 81 Escherichia vulneris This paten 42 Pragia fontium This paten 82 Eubacterium lenium This paten 10 43 Prevoteila melaninogenica This paten 83 Eubacterium nodatum This paten 44 Prevoteia orais This paten 84 Ewingeila americana This paten 45 Propionibacterium acnes This paten 85 Franciseia tuiarensis This paten 46 Proteus mirabilis This paten 86 Fusobacterium nucleatum This paten 47 Proteus penneri This paten Subsp. polymorphin 48 Proteus vulgaris This paten 87 Gemella haemolysans This paten 15 49 Providencia alcalifaciens This paten 88 Gemeia morbiorum This paten 50 Providencia retigeri This paten 89 Haemophilus This paten 51 Providencia rustigianii This paten actinomycetemcomitans 52 Providencia Stuarii This paten 90 Haemophilus aphrophilus This paten 53 Pseudomonas aeruginosa This paten 91 Haemophilus ducreyi This paten 54 Pseudomonas fluorescens This paten 92 Haemophilus haemolyticus This paten 55 Pseudomonas Stutzeri This paten 93 Haemophilus parahaemolyticus This paten 2O 56 Psychrobacter This paten 94 Haemophilus parainfluenzae This paten phenylpyruvictim 95 Haemophilus paraphrophilus This paten 57 Rahnella aquatilis This paten 96 Haemophilus segnis This paten 58 Saimoneiia choieraestiis This paten 97 Hafnia alvei This paten Subsp.arizonae 98 Kingeila kingae This paten 59 Salmoneiia choieraestiis This paten 99 Klebsiella ornithinolytica This paten 25 Subsp. Choleraestiis 00 Klebsiella Oxytoca This paten serotype CholeraeSuis 01 Klebsiella planticola This paten 60 Salmoneiia choieraesuis This paten 02 Klebsiella pneumoniae This paten Subsp. diarizonae Subsp. Ozaenae 61 Saimoneiia choieraesuis This paten 03 Klebsiella pneumoniae This paten Subsp. Choleraestiis pneumoniae 30 serotype Heidelberg 04 Klebsiella pneumoniae This paten 62 Salmoneiia choieraesuis This paten subsp. rhinoscleromatis Subsp. holitenae 05 Kluyvera ascorbata This paten 63 Salmoneiia choieraesuis This paten 06 Kluyvera cryocrescens This paten subsp. indica 07 Kluyverageorgiana This paten 64 Salmoneiia choieraesuis This paten 08 Lactobacilius casei This paten 35 Subsp. Salamae Subsp. casei 65 Salmoneiia choieraesuis This paten 09 Lactococcusiactis This paten Subsp. Choleraestiis Subsp. lactis serotype Typhi 10 Leclercia adecarboxylata This paten 66 Serratia fonticola This paten 11 Legionella micaadei This paten 67 Serratia liquefaciens This paten 12 Legionella pneumophila This paten 68 Serraia marcesCens This paten Subsp. pneumophia 40 69 Serratia odorifera This paten 13 Leminorella grimontii This paten 70 Serratia ply muthica This paten 14 Leminorelia richardii This paten 71 Serratia rubidaea This paten 15 Leptospira interrogans This paten 72 Shigella boydii This paten 16 Megamonas hypermegale This paten 73 Shigella dysenteriae This paten 17 Mitsutokeia muitacidus This paten 74 Shigella flexneri This paten 18 Mobiluncus curtisii This paten 45 75 Shigella sonnei This paten Subsp. holmesii 76 Staphylococcusatiretts This paten 19 Moeierelia wisconsensis This paten 77 Staphylococcus aureus This paten 20 Moraxeiia catarrhais This paten 78 Staphylococcus aureus This paten 21 Morganella morgani This paten 79 Staphylococcus aureus This paten Subsp. morgani 80 Staphylococcusatiretts This paten 22 Mycobacterium tuberculosis This paten 50 Subsp. aurents 23 Neisseria cinerea This paten 81 Staphylococcus auricularis This paten 24 Neisseria elongata This paten 82 Staphylococci is capitis This paten Subsp. elongata Subsp. capitis 25 Neisseria flavescens This paten 83 Macrococcus caseolyticus This paten 26 Neisseria gonorrhoeae This paten 84 Staphylococcus cohnii This paten 27 Neisseria iacianica This paten 55 subsp. cohnii 28 Neisseria meningitidis This paten 85 Staphylococcus epidermidis This paten 29 Neisseria maicosa This paten 86 Staphylococcus haemolyticus This paten 30 Neisseria sicca This paten 87 Staphylococcus warneri This paten 31 Neisseria subfiava This paten 88 Staphylococcus haemolyticus This paten 32 Neisseria weaveri This paten 89 Staphylococcus haemolyticus This paten 33 Ochrobactrum anthropi This paten 90 Staphylococcus haemolyticus This paten 34 Pantoea agglomerans This paten 60 91 Staphylococcus hominis This paten 35 Pantoea dispersa This paten subsp. hominis 36 Pasteureia mitocida This paten 92 Staphylococcus warneri This paten 37 Peptostreptococcus This paten 93 Staphylococcus hominis This paten anaerobius 94 Staphylococcus hominis This paten 38 Peptostreptococcus This paten 95 Staphylococcus hominis This paten asaccharolyticits 65 96 Staphylococcus hominis This paten 39 Peptostreptococcus previotii This paten 97 Staphylococcus lugdunensis This paten US 8,182,996 B2 117 118 TABLE 7-continued TABLE 7-continued Origin of the nucleic acids and/or Sequences in the Sequence listing. Origin of the nucleic acids and/or Sequences in the Sequence listing. SEQ Archaeal, bacterial, fungal SEQ Archaeal, bacterial, fungal ID NO. or parasitical species Source Gene 5 ID NO. or parasitical species Source Gene 198 Staphylococci is saprophyticits This paten 269 Cliostridium innocuum This paten atpD 199 Staphylococcus saprophyticus This paten 270 Clostridium perfingens This paten atpD 200 Staphylococci is saprophyticits This paten 272 Corynebacterium diphtheriae This paten atpD 201 Staphylococcus Sciuri This paten 273 Corynebacterium This paten atpD Subsp. Sciuri 10 pseudodiphtheriticum 202 Staphylococcus warneri This paten 274 Corynebacterium ulcerans This paten atpD 203 Staphylococcus warneri This paten 275 Corynebacterium urealyticum This paten atpD 204 Bifidobacterium longum This paten 276 Coxieia burnetii This paten atpD 205 Stenotrophomonas maitophilia This paten 277 Edwardsielia hoshinae This paten atpD 206 Streptococcus acidominimus This paten 278 Edwardsielia tarda This paten atpD 207 Streptococci is agaiaciae This paten 15 279 Eikeneia corrodens This paten atpD 208 Streptococci is agaiaciae This paten 280 Enterobacter agglomerans This paten atpD 209 Streptococci is agaiaciae This paten 281 Enterobacter amnigenus This paten atpD 210 Streptococci is agaiaciae This paten 282 Enterobacter as buriae This paten atpD 211 Streptococci is anginostis This paten 283 Enterobacter cancerogenus This paten atpD 212 Streptococcus bovis This paten 284 Enterobacter cloacae This paten atpD 213 Streptococci is anginostis This paten 285 Enterobacter gergoviae This paten atpD 214 Streptococcus cricetus This paten 2O 286 Enterobacter hormaechei This paten atpD 215 Streptococcus cristatus This paten 287 Enterobacter Sakazaki This paten atpD 216 Streptococcus downei This paten 288 Enterococci is avium This paten atpD 217 Streptococci is dysgalactiae This paten 289 Enterococcus casselliflavus This paten atpD 218 Streptococci is equi Subsp. equi This paten 290 Enterococcus durans This paten atpD 219 Streptococcus ferus This paten 291 Enterococcus faecalis This paten atpD 220 Streptococcusgordonii This paten 25 292 Enterococcus faecium This paten atpD 221 Streptococci is anginostis This paten 293 Enterococcus gallinarum This paten atpD 222 Streptococci is macacae This paten 294 Enterococcus saccharolyticus This paten atpD 223 Streptococcusgordonii This paten 295 Escherichiafergusonii This paten atpD 224 Streptococci is mutans This paten 296 Escherichia hermannii This paten atpD 225 Streptococci is parasanguinis This paten 297 Escherichia vulneris This paten atpD 226 Streptococcus ratti This paten 30 298 Eubacterium ienium This paten atpD 227 Streptococci is sanguinis This paten 299 Ewingeila americana This paten atpD 228 Streptococcus sobrinus This paten 300 Franciselia tularensis This paten atpD 229 Streptococcus suis This paten 301 Fusobacterium gonidiaformans This paten atpD 230 Streptococcus uberis This paten 302 Fusobacterium necrophorum This paten atpD 231 Streptococcus vestibularis This paten Subsp. necrophorum 232 Tattimelia ptyseos This paten 35 303 Fusobacterium nucleatum This paten atpD 233 Trabulsiella guamensis This paten Subsp. polymorphi in 234 Veillonella parvula This paten 304 Gardnerella vaginalis This paten atpD 235 Yersinia enterocolitica This paten 305 Gemella haemolysans This paten atpD 236 Yersinia fiederiksenii This paten 306 Geneia morbiorum This paten atpD 237 Yersinia intermedia This paten 307 Haemophilus ducreyi This paten atpD 238 Yersinia pestis This paten 308 Haemophilus haemolyticus This paten atpD 239 Yersinia pseudotuberculosis This paten 40 309 Haemophilus parahaemolyticus This paten atpD 240 Yersinia rohdei This paten 310 Haemophilus parainfluenzae This paten atpD 241 Yokenella regensburgei This paten 311 Hafnia alvei This paten atpD 242 Achromobacter xylosoxidans This paten atpD 312 Kingeila kingae This paten atpD Subsp. denitrificans 313 Klebsiella pneumoniae subsp. This paten atpD 243 Acinetobacter battmannii This paten atpD Oziele 244 Acinetobacter iwofi This paten atpD 45 314 Klebsiella ornithinolytica This paten atpD 245 Staphylococci is saprophyticits This paten atpD 315 Klebsiella Oxytoca This paten atpD 246 Alcaligenes faecalis This paten atpD 316 Klebsiella planticola This paten atpD Subsp. faecalis 317 Klebsiella pneumoniae subsp. This paten atpD 247 Bacilius anthracis This paten atpD pneumoniae 248 Bacilius cereus This paten atpD 318 Kluyvera ascorbata This paten atpD 249 Bacteroides distasonis This paten atpD 50 319 Kluyvera cryocrescens This paten atpD 250 Bacteroides ovatus This paten atpD 320 Kluyverageorgiana This paten atpD 251 Leclercia adecarboxylata This paten atpD 321 Lactobacilius acidophilus This paten atpD 252 Stenotrophomonas maitophilia This paten atpD 322 Legionella pneumophia Subsp. This paten atpD 253 Bartoneia henseiae This paten atpD pneumophila 254 Bifidobacterium adolescentis This paten atpD 323 Leminorella grimontii This paten atpD 255 Bruceiia abortus This paten atpD 55 324 Listeria monocytogenes This paten atpD 256 Cedecea davisae This paten atpD 325 Micrococcus lyilae This paten atpD 257 Cedecea lapagei This paten atpD 326 Moellereia wisconsensis This paten atpD 258 Cedecea neieri This paten atpD 327 Moraxeiia caiarrhais This paten atpD 259 Chryseobacterium This paten atpD 328 Moraxeia Osiloensis This paten atpD meningosepictim 329 Morganella morganii This paten atpD 260 Citrobacter amationaticus This paten atpD Subsp. morgani 261 Citrobacter braaki This paten atpD 60 330 Pantoea agglomerans This paten atpD 262 Citrobacter koseri This paten atpD 331 Pantoea dispersa This paten atpD 263 Citrobacter farmeri This paten atpD 332 Pasieureia mitocida This paten atpD 264 Citrobacter freundii This paten atpD 333 Pragia fontium This paten atpD 265 Citrobacter koseri This paten atpD 334 Proteus mirabilis This paten atpD 266 Citrobactersediaki This paten atpD 335 Proteus vulgaris This paten atpD 267 Citrobacter werkmani This paten atpD 65 336 Providencia alcalifaciens This paten atpD 268 Citrobacter youngae This paten atpD 337 Providencia retigeri This paten atpD US 8,182,996 B2 119 120 TABLE 7-continued TABLE 7-continued Origin of the nucleic acids and/or Sequences in the Sequence listing. Origin of the nucleic acids and/or Sequences in the Sequence listing. SEQ Archaeal, bacterial, fungal SEQ Archaeal, bacterial, fungal ID NO. or parasitical species Source Gene 5 ID NO. or parasitical species Source Gene 338 Providencia rustigiani This paten atpD 391 Trabulsiella guamensis This paten atpD 339 Providencia Stuarii This paten atpD 392 Yersinia bercovieri This paten atpD 340 Psychrobacter This paten atpD 393 Yersinia enterocolitica This paten atpD phenylpyruvictim 394 Yersinia fiederiksenii This paten atpD 341 Rahnella aquatilis This paten atpD 10 395 Yersinia intermedia This paten atpD 342 Saimoneiia choieraestiis This paten atpD 396 Yersinia pseudotuberculosis This paten atpD Subsp. arizonae 397 Yersinia rohdei This paten atpD 343 Saimoneiia choieraestiis This paten atpD 398 Yokenella regensburgei This paten atpD Subsp. Choleraestis 399 Yarrowia lipolytica This paten ) Serotype CholeraeSuis 400 Absidia corymbifera This paten ) 344 Saimoneiia choieraestiis This paten atpD 15 401 Alternaria alternata This paten ) Subsp. diarizonae 402 Aspergiiitisfiavits This paten ) 345 Saimoneiia choieraestiis This paten atpD 403 Aspergilius finigatus This paten ) Subsp. holienae 404 Aspergilius finigatus This paten ) 346 Saimoneiia choieraestiis This paten atpD 405 Aspergilius niger This paten ) subsp. indica 406 Biastoschizomyces capitatus This paten ) 347 Saimoneiia choieraestiis This paten atpD 407 Candida albicans This paten ) Subsp. Choleraestis 2O 408 Candida albicans This paten ) serotype Paratyphi A 409 Candida albicans This paten ) 348 Saimoneiia choieraestiis This paten atpD 410 Candida albicans This paten ) Subsp. Choleraestis 411 Candida albicans This paten ) serotype Paratyphi B 412 Candida dubiniensis This paten ) 349 Saimoneiia choieraestiis This paten atpD 413 Candida catentiaia This paten ) Subsp. Salamae 25 414 Candida dubiniensis This paten ) 350 Saimoneiia choieraestiis This paten atpD 415 Candida dubiniensis This paten ) Subsp. Choleraestis 416 Candida famata This paten ) serotype Typhi 417 Candida glabrata WO98.2O157 till ) 351 Saimoneiia choieraestiis This paten atpD 418 Candida guilliermondii This paten ) Subsp. Choleraestis 419 Candida haemationi This paten ) Serotype Typhimurium 30 420 Candida inconspicua This paten ) 352 Saimoneiia choieraestiis This paten atpD 421 Candida kefir This paten ) Subsp. Choleraestis 422 Candida krusei WO98.2O157 till ) serotype Virchow 423 Candida iambica This paten ) 353 Serratia ficaria This paten atpD 424 Candida iusitaniae This paten ) 354 Serratia fonticola This paten atpD 425 Candida norvegensis This paten ) 355 Serratia grimesii This paten atpD 35 426 Candida parapsilosis WO98.2O157 till ) 356 Serratia liquefaciens This paten atpD 427 Candida rugosa This paten ) 357 Serraia marCescens This paten atpD 428 Candida sphaerica This paten ) 358 Serratia odorifera This paten atpD 429 Candida tropicalis WO98.2O157 till ) 359 Serratia plymuthica This paten atpD 430 Candida utilis This paten ) 360 Serratia rubidaea This paten atpD 431 Candida viswanathi This paten ) 361 Pseudomonasputida This paten atpD 432 Candida zeylanoides This paten ) 362 Shigella boydii This paten atpD 40 433 Coccidioides inmitis This paten ) 363 Shigella dysenteriae This paten atpD 434 Cryptococcus albidus This paten ) 364 Shigella flexneri This paten atpD 435 Exophiala jeanselmei This paten ) 365 Shigella sonnei This paten atpD 436 Fusarium oxysporum This paten ) 366 Staphylococcus aureus This paten atpD 437 Geotrichum sp. This paten ) 367 Staphylococcus auricularis This paten atpD 438 Histoplasma capsulatin This paten ) 368 Staphylococcus capitis This paten atpD 45 439 Issaichenkia orientais This paten ) Subsp. capitis Kudrijanzev 369 Staphylococcus cohnii This paten atpD 440 Malassezia furfur This paten ) Subsp. cohnii 4.41 Malassezia pachydermatis This paten ) 370 Staphylococcus epidermidis This paten atpD 442 Malbranchea filamentosa This paten ) 371 Staphylococcus haemolyticus This paten atpD 443 Metschnikowia pulcherrima This paten ) 372 Staphylococcus hominis subsp. This paten atpD 50 444 Paecilomyces lilacinus This paten ) hominis 445 Paracoccidioides brasiliensis This paten ) 373 Staphylococcus hominis This paten atpD 446 Penicillium marneffei This paten ) 374 Staphylococcus iugdunensis This paten atpD 447 Pichia anomaia This paten ) 375 Staphylococcus saprophyticus This paten atpD 448 Pichia anomaia This paten ) 376 Staphylococcus simulans This paten atpD 449 Pseudaliescheria boydii This paten ) 377 Staphylococcus warneri This paten atpD 55 450 Rhizopus oryzae This paten ) 378 Streptococcus acidominimus This paten atpD 451 Rhodotoruia minuta This paten ) 379 Streptococcus agalactiae This paten atpD 452 Sporobolomyces salmonicolor This paten ) 380 Streptococci is agaiaciae This paten atpD 453 Sporothrix schenckii This paten ) 381 Streptococci is agaiaciae This paten atpD 454 Stephanoascus ciferri This paten ) 382 Streptococci is agaiaciae This paten atpD 455 Trichophyton mentagrophytes This paten ) 383 Streptococci is agaiaciae This paten atpD 456 Trichosporon cutaneum This paten ) 384 Streptococci is dysgalactiae This paten atpD 60 457 Wangiella dermatitidis This paten ) 385 Streptococcus equi This paten atpD 458 Aspergilius finigatus This paten atpD Subsp. equi 459 Blastoschizomyces capitatus This paten atpD 386 Streptococci is anginostis This paten atpD 460 Candida albicans This paten atpD 387 Streptococcus salivarius This paten atpD 461 Candida dubiniensis This paten atpD 388 Streptococcus suis This paten atpD 462 Candida famata This paten atpD 389 Streptococcus uberis This paten atpD 65 463 Candida glabrata This paten atpD 390 Tatumella ptyseos This paten atpD 464 Candida guilliermondii This paten atpD US 8,182,996 B2 121 122 TABLE 7-continued TABLE 7-continued Origin of the nucleic acids and/or Sequences in the Sequence listing. Origin of the nucleic acids and/or Sequences in the Sequence listing. SEQ Archaeal, bacterial, fungal SEQ Archaeal, bacterial, fungal ID NO. or parasitical species Source Gene 5 ID NO. or parasitical species Source Gene 465 Candida haemationi This paten atpD 607 Enterococcus faecalis WO98.2O157 till 466 Candida inconspicua This paten atpD 608 Enterococcus faecium WO98.2O157 till 467 Candida kefir This paten atpD 609 Enterococcus gallinarum WO98.2O157 till 468 Candida krusei This paten atpD 610 Haemophilus influenzae WO98.2O157 till 469 Candida iambica This paten atpD 10 611 Staphylococcus epidermidis WO98.2O157 till 470 Candida iusitaniae This paten atpD 612 Salmoneiia choieraestiis This paten 471 Candida norvegensis This paten atpD Subsp. Choleraestiis 472 Candida parapsilosis This paten atpD serotype Paratyphi A 473 Candida rugosa This paten atpD 613 Serratia ficaria This paten 474 Candida sphaerica This paten atpD 614 Enterococcus maiodoratus This paten tuf (C) 475 Candida tropicalis This paten atpD 15 615 Enterococcus durans This paten tuf (C) 476 Candida utilis This paten atpD 616 Enterococci is pseudoavium This paten tuf (C) 477 Candida viswanathi This paten atpD 617 Enterococcus dispar This paten tuf (C) 478 Candida zeylanoides This paten atpD 618 Enterococci is avium This paten tuf (C) 479 Coccidioides inmitis This paten atpD 619 Saccharomyces cerevisiae Database tuf (M) 480 Cryptococcus albidus This paten atpD 621 Enterococcus faecium This paten tuf (C) 481 Fusarium oxysporum This paten atpD 622 Saccharomyces cerevisiae This paten tuf (EF-1) 482 Geotrichum sp. This paten atpD 2O 623 Cryptococcus neoformans This paten tuf (EF-1) 483 Histoplasma capsulatin This paten atpD 624 Candida albicans WO98/20157 tuf (EF-1) 484 Malassezia furfur This paten atpD 662 Corynebacterium diphtheriae WO98.2O157 till 485 Malassezia pachydermatis This paten atpD 663 Candida catentiaia This paten atpD 486 Metschnikowia pulcherrima This paten atpD 665 Saccharomyces cerevisiae Database tuf (EF-1) 487 Penicilium marineffei This paten atpD 666 Saccharomyces cerevisiae Database atpD 488 Pichia anomaia This paten atpD 25 667 Trypanosoma cruzi This paten atpD 489 Pichia anomaia This paten atpD 668 Corynebacterium glutamicum Database 490 Rhodotoruia minuta This paten atpD 669 Escherichia coi Database atpD 491 Rhodotorula mucilaginosa This paten atpD 670 Helicobacter pylori Database atpD 492 Sporobolomyces salmonicolor This paten atpD 671 Clostridium acetobutyllicum Database atpD 493 Sporothrix schenckii This paten atpD 672 Cytophaga lytica Database atpD 494 Stephanoascus ciferrii This paten atpD 30 673 Ehrichiaristicii This patent atpD 495 Trichophyton mentagrophytes This paten atpD 674 Vibrio choieae This patent atpD 496 Wangiella dermatitidis This paten atpD 675 Vibrio choieae This patent tu 497 Yarrowia lipolytica This paten atpD 676 Leishmania enriettii This patent atpD 498 Aspergilius finigatus This paten tuf (M) 677 Babesia microti This patent tuf (EF-1) 499 Blastoschizomyces capitatus This paten tuf (M) 678 Cryptococcus neoformans This patent atpD 500 Candida rugosa This paten tuf (M) 35 679 Cryptococcus neoformans This patent atpD 501 Coccidioides inmitis This paten tuf (M) 680 Cunninghamella berthoiletiae This patent atpD 502 Fusarium oxysporum This paten tuf (M) 684 Candida tropicalis Database atplD (V) 503 Histoplasma capsulatum This paten tuf (M) 685 Enterococcus hirae Database atplD (V) 504 Paracoccidioides brasiliensis This paten tuf (M) 686 Chlamydia pneumoniae Database atplD (V) 505 Penicilium marineffei This paten tuf (M) 687 Haiobacterium sainarum Database atplD (V) 506 Pichia anomaia This paten tuf (M) 688 Homo sapiens Database atplD (V) 507 Trichophyton mentagrophytes his 86 tuf (M) 40 689 Plasmodium falciparum Database atplD (V) 508 arrowia lipolytica T his paten (M) 690 Saccharomyces cerevisiae Database atplD (V) 509 Babesia higemina Inis paren (EF- ) 691 Schizosaccharomyces pombe Database atplD (V) 510 Babesia bovis S 8Cl tuf (EF-1) 692 Trypanosoma Congotense D888Se. atplDD (V) 511 Crithidia fasciculata S 8Cl tuf (EF-1) hill D D (V) 512 Entamoeba histolytica This paten tuf (EF-1) 693 T. ermus t ermop ii.2iS 888Se. 8 513 Giardia iambia This paten tuf (EF-1) 45 698 Escherichia coi WO98.2O157 till 514 Leishmania tropica This paten tuf (EF-1) 709 Borreia burgdorferi Database atplD (V) 515 Leishmania aethiopica This paten tuf (EF-1) 710 Treponema pallidum Database atplD (V) 516 Leishmania tropica This paten tuf (EF-1) 711 Chlamydia trachomatis Genome project atpD (V) 517 Leishmania donovani This paten tuf (EF-1) 712 Enterococcus faecalis Genome project atpD (V) 518 Leishmania infantum This paten tuf (EF-1) 713 Meihanosarcina barkeri Database atplD (V) 519 Leishmania enrietti This paten tuf (EF-1) 50 714 Methanococcus jannaschii Database atplD (V) 520 Leishmania gerbilli This paten tuf (EF-1) 715 Porphyromonas gingivais Genome project atpD (V) 521 filming heriigi This paten : R- : 716 Streptococci is pneumoniae Genome project atpD (V) 522 Leishmania major This paten tuf (EF- 717 Burkhoideria maiei This paten 523 Leishmania amazonensis This paten tuf (EF-1) 718 Burkholderia pseudomaiei This paten 524 Leishmania mexicana T his 86 (EF- ) 719 Clostridium beijerinckii This paten 525 Leishmania tarentolae Inis paren (EF- ) 55 720 Cliostridium innocuum This paten 526 Leishmania tropica his paten tuf (E - ) 721 Clostridium novyi This paten 527 Neospora caninum This paten tuf (EF-1) 722 Cliostridium septicum This paten 528 Trichomonas vaginalis This paten tuf (EF-1) pt 529 Trypanosoma brucei S 8Cl tuf (EF-1) 723 Cliostridium tertium S 8Cl Subsp. brucei 724 Cliostridium tetani his paten 530 Crithidia fasciculata This paten atpD 725 Enterococcus maiodoratus nus 8t 531 Leishmania tropica This paten atpD 60 726 Enterococcus sulfureus S 8Cl 532 Leishmania aethiopica This paten atpD 727 Lactococci is garvieae This paten 533 Leishmania donovani This paten atpD 728 Mycoplasma pirum This paten 534 Leishmania infantum This paten atpD 729 Mycoplasma salivarium This paten 535 Leishmania gerbilli This paten atpD 730 Neisseria polysaccharea This paten 536 Leishmania heriigi This paten atpD 731 Sainoneiia choieraestis This paten 537 Leishmania major This paten atpD 65 Subsp. Choleraestiis 538 Leishmania amazonensis This paten atpD serotype Enteritidis US 8,182,996 B2 123 124 TABLE 7-continued TABLE 7-continued Origin of the nucleic acids and/or Sequences in the Sequence listing. Origin of the nucleic acids and/or Sequences in the Sequence listing. SEQ Archaeal, bacterial, fungal SEQ Archaeal, bacterial, fungal ID NO. or parasitical species Source Gene 5 ID NO. or parasitical species Source Gene 732 Saimoneiia choieraestiis This paten tu 831 Clostridium perfingens This paten atplD (V) Subsp. Choleraestis 832 Ciostridium tetani This paten atplD (V) Serotype Gallinarum 833 Streptococci is pyogenes Database atplD (V) 733 Saimoneiia choieraestiis This paten tu 834 Babesia bovis This paten atplD (V) Subsp. Choleraestis 10 835 Cryptosporidium parvum This paten atplD (V) serotype Paratyphi B 836 Leishmania infantum This paten atplD (V) 734 Saimoneiia choieraestiis This paten tu 837 Leishmania major This paten atplD (V) Subsp. Choleraestis 838 Leishmania tarentoiae This paten atplD (V) serotype Virchow 839 Trypanosoma brucei This paten atplD (V) 735 Serratia grimesii This paten tu 840 Trypanosoma cruzi This paten tuf (EF-1) 736 Clostridium difficile This paten tu 15 841 Trypanosoma cruzi This paten tuf (EF-1) 737 Burkholderia pseudomaiei This paten atpD 842 Trypanosoma cruzi This paten tuf (EF-1) 738 Clostridium bifermenians This paten atpD 843 Babesia bovis This paten tuf (M) 739 Clostridium beijerinckii This paten atpD 844 Leishmania aethiopica This paten tuf (M) 740 Clostridium difficile This paten atpD 845 Leishmania amazonensis This paten tuf (M) 741 Cliostridium ranosum This paten atpD 846 Leishmania donovani This paten tuf (M) 742 Clostridium septicum This paten atpD 847 Leishmania infantum This paten tuf (M) 743 Cliostridium tertium This paten atpD 2O 848 Leishmania enriettii This paten tuf (M) 744 Comamonas acidovorans This paten atpD 849 Leishmania gerbilli This paten tuf (M) 745 Klebsiella pneumoniae subsp. This paten atpD 850 Leishmania major This paten tuf (M) rhinoscieromatis 851 Leishmania mexicana This paten tuf (M) 746 Neisseria canis This paten atpD 852 Leishmania tarentoiae This paten tuf (M) 747 Neisseria cinerea This paten atpD 853 Trypanosoma cruzi This paten tuf (M) 748 Neisseria clinicui This paten atpD 25 854 Trypanosoma cruzi This paten tuf (M) 749 Neisseria elongata This paten atpD 855 Trypanosoma cruzi This paten tuf (M) Subsp. elongata 856 Babesia bigemina This paten atpD 750 Neisseria flavescens This paten atpD 857 Babesia bovis This paten atpD 751. Neisseria gonorrhoeae This paten atpD 858 Babesia microti This paten atpD 752 Neisseria gonorrhoeae This paten atpD 859 Leishmania guyanensis This paten atpD 753 Neisseria iacianica This paten atpD 30 860 Leishmania mexicana This paten atpD 754 Neisseria meningitidis This paten atpD 861 Leishmania tropica This paten atpD 755 Neisseria mucosa This paten atpD 862 Leishmania tropica This paten atpD 756 Neisseria subfiava This paten atpD 863 Bordeteila pertussis Database 757 Neisseria weaveri This paten atpD 864 Trypanosoma bruceii brucei Database tuf (EF-1) 758 Neisseria animalis This paten atpD 865 Cryptosporidium parvum This paten tuf (EF-1) 759 Proteus penneri This paten atpD 35 866 Staphylococci is saprophyticus This paten atpD 760 Saimoneiia choieraestiis This paten atpD 867 Zoogloea ramigera This paten atpD Subsp. Choleraestis 868 Staphylococcus saprophyticus This paten serotype Enteritidis 869 Enterococcus casselliflavus This paten 761 Yersinia pestis This paten atpD 870 Enterococcus casselliflavus This paten 762 Burkhoideria maiei This paten atpD 871 Enterococcus flavescens This paten 763 Cliostridium sordelii This paten atpD 872 Enterococcus gallinarum This paten 764 Clostridium novyi This paten atpD 40 873 Enterococcus gallinarum This paten 765 Cliostridium botulinum This paten atpD 874 Staphylococcus haemolyticus This paten 766 Clostridium histolyticum This paten atpD 875 Staphylococcus epidermidis This paten 767 Peptostreptococcus prevotii This paten atpD 876 Staphylococcus epidermidis This paten 768 Absidia corymbifera This paten atpD 877 Staphylococcus epidermidis This paten 769 Alternaria alternata This paten atpD 878 Staphylococcus epidermidis This paten 770 Aspergillus flavus This paten atpD 45 879 Enterococcus gallinarum This paten 771 Mucor circineioides This paten atpD 880 Pseudomonas aeruginosa This paten 772 Piedraia horitai This paten atpD 881 Enterococcus casselliflavus This paten 773 Pseudaliescheria boydii This paten atpD 882 Enterococcus casselliflavus This paten 774 Rhizopus oryzae This paten atpD 883 Enterococcus faecalis This paten 775 Scopulariopsis koningii This paten atpD 884. Enterococcus faecalis This paten 776 Trichophyton mentagrophytes This paten atpD 50 885 Enterococcus faecium This paten 777 Trichophyton tonsurans This paten atpD 886 Enterococcus faecium This paten 778 Trichosporon cutaneum This paten atpD 887 Zoogloea ramigera This paten 779 Cladophiaiophora carrionii This paten tuf (EF-1) 888 Enterococcus faecalis This paten 780 Cunninghamella berthoiletiae This paten tuf (EF-1) 889 Aspergilius finigatus This paten atpD 781 Curviliaria iunata This paten tuf (EF-1) 890 Penicillium marneffei This paten atpD 782 Fonsecaea pedrosoi This paten tuf (EF-1) 55 891 Paecillomyces lilacinus This paten atpD 783 Microsporum audouinii This paten tuf (EF-1) 892 Penicillium marneffei This paten atpD 784. Mucor circineioides This paten tuf (EF-1) 893 Sporothrix schenckii This paten atpD 785 Phialophora verrucosa This paten tuf (EF-1) 894 Malbranchea filamentosa This paten atpD 786 Saksenaea vasiformis This paten tuf (EF-1) 895 Paecillomyces lilacinus This paten atpD 787 Syncephalastrum racemosum This paten tuf (EF-1) 896 Aspergillus niger This paten atpD 788 Trichophyton tonsurans This paten tuf (EF-1) 897 Aspergilius finigatus This paten tuf (EF-1) 789 Trichophyton mentagrophytes This paten tuf (EF-1) 60 898 Penicillium marneffei This paten tuf (EF-1) 790 Bipolaris hawaiiensis This paten tuf (EF-1) 899 Piedraia horitai This paten tuf (EF-1) 791 Aspergilius finigatus This paten tuf (M) 900 Paecillomyces lilacinus This paten tuf (EF-1) 792 Trichophyton mentagrophytes This paten tuf (M) 901 Paracoccidioides brasiliensis This paten tuf (EF-1) 827 Clostridium novyi This paten atplD (V) 902 Sporothrix schenckii This paten tuf (EF-1) 828 Clostridium difficile This paten atplD (V) 903 Penicillium marneffei This paten tuf (EF-1) 829 Clostridium septicum This paten atplD (V) 65 904 Curviliaria iunata This paten tuf (M) 830 Cliostridium bointinum This paten atplD (V) 905 Aspergillus niger This paten tuf (M) US 8,182,996 B2 125 126 TABLE 7-continued TABLE 7-continued Origin of the nucleic acids and/or Sequences in the Sequence listing. Origin of the nucleic acids and/or Sequences in the Sequence listing. SEQ Archaeal, bacterial, fungal SEQ Archaeal, bacterial, fungal ID NO. or parasitical species Source Gene ID NO. or parasitical species Source Gene 906 Bipolaris hawaiiensis This paten tuf (M) 011 Streptococci is pneumoniae This paten bbb1a. 907 Aspergillus flavus This paten tuf (M) 012 Streptococci is pneumoniae This paten bbb1a. 908 Alternaria alternata This paten tuf (M) O13 Streptococci is pneumoniae This paten bbb1a. 909 Penicilium marineffei This paten tuf (M) 014 Streptococci is pneumoniae This paten bbb1a. 910 Penicilium marineffei This paten tuf (M) 10 O15 Streptococci is pneumoniae This paten bbb1a. 918 Escherichia coli Database recA O16 Streptococci is pneumoniae This paten bbb1a. 929 Bacteroides fragilis This paten atplD (V) O17 Streptococci is pneumoniae This paten bbb1a. 930 Bacteroides distasonis This paten atplD (V) 018 Streptococci is pneumoniae This paten bbb1a. 931 Porphyromonas asaccharolytica This paten atplD (V) O19 Streptococci is pneumoniae This paten bbb2b 932 Listeria monocytogenes This paten tu 020 Streptococci is pneumoniae This paten bbb2b 939 Saccharomyces cerevisiae Database recA (RadS1) 15 021 Streptococci is pneumoniae This paten bbb2b 940 Saccharomyces cerevisiae Database recA (Dmc1) 022 Streptococci is pneumoniae This paten bbb2b 941 Cryptococcus humicolus This paten atpD O23 Streptococci is pneumoniae This paten bbb2b 942 Escherichia coi This paten atpD 024 Streptococci is pneumoniae This paten bbb2b 943 Escherichia coi This paten atpD O25 Streptococci is pneumoniae This paten bbb2b 944 Escherichia coi This paten atpD 026 Streptococci is pneumoniae This paten bbb2b 945 Escherichia coli This paten atpD O27 Streptococci is pneumoniae This paten bbb2b 946 Neisseria polysaccharea This paten atpD 028 Streptococci is pneumoniae This paten bbb2b 947 Neisseria sicca This paten atpD O29 Streptococci is pneumoniae This paten bbb2b 948 Streptococcus mitis This paten atpD O30 Streptococci is pneumoniae This paten bbb2b 949 Streptococcus mitis This paten atpD O31 Streptococci is pneumoniae This paten bbb2b 950 Streptococcus mitis This paten atpD O32 Streptococci is pneumoniae This paten bbb2b 951 Streptococcus oralis This paten atpD 033 Streptococci is pneumoniae This paten bbb2b 952 Streptococcus pneumoniae This paten atpD 25 O34 Streptococci is pneumoniae This paten b2x 953 Streptococcus pneumoniae This paten atpD 035 Streptococcus pneumoniae This paten b2x 954 Streptococcus pneumoniae This paten atpD O36 Streptococci is pneumoniae This paten b2x 955 Streptococcus pneumoniae This paten atpD 037 Streptococcus pneumoniae This paten b2x 956 Babesia microti This paten atplD (V) 038 Streptococcus pneumoniae This paten b2x 957 Entamoeba histolytica This paten atplD (V) 039 Streptococcus pneumoniae This paten b2x 958 Fusobacterium nucleatum This paten atplD (V) 30 040 Streptococci is pneumoniae This paten b2x Subsp. polymorphin O41 Streptococci is pneumoniae This paten b2x 959 Leishmania aethiopica This paten atp) (V) 042 Streptococcus pneumoniae This paten b2x 960 Leishmania tropica This paten atplD (V) O43 Streptococci is pneumoniae This paten b2x 961 Leishmania guyanensis This paten atplD (V) 044 Streptococci is pneumoniae This paten b2x 962 Leishmania donovani This paten atplD (V) O45 Streptococci is pneumoniae This paten b2x 963 Leishmania heriigi This paten atplD (V) 35 O46 Streptococci is pneumoniae This paten b2x 964 Leishmania mexicana This paten atplD (V) O47 Streptococci is pneumoniae This paten b2x 965 Leishmania tropica This paten atplD (V) 048 Streptococci is pneumoniae This paten b2x 966 Peptostreptococcus anaerobius This paten atplD (V) 049 Enterococcus faecium This paten VanA 967 Bordeteila pertussis This paten 050 Enterococcus gallinarum This paten VanA 968 Bordeteila pertussis This paten 051 Enterococcus faecium This paten VanA 969 Enterococcus columbae This paten 052 Enterococcus faecium This paten VanA 970 Enterococcus flavescens This paten 40 053 Enterococcus faecium This paten VanA 971 Streptococcus pneumoniae This paten 054 Enterococcus faecalis This paten VanA 972 Escherichia coli This paten 055 Enterococcus gallinarum This paten VanA 973 Escherichia coli This paten 056 Enterococcus faecium This paten VanA 974 Escherichia coli This paten 057 Enterococcus flavescens This paten VanA 975 Escherichia coli This paten 058 Enterococcus gallinarum This paten wanC1 976 Mycobacterium avium This paten 45 059 Enterococcus gallinarum This paten wanC1 977 Streptococcus pneumoniae This paten 060 Enterococcus casselliflavus This paten wanC2 978 Mycobacterium gordonae This paten 061 Enterococcus casselliflavus This paten wanC2 979 Streptococcus pneumoniae This paten 062 Enterococcus casselliflavus This paten wanC2 980 Mycobacterium tuberculosis This paten 063 Enterococcus casselliflavus This paten wanC2 981 Staphylococcus warneri This paten 064 Enterococcus flavescens This paten wanC3 982 Streptococcus mitis This paten 50 065 Enterococcus flavescens This paten wanC3 983 Streptococcus mitis This paten 066 Enterococcus flavescens This paten wanC3 984 Streptococcus mitis This paten 067 Enterococcus faecium This paten wan XY 985 Streptococcus oralis This paten 068 Enterococcus faecium This paten wan XY 986 Streptococcus pneumoniae This paten 069 Enterococcus faecium This paten wan XY 987 Enterococcus hirae This paten tuf (C) 070 Enterococcus faecalis This paten wan XY 988 Enterococcus mindtii This paten tuf (C) 071 Enterococcus gallinarum This paten wan XY 989 Enterococcus raffinosus This paten tuf (C) 072 Enterococcus faecium This paten wan XY 990 Bacilius anthracis This paten recA 073 Enterococcus flavescens This paten wan XY 991 Prevoteila melaninogenica This paten recA 074 Enterococcus faecium This paten wan XY 992 Enterococcus casselliflavus This paten 075 Enterococcus gallinarum This paten wan XY 993 Streptococci is pyogenes Database speA O76 Escherichia coi Database StX 1002 Streptococci is pyogenes WO982O157 077 Escherichia coi Database StX2 1003 Bacilius cereus This paten recA 60 093 Staphylococcus saprophyticus This paten unknown 1004 Streptococci is pneumoniae This paten pbpla 117 Enterococcus faecium Database wanB 1005 Streptococcus pneumoniae This paten pbpla 138 Enterococcus gallinarum Database wanC1 1006 Streptococci is pneumoniae This paten pbpla 139 Enterococcus faecium Database VanA 1007 Streptococcus pneumoniae This paten pbpla 140 Enterococcus casselliflavus Database wanC2 1008 Streptococcus pneumoniae This paten pbpla 141 Enterococcus faecium Database wan HAXY 1009 Streptococcus pneumoniae This paten pbpla 65 169 Streptococci is pneumoniae Database pbp1a 1010 Streptococci is pneumoniae This paten pbpla 172 Streptococci is pneumoniae Database pbp2b US 8,182,996 B2 127 128 TABLE 7-continued TABLE 7-continued Origin of the nucleic acids and/or Sequences in the Sequence listing. Origin of the nucleic acids and/or Sequences in the Sequence listing. SEQ Archaeal, bacterial, fungal SEQ Archaeal, bacterial, fungal ID NO. or parasitical species Source Gene 5 ID NO. or parasitical species Source Gene 173 Streptococci is pneumoniae Database pbp2x 376 Serraia marcescens Database aac6Ic 178 Staphylococcus aureus Database mecA 381 Escherichia coi Database anta 183 Streptococci is pneumoniae Database hexA 386 Staphylococcus aureus Database antAIa 184 Streptococci is pneumoniae This patent hexA 391 Escherichia coi Database aph3Ia 185 Streptococci is pneumoniae This patent hexA 10 396 Escherichia coi Database aph3IIa 186 Streptococci is pneumoniae This patent hexA 401 Enterococcus faecalis Database aph3IIIa 187 Streptococci is pneumoniae This patent hexA 406 Acinetobacter battmannii Database aph3VIa 188 Streptococcus oralis This patent hexA 411 Pseudomonas aeruginosa Database blacARB 189 Streptococcus mitis This patent hexA 416 Klebsiella pneumoniae Database blacMY-2 190 Streptococcus mitis This patent hexA 423 Escherichia coi Database blacTX-M-1 191 Streptococcus mitis This patent hexA 15 428 Salmonella choleraesuis Subsp. Database blacTX-M-2 198 Staphylococci is saprophyticits This patent KOW choleraestis serotype 215 Streptococci is pyogenes Database pcp Typhimurium 230 Escherichia coi Database tuf (EF-G) 433 Pseudomonas aeruginosa Database baMP 242 Enterococcus faecium Database did 438 Escherichia coi Database bladXA2 243 Enterococcus faecalis Database mtlF, mtlD 439 Pseudomonas aeruginosa Database bladXA10 244 Staphylococcusatiretts This paten unknown 442 Pseudomonas aeruginosa Database bapBR1 Subsp. aureus 2O 445 Salmonella choleraesuis Subsp. Database bapR2 245 Bacilius anthracis This paten atpD choleraestis serotype 246 Bacilius mycoides This paten atpD Typhimurium 247 Bacilius thuringiensis This paten atpD 452 Staphylococcus epidermidis Database rA 248 Bacilius thuringiensis This paten atpD 461 Escherichia coi Database hfra 249 Bacilius thuringiensis This paten atpD 470 Escherichia coi Database frb 250 Bacilius weihenstephanensis This paten atpD 25 475 Escherichia coi Database frV 251 Bacilius thuringiensis This paten atpD 480 Proteus mirabilis Database frVI 252 Bacilius thuringiensis This paten atpD 489 Escherichia coi Database frVII 253 Bacilius cereus This paten atpD 494 Escherichia coi Database frVII 254 Bacilius cereus This paten atpD 499 Escherichia coi Database frx 255 Staphylococcus aureus This paten gyra 504 Escherichia coi Database frxII 256 Bacilius weihenstephanensis This paten atpD 30 507 Escherichia coi Database frxII 257 Bacilius anthracis This paten atpD 512 Escherichia coi Database frxV 258 Bacillus thuringiensis This paten atpD 517 Escherichia coi Database frxVII 259 Bacilius cereus This paten atpD 518 Acinetobacter twofi This patent uSA 260 Bacilius cereus This paten atpD 519 Acinetobacter twofi This patent uSA-tu 261 Bacilius thuringiensis This paten atpD S800 262 Bacilius thuringiensis This paten atpD 35 520 Acinetobacter twofi This patent tuf 263 Bacilius thuringiensis This paten atpD 521 Haemophilus influenzae This patent uSA 264 Bacilius thuringiensis This paten atpD 522 Haemophilus influenzae This patent uSA-tu 265 Bacilius anthracis This paten atpD S800 266 Paracoccidioides brasiiensis This paten tuf (EF-1) 523 Haemophilus influenzae This patent tuf 267 Blastomyces dermatitidis This paten tuf (EF-1) 524 Proietis mirabilis This patent uSA 268 Histoplasma capsulatin This paten tuf (EF-1) 40 525 Proietis mirabilis This patent uSA-tu 269 Trichophyton rubrum Inis paren (EFRR ) 526 Proteus mirabilis This patent S800tuf 270 Microsporum canis S 8Cl tuf (EF-1) 527 Campylobacter curvus This patent atpD 271 Aspergillus versicolor S 8Cl tuf (EF-1) 530 Escherichia coi Database ereA 272 Exophiaia moniliae S 8Cl tuf (EF-1) 535 Escherichia coi Database ere3 273 Hortaea werneckii S 8Cl tuf (EF-1) 540 Staphylococcus haemolyticus Database inA 274 Fusarium Soiani S 8Cl tuf (EF-1) 545 Enterococcus faecium Database inB 275 Aureobasidium pullulans S 8Cl tuf (EF-1) 45 548 Streptococci is pyogenes Database mefA 276 Blastomyces dermatitidis S 8Cl tuf (EF-1) 551 Streptococci is pneumoniae Database mefE 277 Exophiaia dermatitidis S 8Cl tuf (EF-1) 560 Escherichia coi Database mph.A 278 Fusarium moniiforme S 8Cl tuf (EF-1) 279 Aspergillus terreus S 8Cl tuf (EF-1) 561 Candida albicans S 8Cl tuf (EF-1) 280 Aspergilius finigatus S 8Cl tuf (EF-1) 562 Candida dubiniensis S 8Cl tuf (EF-1) 281 Cryptococcus laurentii S 8Cl tuf (EF-1) 50 563 Candida famata S 8Cl tuf (EF-1) 282 Emmonsia parva S 8Cl tuf (EF-1) 564 Candida glabrata S 8Cl tuf (EF-1) 283 Fusarium Soiani S 8Cl tuf (EF-1) 565 Candida guilliermondii S 8Cl tuf (EF-1) 284 Sporothrix schenckii S 8Cl tuf (EF-1) 566 Candida haemationi S 8Cl tuf (EF-1) 285 Aspergillus nidulans S 8Cl tuf (EF-1) 567 Candida kefir S 8Cl tuf (EF-1) 286 Cladophialophora carrionii S 8Cl tuf (EF-1) 568 Candida iusitaniae S 8Cl tuf (EF-1) 287 Exserohium rostratum S 8Cl tuf (EF-1) 569 Candida sphaerica S 8Cl tuf (EF-1) 288 Bacilius thuringiensis S 8Cl recA 55 570 Candida tropicalis S 8Cl tuf (EF-1) 571 Candida viswanathi S 8Cl tuf (EF-1) 289 Bacilius thuringiensis S 8Cl recA 299 Staphylococcus aureus Database gyra 572 Alcaligenesb faecalisi S 8Cl 300 Escherichia coli Database gyra Subsp. faecais 573 Prevoieia buccais S 8Cl 307 Staphylococcus aureus Database gyrB 574. Succinivibriod 320 Escherichia coi Database parC (grlA) iCCaio extrinosolvens his paten 321 Staphylococcusatiretts Database parC (grlA) 60 575 Teiragenococcus halophilus his paten 328 Staphylococcus aureus Database parE (grilB) 576 Campylobacterjejiini S 8Cl atpD 348 unidentified bacterium Database aac2Ia Subsp...ieitini 351 Pseudomonas aeruginosa Database aac3Ib 577 Campylobacter rectus This paten atpD 356 Serraia marCescens Database aac3IIb 578 Enterococcus casselliflavus This paten uSA 361 Escherichia coi Database aac3IVa. 579 Enterococcus gallinarum This paten uSA 366 Enterobacter cloacae Database aac3VIa 65 580 Streptococcus mitis This paten uSA 371 Citrobacter koseri Database aac6Ia 585 Enterococcus faecium Database SatG US 8,182,996 B2 129 130 TABLE 7-continued TABLE 7-continued Origin of the nucleic acids and/or Sequences in the Sequence listing. Origin of the nucleic acids and/or Sequences in the Sequence listing. SEQ Archaeal, bacterial, fungal SEQ Archaeal, bacterial, fungal ID NO. or parasitical species Source Gene ID NO. or parasitical species Source Gene 590 Cloning vector pFW16 Database tetM 706 Streptococci is Saivarius WO98.20 57 recA 594 Enterococci is faecium Database wanD subsp. thermophilus 599 Enterococci is faecalis Database wanE 707 Escherichia coi WO98.20 57 OX8. 600 Campylobacterieitini This patent atpD 708 Enterococci is faecalis WO98.20 57 blaz, Subsp. doylei 10 709 Pseudomonas aeruginosa WO98.20 57 aac6'-IIa 6O1 Enterococci is stillfiretts This patent atpD 710 Staphylococcusatiretts WO98.20 57 ermA 602 Enterococci is solitarius This patent atpD 711 Escherichia coi WO98.20 57 erm 603 Campylobacterspittortin This patent atpD 712 Staphylococcusatiretts WO98.20 57 ermC Subsp. spittortin 713 Enterococci is faecalis WO98.20 57 604 Enterococci is pseudoavium This patent atpD 71.4 Campylobacterieitini This patent 607 Klebsiella ornithinolytica This patent gyra 15 Subsp...ieitini 608 Klebsiella Oxytoca This patent gyra 715 Abiotrophia adiacens WO98.20 57 613 Staphylococcusatiretts Database wat 716 Abiotrophia defectiva WO98.20 57 618 Staphylococcus cohnii Database watC 717 Corynebacterium accolens WO98.20 57 623 Staphylococcusatiretts Database Vga 718 Corynebacterium genitalium WO98.20 57 628 Staphylococcusatiretts Database B 719 Corynebacterium jeikeium WO98.20 57 633 Staphylococcusatiretts Database Y. 720 Corynebacterium WO98.20 57 638 Aspergilius finigatus This paten pseudodiphtheriticum 639 Aspergilius finigatus his paten 721 Corynebacterium striatum WO98.20 57 640 Bacilius mycoides his paten 722 Enterococci is a vitin WO98.20 57 641 Bacilius mycoides his paten 723 Gardnerella vaginalis WO98.20 57 642 Bacilius mycoides his paten 724 Listeria innoctia WO98.20 57 643 Bacilius pseudomycoides his paten 725 Listeria ivanovii WO98.20 57 644 Bacilius pseudomycoides his paten 25 726 Listeria monocytogenes WO98.20 57 645 Budvicia aquatica his paten 727 Listeria Seeigeri WO98.20 57 646 Buttiativelia agrestis his paten 728 Staphylococcusatiretts WO98.20 57 647 Candida norvegica his paten 729 Staphylococci is saprophyticus WO98.20 57 648 Streptococci is pneumoniae his paten b p 1 8. 730 Staphylococcus Sinitians WO98.20 57 649 Campylobacteriad his paten 731 Streptococci is agaiaciae WO98.20 57 6SO Coccidioides immiiis his paten 30 732 Streptococci is pneumoniae WO98.20 57 651 Emmonisia parva his paten 733 Streptococci is Saivarius WO98.20 57 652 Erwinia amylovora his paten 734 Agrobacterium radiobacter WO98.20 57 653 Fonsecaea pedrosoi his paten 735 Bacilius subtiis WO98.20 57 654 Fusarium moniiforme his paten 736 Bacteroides fragilis WO98.20 57 655 Klebsiella Oxytoca his paten 737 Borrelia burgdorferi WO98.20 57 his paten 656 Microsporum audouinii 35 738 Brevibacterium inens WO98.20 57 657 Obesumbacterium proteus his paten 739 Chlamydia trachomatis WO98.20 57 658 Paracoccidioides brasiiensis his paten 740 Fibrobacter succinogenes WO98.20 57 659 Plesiomonas Shigelioides his paten 741 Flavobacterium ferrugineum WO98.20 57 660 Shewanelia pittrefaciens his paten 742 Helicobacter pylori WO98.20 57 662 Campylobacter curvus his paten 743 Micrococcus initeus WO98.20 57 663 Campylobacter rectus his paten 744 Mycobacterium tuberculosis WO98.20 57 664 Fonsecaea pedrosoi his paten 40 745 Mycoplasma genitalium WO98.20 57 666 Microsporum audouinii his paten 746 Neisseria gonorrhoeae WO98.20 57 667 Piedraia horitai his paten 747 Rickettsia prowazeki WO98.20 57 668 Escherichia coi Database 748 Saimoneiia choieraestiis WO98.20 57 669 Saksenaea vasifornis his paten Subsp. Choleraestiis 670 Trichophyton tonsurans his paten serotype Typhimurium 671 Enterobacter aerogenes his paten 45 749 Shewanella puttrefaciens WO98.20 57 672 Bordeteila pertissis Database 750 Stigmatella aurantiaca WO98.20 57 673 Arcanobacterium his paten 751 Thiomonas cuprina WO98.20 57 haemolyticum 752 Treponema pallidiin WO98.20 57 674 Butyrivibriofibrisolvens his paten 753 Ureaplasma trealytictim WO98.20 57 675 Campylobacterieitini his paten N 754 Wolinella succinogenes WO98.20 57 Subsp. doylei 50 755 Burkholderia cepacia WO98.20 57 676 Campylobacteriani his paten 756 Bacilius anthracis S 8. el 677 Campylobacterspittortin his paten N 757 Bacilius anthracis his 8. el Subsp. spittortin 758 Bacilius cereus his 8. el 678 Campylobacter upsaliensis his paten 759 Bacilius cereus his 8. el 679 Giobicatella Sangitis his paten 760 Bacilius mycoides his 8. el his paten 68O Lactobacilius acidophilus 55 761 Bacilius pseudomycoides his 8. el 681 Leticonostoc mesenteroides his paten 762 Bacilius thuringiensis his 8. el Subsp. dextranictim 763 Bacilius thuringiensis his 8. el 682 Prevoteia buccais his paten 764 Klebsiella Oxytoca his 8. el 683 Ruminococcus bromii his paten 765 Klebsiella pneumoniae his 8. el 684 Paracoccidioides brasiiensis his paten Subsp. ozaenae 685 Candida norvegica his paten 766 Klebsiella planticola his 8. el 60 686 Aspergilius nidians his paten 767 Klebsiella pneumoniae his 8. el 687 Aspergilius terretts his paten 768 Klebsiella pneumoniae his 8. el 688 Candida norvegica his paten Subsp. pneumoniae 689 Candida parapsilosis his paten 769 Klebsiella pneumoniae his 8. el 702 Streptococci isgordonii WO982O157 Subsp. pneumoniae 703 Streptococci is mutans WO982O157 770 Klebsiella pneumoniae his 8. el 704 Streptococci is pneumoniae WO982O157 65 subsp. rhinoscleromatis 705 Streptococci is pyogenes WO982O157 771 Klebsiella terrigena his 8. el US 8,182,996 B2 131 132 TABLE 7-continued TABLE 7-continued Origin of the nucleic acids and/or Sequences in the Sequence listing. Origin of the nucleic acids and/or Sequences in the Sequence listing. SEQ Archaeal, bacterial, fungal SEQ Archaeal, bacterial, fungal ID NO. or parasitical species Source Gene 5 ID NO. or parasitical species Source Gene 772 Legionella pneumophila This paten gyra 830 Budvicia aquatica This paten fusA-tuf Subsp. pneumophia spacer 773 Proietis mirabilis This paten gyra 831 Plesiomonas Shigelioides This paten fusA-tuf 774 Providencia retigeri This paten gyra spacer 775 Proteus vulgaris This paten gyra 10 832 Obesumbacterium proteus S 8Cl fusA-tuf 776 Yersinia enterocolitica This paten rA spacer 777 Klebsiella Oxytoca This paten E. (grlA) 833 Shewanella putrefaciens S 8Cl fusA-tuf spacer 778 Klebsiella Oxytoca his paten parC (grlA) 834. Buttiauxella agrestis This paten fusA-tuf 779 Klebsiella pneumoniae This paten parC (grlA) spacer Subsp. Ozaenae 835 Campylobacter coli This paten 780 Klebsiella planticola This paten parC (grlA) 15 836 Campylobacter fetus This paten 781 Klebsiella pneumoniae This paten parC (grlA) Subsp. fetus 782 Klebsiella pneumoniae This paten parC (grlA) 837 Campylobacter fetus This paten Subsp. pneumoniae Subsp. venerealis 783 Klebsiella pneumoniae This paten parC (grlA) 838 Buttiauxella agrestis This paten Subsp. pneumoniae 839 Klebsiella Oxytoca This paten 784 Klebsiella pneumoniae This paten parC (grlA) 2O 840 Plesiomonas Shigelioides This paten Subsp. rhinoscleromatis 841 Shewanella putrefaciens This paten 785 Klebsiella terrigena This paten parC (grA) 842 Obesumbacterium proteus This paten 786 Bacilius cereus This paten uSA 843 Budvicia aquatica This paten 787 Bacilius cereus This paten uSA 844 Abiotrophia adiacens This paten atpD 788 Bacilius anthracis This paten uSA 845 Arcanobacterium This paten atpD 789 Bacilius cereus This paten uSA haemolyticum 790 Bacilius anthracis This paten uSA 25 846 Basidiobolus ranarum This paten atpD 791 Bacilius pseudomycoides This paten uSA 847 Blastomyces dermatitidis This paten atpD 792 Bacilius cereus This paten uSA 848 Blastomyces dermatitidis This paten atpD 793 Bacilius anthracis This paten uSA 849 Campylobacter coli This paten atpD 794 Bacilius cereus This paten uSA 850 Campylobacter fetus This paten atpD 795 Bacilius weihenstephanensis This paten uSA Subsp. fetus 796 Bacilius mycoides This paten uSA 30 851 Campylobacter fetus This paten atpD 797 Bacilius thuringiensis This paten uSA Subsp. venerealis 798 Bacilius weihenstephanensis This paten uSA-tu 1852 Campylobacter gracilis This paten atpD S800 853 Campylobacter jejuni This paten atpD 799 Bacilius thuringiensis S 8Cl uSA-tu Subsp...ieitini S800 800 Bacilius anthracis This paten uSA-tu 854 Enterococci is ceCortin Inis paten atpD S800 35 855 Enterococcits columbae Inis paten atpD 801 Bacilius pseudomycoides This paten uSA-tu 856 Enterococcus dispar his paten atpD S800 857 Enterococcus maiodoratus This paten atpD 802 Bacilius anthracis This paten uSA-tu 858 Enterococcus mindtii This paten atpD S800 859 Enterococcus raffinosus This paten atpD 803 Bacilius cereus This paten uSA-tu 860 Giobicatella sanguis This paten atpD S800 40 861 Lactococci is garvieae This paten atpD 804 Bacilius cereus This paten uSA-tu 862 Lactococcusiactis This paten atpD S800 863 Listeria ivanovii This paten atpD 805 Bacilius mycoides S 8Cl uSA-tu 864 Succini vibrio dextrinosolvens This paten atpD 806 Bacilius cereus This paten E. 865 Tetragenococcus halophilus T his 8t atpD S800 866 Campylobacter fetus S 8Cl recA 807 Bacilius cereus This paten uSA-tu 45 Subsp. fetus S800 867 Campylobacter fetus S 8Cl recA 808 Bacilius cereus This paten uSA-tu Subsp. venerealis S800 868 Campylobacter jejuni This paten recA 809 Bacilius anthracis This paten uSA-tu Subsp...ieitini S800 869 Enterococci is avium This paten recA 810 Bacilius mycoides This paten tuf 870 Enterococcus faecium This paten recA 811 Bacilius thuringiensis This paten tuf 50 871 Listeria monocytogenes This paten recA 812 Bacilius cereus This paten tuf 872 Streptococcus mitis This paten recA 813 Bacilius weihenstephanensis This paten tuf 873 Streptococcus oralis This paten recA 814 Bacilius anthracis This paten tuf 874 Aspergiiitisfiinigatus This paten tuf (M) 815 Bacilius cereus This paten tuf 875 Aspergillus versicolor This paten tuf (M) 816 Bacilius cereus This paten tuf 876 Basidiobolus ranarum This paten tuf (M) 817 Bacilius anthracis This paten tuf 55 877 Campylobacter gracilis This paten tuf 818 Bacilius cereus This paten tuf 878 Campylobacter jejuni This paten tuf 819 Bacilius anthracis This paten tuf Subsp...ieitini 820 Bacilius pseudomycoides This paten tuf 879 Coccidioides inmitis This paten tuf (M) 821 Bacilius cereus This paten tuf 880 Erwinia amylovora This paten tuf 822 Streptococcus oralis This paten uSA 881 Saimoneiia choieraesuis This paten tuf 823 Budvicia aquatica This paten uSA 60 Subsp. 824 Bittiativelia agrestis This paten uSA choleraesuis Serotype 825 Klebsiella Oxytoca This paten uSA Typhimurium 826 Plesiomonas Shigelioides This paten uSA 899 Klebsiella pneumoniae Database baSHV 827 Shewanella putrefaciens This paten uSA 900 Klebsiella pneumoniae Database baSHV 828 Obesumbacterium proteus This paten uSA 901 Escherichia coi Database baSHV 829 Klebsiella Oxytoca This paten fusA-tuf 65 902 Klebsiella pneumoniae Database baSHV spacer 903 Klebsiella pneumoniae Database baSHV US 8,182,996 B2 133 134 TABLE 7-continued TABLE 7-continued Origin of the nucleic acids and/or Sequences in the Sequence listing. Origin of the nucleic acids and/or Sequences in the Sequence listing. SEQ Archaeal, bacterial, fungal SEQ Archaeal, bacterial, fungal ID NO. or parasitical species Source Gene 5 ID NO. or parasitical species Source Gene 904 Escherichia coi Database baSHV 2183 Alcaligenes faecalis This paten tuf 905 Pseudomonas aeruginosa Database baSHV Subsp. faecais 927 Neisseria meningitidis Database baTEM 2184 Campylobacter coli This paten fusA 928 Escherichia coli Database baTEM 2185 Succini vibrio dextrinosoivens This paten tuf 929 Klebsiella Oxytoca Database baTEM 10 2186 Tetragenococcus halophilus This paten tuf 930 Escherichia coli Database baTEM 2187 Campylobacter jejuni This paten fusA 931 Escherichia coli Database baTEM Subsp...ieitini 932 Escherichia coli Database baTEM 2188 Campylobacter jejuni This paten fusA 933 Escherichia coli Database baTEM Subsp...ieitini 954 Klebsiella pneumoniae Database gyra 2189 Leishmania guyanensis This paten atpD Subsp. pneumoniae 15 2190 Trypanosoma bruceii brucei This paten atpD 956 Candida inconspicua This patent tuf (M) 2191 Aspergillus nidulans This paten atpD 957 Candida utilis This patent tuf (M) 2192 Leishmania panamensis This paten atpD 958 Candida zeylanoides This patent tuf (M) 2193 Aspergillus nidulans This paten tuf (M) 959 Candida catentiaia This patent tuf (M) 2194 Aureobasidium pullulans This paten tuf (M) 960 Candida krusei This patent tuf (M) 2195 Emmonsia parva This paten tuf (M) 965 Plasmid pCSO5 Database Sull 2196 Exserohiium rostratum This paten tuf (M) 970 Transposon Tn10 Database etB 2O 2197 Fusarium moniliforme This paten tuf (M) 985 Cryptococcus neoformans Database tuf (EF-1) 2198 Fusarium Soiani This paten tuf (M) 986 Cryptococcus neoformans Database tuf (EF-1) 2199 Histoplasma capsulatum This paten tuf (M) 987 Saccharomyces cerevisiae Database tuf (EF-1) 2200 Kocuria kristinae This paten tuf 988 Saccharomyces cerevisiae Database tuf (EF-1) 2201 Vibrio mimicus This paten tuf 989 Eremothecium gossypii Database tuf (EF-1) 2202 Citrobacter fieundii This paten recA 990 Eremothecium gossypii Database tuf (EF-1) 25 2203 Cliostridium botulinum This paten recA 991 Aspergillus oryzae Database tuf (EF-1) 2204 Franciselia tularensis This paten recA 992 Aureobasidium pullulans Database tuf (EF-1) 2205 Peptostreptococcus anaerobius This paten recA 993 Histoplasma capsulatum Database tuf (EF-1) 2206 Peptostreptococcus This paten recA 994 Neurospora crassa Database tuf (EF-1) asaccharolyticus 995 Podospora anserina Database tuf (EF-1) 2207 Providencia Stuarii This paten recA 996 Podospora curvicola Database tuf (EF-1) 30 2208 Sainoneiia choieraestis This paten recA 997 Sordaria macrospora Database tuf (EF-1) Subsp. Choleraestiis 998 Trichoderma reesei Database tuf (EF-1) serotype Paratyphi A 2004 Candida albicans Database tuf (M) 2209 Sainoneiia choieraestis This paten recA 2005 Schizosaccharomyces pombe Database tuf (M) Subsp. Choleraestiis 2010 Klebsiella pneumoniae Database baTEM serotype Typhimurium 2011 Klebsiella pneumoniae Database baTEM 35 2210 Staphylococci is saprophyticits This paten recA 2013 Kluyvera ascorbata This patent gyra 2211 Yersinia pseudotuberculosis This paten recA 2014 Kluyverageorgiana This patent gyra 2212 Zoogloea ramigera This paten recA 2047 Streptococci is pneumoniae Database bbp1A 2214 Abiotrophia adiacens This paten uSA 2048 Streptococci is pneumoniae Database bbp1A 2215 Acinetobacter battmannii This paten uSA 2049 Streptococcus pneumoniae Database bbp1A 2216 Actinomyces meyeri This paten uSA 2050 Streptococcus pneumoniae Database bbp1A 2217 Clostridium difficile This paten uSA 2051 Streptococci is pneumoniae Database bbp1A 40 2218 Corynebacterium diphtheriae This paten uSA 2052 Streptococci is pneumoniae Database bbp1A 2219 Enterobacter cloacae This paten uSA 2053 Streptococcus pneumoniae Database bbp1A 2220 Klebsiella pneumoniae This paten uSA 2054 Streptococci is pneumoniae Database gyra Subsp. pneumoniae 2055 Streptococcus pneumoniae Database barC 2221 Listeria monocytogenes This paten uSA 2056 Streptococcus pneumoniae This patent bbp1A 2222 Mycobacterium avium This paten uSA 2057 Streptococcus pneumoniae This patent bbp1A 45 2223 Mycobacterium gordonae This paten uSA 2058 Streptococcus pneumoniae This patent bbp1A 2224 Mycobacterium kansasii This paten uSA 2059 Streptococcus pneumoniae This patent bbp1A 2225 Mycobacterium terrae This paten uSA 2060 Streptococci is pneumoniae This patent bbp1A 2226 Neisseria polysaccharea This paten uSA 2061 Streptococci is pneumoniae This patent bbp1A 2227 Staphylococcus epidermidis This paten uSA 2062 Streptococci is pneumoniae This patent bbp1A 2228 Staphylococcus haemolyticus This paten uSA 2063 Streptococcus pneumoniae This patent bbp1A 50 2229 Succini vibrio dextrinosoivens This paten uSA 2O64 Steptococcus pneumoniae This patent bbp1A 2230 Tetragenococcus halophilus This paten uSA 2072 Mycobacterium tuberculosis Database rpoB 2231 Veiioneiia parvutta S 8Cl SA. 2097 Mycoplasma pneumoniae Database tuf 2232 Yersinia pseudotuberculosis This paten uSA 2101 Mycobacterium tuberculosis Database inha 2233 Zoogigtoea ramigera S 8Cl SA. 2105 Mycobacterium tuberculosis Database emb3 2234 Aeromonas hydrophilvaropnita S 8Cl SA. 2129 Clostridium difficile Database cotA 55 2235 Abiotrophia adiacens This paten fusA-tuf 2130 Clostridium difficile Database cdtB spacer 2137 Pseudomonasputida Genome project tuf 2236 Acinetobacter battmannii This paten fusA-tuf 2138 Pseudomonas aeruginosa Genome project tuf spacer 2139 Campylobacter jejuni Database atpD 2237 Actinomyces meyeri This paten fusA-tuf 2140 Streptococci is pneumoniae Database pbp1a spacer 2144 Staphylococcusatiretts Database mup A 60 2238 Clostridium difficile This paten fusA-tuf 2147 Escherichia coi Database cat spacer 2150 Escherichia coli Database catII 2239 Corynebacterium diphtheriae S 8Cl fusA-tuf S800 2153 Shigella flexneri Database catIII 2240 Enterobacter cloacae This paten Eur 2156 Clostridium perfingens Database catP spacer 2159 Staphylococcus aureus Database cat 2241 Klebsiella pneumoniae This paten fusA-tuf 2162 Staphylococcusatiretts Database cat 65 spacer 2165 Salmonella typhimurium Database ppflo-like Subsp. pneumoniae US 8,182,996 B2 135 136 TABLE 7-continued TABLE 8-continued Origin of the nucleic acids and/or Sequences in the Sequence listing. Bacterial species used to test the specificity of the Streptococcus agalactiae-specific amplification primers derived from tuf sequences. SEQ Archaeal, bacterial, fungal ID NO. or parasitical species Source Gene 5 Strain Reference number 2242 Listeria monocytogenes This paten fusA-tuf Streptococci is downei ATCC 33748 spacer Streptococci is dysgalaciae ATCC 43078 2243 Mycobacterium avium This paten fusA-tuf Streptococci is equi Subsp. equi ATCC 9528 spacer Streptococci is fertis ATCC 33477 2244 Mycobacterium gordonae S 8Cl fusA-tuf 10 Streptococci isgordonii ATCC 10558 224.5 Mycobacterium kansasii This paten S800Ruf RC focus place A: 3. 2246 Mycobacterium terrae This paten R tuf Streptococci is mutans ATCC 25175 spacer Streptococci is oralis ATCC 35037 2247 Neisseria polysaccharea This paten fusA-tuf Streptococci is parasanguinis ATCC 15912 spacer 15 Streptococci is paratiberis DSM 6631 2248 Staphylococcus epidermidis This paten fusA-tuf Streptococci is pneumoniae ATCC 27336 spacer Streptococci is pyogenes ATCC 1961S 2249 Staphylococcus haemolyticus This paten fusA-tuf Streptococci is ratti ATCC 1964.5 spacer Streptococci is salivarius ATCC 7073 2255 Abiotrophia adiacens This paten Streptococci is sanguinis ATCC 10556 2256 Acinetobacter battmannii This paten Streptococci is sobrinus ATCC 27352 2257 Actinomyces meyeri This paten 2O Streptococci is stiis ATCC 43765 2258 Clostridium difficile This paten Streptococci is liberis ATCC 19436 2259 Corynebacterium diphtheriae This paten Streptococci is vestibularis ATCC 49124 2260 Enterobacter cloacae This paten Bacteroides caccae ATCC 4318.5 2261 Klebsiella pneumoniae This paten Bacteroides vulgatus ATCC 84.82 Subsp. pneumoniae Bacteroides fragilis ATCC 2S285 2262 Listeria monocytogenes This paten 25 Candida albicans ATCC 11006 2263 Mycobacterium avium This paten Cliostridium innoculum ATCC 145O1 2264 Mycobacterium gordonae This paten Cliostridium ranosum ATCC 25582 2265 Mycobacterium kansasii This paten Lactobacilius casei Subsp. casei ATCC 393 2266 Mycobacterium terrae This paten Clostridium septicum ATCC 12464 2267 Neisseria polysaccharea This paten Corynebacterium cervicis NCTC 10604 2268 Staphylococcus epidermidis This paten 30 Corynebacterium genitalium ATCC 33031 2269 Staphylococcus haemolyticus This paten Corynebacterium urealyticum ATCC 43O42 2270 Aeromonas hydrophila This paten Enterococcus faecalis ATCC 29212 2271 Bilophila wadsworthia This paten Enterococci is faecium ATCC 19434 2272 Brevundimonas diminuta This paten Eubacterium ienium ATCC 43OSS 2273 Streptococcus mitis This paten pbpla Eubacterium nodultum ATCC 33099 2274 Streptococcus mitis This paten pbpla Gardnerella vaginalis ATCC 14018 2275 Streptococcus mitis This paten pbpla 35 Lactobacilius acidophilus ATCC 4356 2276 Streptococcus oralis This paten pbpla Lactobacilius crispatus ATCC 33820 2277 Escherichia coli This paten gyra Lactobacilitisgasseri ATCC 33323 2278 Escherichia coli This paten gyra Lactobacilius johnsonii ATCC 33200 2279 Escherichia coli T his paren gyra Lactococci is lactis Subsp. lactis ATCC 19435 2280 Escherichia coli S 8Cl gyra 40 Lactococci is lactis Subsp. lactis ATCC 11454 2288 Enterococcus faecium Database did Listeria innoctia ATCC 33090 2293 Enterococcus faecium Database VanA Micrococcus luteus ATCC 9341 2296 Enterococcus faecalis Database wanB Escherichia coi ATCC 25922 tufindicates tufsequences, tuf (C) indicates tufsequences divergent from main (usually A Micrococcus lyilae ATCC 27566 andB) copies E. factor-Tu, SEF, indicates E. of the SE Porphyromonas asaccharolytica ATCC 2S260 otic type (elongation factor 1C), tuf (M) indicates tuf sequences from organellar (mostly 45 Prevoteila corporis ATCC 33S47 E. : fusA-tuf indicates the int ic region between fusA Prevoteila melanogenica ATCC 2S845 and tuf, quences; IusA- spacer indicates the intergenic region between us Staphylococcits (iiietS ATCC 13301 atpD indicates atpd sequences of the F-type, atpd (V) indicates atpd sequences of the Staphylococci is epidermidis ATCC 14990 Ridicates recA sequences, recA(RadS1) indicates radiš1 sequences or homologs and Staphylococci is saprophyticus ATCC 1530S recA(Dmc1) indicates dimc1 sequences or homologs, 50 TABLE 8 TABLE 9 Bacterial species used to test the specificity of the Streptococcus Bacterial species used to test the specificity of the Streptococcus agalactiae-specific amplification primers derived from tuf sequences. agalactiae-specific amplification primers derived from atpD sequences. 55 Strain Reference number Strain Reference number Streptococci is acidominimits ATCC S1726 Streptococci is acidominimits ATCC 51726 Streptococci is agaiaciae ATCC 12403 Streptococci is agaiaciae ATCC 12400 Streptococci is agaiaciae ATCC 12973 Streptococci is agaiaciae ATCC 12403 Streptococci is agaiaciae ATCC 13813 60 Streptococci is agaiaciae ATCC 12973 Streptococci is agaiaciae ATCC 27591 Streptococci is agaiaciae ATCC 13813 Streptococci is agaiaciae CDCS 1073 Streptococci is agaiaciae ATCC 27591 Streptococci is anginostis ATCC 27335 Streptococci is agaiaciae CDCS-1073 Streptococci is anginostis ATCC 33397 Streptococci is anginostis ATCC 27335 Streptococcus bovis ATCC 33317 Streptococci is anginostis ATCC 27823 Streptococci is anginostis ATCC 27823 Streptococcus bovis ATCC 33317 Streptococci is cricetus ATCC 19642 65 Streptococci is cricetus ATCC 19642 Streptococci is cristatus ATCC S1100 Streptococci is cristatus ATCC S1100 US 8,182,996 B2 137 138 TABLE 9-continued TABLE 10-continued Bacterial species used to test the specificity of the Streptococcus Bacterial species used to test the specificity of the Enterococcus-specific agalactiae-specific amplification primers derived from atpD sequences. amplification primers derived from tufsequences. Strain Reference number 5 Strain Reference number Streptococci is downei ATCC 33748 Pediococcus acidiacii ATCC 33314 Streptococci is dysgalaciae ATCC 43078 Pediococcuspentosaceus ATCC 33.316 Streptococci is equi Subsp. equi ATCC 9528 Peptococci is niger ATCC 27731 Streptococci is fertis ATCC 33477 Peptostreptococci is anaerobius ATCC 27337 Streptococci isgordonii ATCC 10558 10 Peptostreptococci is indolicits ATCC 292.47 Streptococci is macacae ATCC 35911 Peptostreptococci is microS ATCC 33270 Streptococci is mitis ATCC 49456 Propionibacterium acnes ATCC 6919 Streptococci is mutans ATCC 251.75 Staphylococcusatiretts ATCC 43300 Streptococci is oralis ATCC 35037 Staphylococci is capitis ATCC 27840 Streptococci is parasanguinis ATCC 15912 Staphylococci is epidermidis ATCC 14990 Streptococci is paratiberis DSM 6631 15 Staphylococciis haemolyticus ATCC 2997O Streptococci is pneumoniae ATCC 27336 Staphylococcus hominis ATCC 27844 Streptococci is pyogenes ATCC 1961S Staphylococcits lugdunensis ATCC 43.809 Streptococci is ratti ATCC 1964.5 Staphylococcits saprophyticus ATCC 15305 Streptococci is Saivarius ATCC 7073 Staphylococci is Sinitians ATCC 27848 Streptococci is sanguinis ATCC 10556 Staphylococciis warneri ATCC 27836 Streptococci is agaiaciae ATCC 13813 Streptococcus sobrinus ATCC 27352 2O Streptococci is anginostis ATCC 33397 Streptococci is stiis ATCC 43765 Streptococcus bovis ATCC 33317 Streptococci is liberis ATCC 19436 Streptococci is constellatus ATCC 27823 Streptococcus vestibularis ATCC 49124 Streptococci is cristatus ATCC S1100 Streptococci is intermedius ATCC 27335 Streptococci is mitis ATCC 49456 25 Streptococci is mitis ATCC 3639 TABLE 10 Streptococci is mutans ATCC 271 75 Streptococci is parasanguinis ATCC 15912 Bacterial species used to test the specificity of the Enterococcus-specific Streptococci is pneumoniae ATCC 27736 amplification primers derived from tufsequences. Streptococci is pneumoniae ATCC 6303 Streptococci is pyogenes ATCC 1961S Strain Reference number 30 Streptococci is salivarius ATCC 7073 Streptococci is sanguinis ATCC 10556 Gram-positive species (n = 74) Streptococcus suis ATCC 43765 o Gram-negative species (n = 39) Abiotrophia adiacens ATCC 491.76 Abiotrophia defectiva ATCC 491.75 Acidominococci is fermenians ATCC 2508 Bacilius cereus ATCC 14579 35 Acinetobacter battmannii ATCC 19606 Bacilius subtiis ATCC 27370 Alcaligenes faecalis ATCC 8750 Bifidobacterium adolescentis ATCC 27534 Anaerobiospirilium ATCC 293 OS Bifidobacterium breve ATCC 15700 Sticciniproducers Bifidobacterium dentium ATCC 27534 Anaerorhabdits firCostis ATCC 25662 Bifidobacterium longum ATCC 15707 Bacteroides distasonis ATCC 8SO3 Clostridium perfingens ATCC 3124 40 Bacteroides theiaioiaomicron ATCC 29741 Clostridium septicum ATCC 12464 Bacteroides vulgatus ATCC 84.82 Corynebacterium aquaticits ATCC 14665 Bordeteila pertissis LSPQ 3702 Corynebacterium pseudodiphtheriticum ATCC 10700 Bulkhoideria cepacia LSPQ 2217 Enterococci is a vitin ATCC 14O2S Butyvibriofibrinosolvens ATCC 19171 Enterococci is cassellifiavits ATCC 25788 Cardiobacterium hominis ATCC 15826 Enterococcits ceCortin ATCC 431.99 Citrobacter fieundi ATCC 8090 Enterococcus columbae ATCCS1263 45 Desulfovibrio vulgaris ATCC 29579 Enterococci is dispar ATCCS1266 Edwardsieiae tarda ATCC 15947 Enterococcits durans ATCC 19432 Enterobacter cloacae ATCC 13047 Enterococci is faecalis ATCC 29212 Escherichia coi ATCC 25922 Enterococci is faecium ATCC 19434 Fusobacterium russi ATCC 25533 Enterococcits fiavescens ATCC 49996 Haemophilus influenzae ATCC 9007 Enterococcus gallinarum ATCC 49573 50 Hafnia alvei ATCC 13337 Enterococcus hirae ATCC 8044 Klebsiella Oxytoca ATCC 13182 Enterococcits maiodoratus ATCC 431.97 Meganomonas hypermegas ATCC 25560 Enterococcus mindtii ATCC 43186 Mitsukoeia multiacidus ATCC 27723 Enterococcus pseudoavium ATCC 493.72 Moraxeiia caiarrhais ATCC 43628 Enterococcits raffinostis ATCC 49.427 Morganella morgani ATCC 25830 Enterococci is saccharolyticals ATCC 43076 55 Neisseria meningitidis ATCC 13077 Enterococci is solitarius ATCC 49428 Pastetirella aerogenes ATCC 27883 Enterococcits sulfitre is ATCC 49903 Proteus vulgaris ATCC 13315 Etibacterium ientum ATCC 49903 Providencia alcalifaciens ATCC 9886 Gemella haemolysans ATCC 10379 Providencia retigeri ATCC 92SO Gemeia morbiorum ATCC 27842 Pseudomonas aeruginosa ATCC 27853 Lactobacilius acidophilus ATCC 4356 60 Salmonella typhimurium ATCC 14028 Leticonostoc mesenteroides ATCC 1922S Serraia marcescens ATCC 1388O Listeria gravi ATCC 1912O Shigella flexneri ATCC 12022 Listeria gravi ATCC 19123 Shigella sonnei ATCC 29930 Listeria innoctia ATCC 33090 Succini vibrio dextrinosolvens ATCC 19716 Listeria ivanovii ATCC 19119 Tissierelia praeactita ATCC 25539 Listeria monocytogenes ATCC 15313 Veillonella parvuala ATCC 10790 Listeria Seeigeri ATCC 35967 65 Yersinia enterocolitica ATCC 9610 Micrococcus initeus ATCC 9341 US 8,182,996 B2 139 140 TABLE 11 Microbial species for which tuf and/or atpD and/or recA sequences are available in public databases. Species Strain Accession number Coding gene tufsequences

Bacteria Actinobacilius actinomycetemcomitans HK1651 Genome project’ Actinobacilius actinomycetemcomitans HK1651 Genome project ( E G ) Agrobacterium timefaciens X99673 Agrobacterium timefaciens X99673 (EF-G) Agrobacterium timefaciens X99674 Anacystis nidulans PCC 6301 X17442

Aquifex aeolicits VF5 AEOOO669 Aquifex aeolicits VF5 AEOOO669 Aquifex pyrophilus Genome project’ Aquifex pyrophilus Y15787 Bacilius anthracis Ames Genome project Bacilius anthracis Ames Genome project’ ( E Bacilius halodurans C-125 ABO17508 Bacilius halodurans C-125 ABO17508 ( E Bacilius Stearothermophilus CCM 2184 AJOOO260 Bacilius subtiis 168 D64127 Bacilius subtiis 168 D64127 ( E Bacilius subtiis DSM 10 Z991.04 Bacilius subtiis DSM 10 Z991.04 ( E Bacteroides forsythus ATCC 43037 ABO3S466 Bacteroides fragilis DSM 1151 Bordeteila bronchiseptica RBSO Genome projec 2 Bordeteila pertissis Tohama 1 Genome project Bordeteila pertissis Tohama 1 Genome project (EF-G) Borrelia burdongferi B31 U78193 Borrelia burgdorferi AEOO115S (EF-G) Brevibacterium inens DSM 20425 X76863 Buchnera aphidicola Ap Y12307 Burkholderia pseudomaiei K96243 Genome project (EF-G) Campylobacterieitini NCTC 11168 Y17167 Campylobacterieitini NCTC 11168 CJ11168X2 (EF-G) Chlamydia pneumoniae CWLO29 AEOO1592 Chlamydia pneumoniae CWLO29 AEOO1639 (EF-G) Chlamydia trachomatis M74221 Chlamydia trachomatis D.UW-3, CX AEOO1317 (EF-G) Chlamydia trachomatis D.UW-3, CX AEOO130S Chlamydia trachomatis FIC-Ca-13 L22216 Chlorobium vibrioforme DSM 263 X77033 Chloroflexus aurantiacus DSM 636 X7686S Clostridium acetobutyllicum ATCC 824 Genome project Clostridium difficile 630 Genome projec Clostridium difficile 630 Genome projec (EF-G) Corynebacterium diphtheriae NCTC 13129 Genome project Corynebacterium diphtheriae NCTC 13129 Genome projec (EF-G) Corynebacterium glutamicum ASO 19 X77034 Corynebacterium glutamicum MJ-233 EO9634 Coxieia bunetii Nine Mile phase I AF13 6604 Cytophaga lytica DSM 2039 X77035 Deinococcus radiodurans R1 AEOO1891 (EF-G) Deinococcus radiodurans AE180092 Deinococcus radiodurans AEOO2O41 Deinonema sp. Eikeneia corrodens ATCC 23834 Eikeneia corrodens ATCC 23834 Z1261O (EF-G) Enterococci is faecalis Genome project’ (EF-G) Escherichia coi JO1690 Escherichia coi JO1717 Escherichia coi (EF-G) Escherichia coi X57091 Escherichia coi K-12 MG16SS UOOOOO6 Escherichia coi K-12 MG16SS UOOOO96 Escherichia coi K-12 MG16SS AEOOO410 (EF-G) Fervidobacterium islandicum DSM5733 Y15788 Fibrobacter succinogenes S85 X76866 Flavobacterium ferrigeneum DSM 13524 X76867 Flexistipes sinusarabici XS9461 tuf Gioeobacter violaceus PCC 7421 UO9433 Gloeothece sp. PCC 65O1 UO9434 Haemophilus actinomycetemcomitans HK1651 Genome project Haemophilus ducreyi 3SOOO AFO87414 (EF-G) Haemophilus influenzae Rd U32739 US 8,182,996 B2 141 142 TABLE 11-continued Microbial species for which tuf and/or atpD and/or recA sequences are available in public databases. Species Strain Accession number Coding gene Haemophilus influenzae U32746 Haemophilus influenzae U32739 ( E Helicobacter pylori AEOOOS11 Helicobacter pylori AEOO1539 ( E Helicobacter pylori AEOO1541 Herpetosiphon aurantiacus X76868 Klebsiella pneumoniae Genome project Klebsiella pneumoniae Genome project’ (E Lactobacilius paracasei E13922 Legionella pneumophila Philadelphia-1 Genome project Leptospira interrogans AF115283 Leptospira interrogans AF115283 Micrococcus luteus FO 3333 M17788 Micrococcus luteus FO 3333 M17788 Moraxella sp. TAC II 25 AJ249258 Mycobacterium avium O4 Genome project’ Mycobacterium avium O4 Genome project’ ( E Mycobacterium bovis AF2122,97 Genome project Mycobacterium bovis AF2122,97 Genome project ( E Mycobacterium leprae L13276 Mycobacterium leprae Z14314 Mycobacterium leprae Z14314 ( E Mycobacterium leprae Thai 53 D13869 Mycobacterium tuberculosis Erdmann S4O925 Mycobacterium tuberculosis H37Ry ALO21943 ( E Mycobacterium tuberculosis H37Ry Z84395 Mycobacterium tuberculosis y42 ADOOOOOS Mycobacterium tuberculosis CSU#93 Genome project’ Mycobacterium tuberculosis CSU#93 Genome project ( E Mycoplasma capricoium PG-31 X16462 Mycoplasma genitalium G37 U397.32 Mycoplasma genitalium G37 U39689 ( E Mycoplasma hominis X57136 Mycoplasma hominis PG21 M57675 Mycoplasma pneumoniae M129 AEOOOO19

Mycoplasma pneumoniae M129 AEOOOOS8 Neisseria gonorrhoeae MS11 L3638O Neisseria gonorrhoeae MS11 L3638O Neisseria meningitidis Z2491 Genome project 2 Neisseria meningitidis Z2491 Genome project 2 Pasteureia mitocida P70 Genome projec 2 Peptococci is niger DSM 20745 X76869 Phormidium ectocarpi PCC 7375 UO9443 Planobispora rosea ATCC 53773 U673O8 Planobispora rosea ATCC 53.733 X9883O Planobispora rosea ATCC 53.733 X9883O (EF-G) Plectonema bonyanum PCC 73110 UO9444 Porphyromonas gingivais W83 Genome project Porphyromonas gingivais W83 Genome project (EF-G) Porphyromonas gingivais FDC 381 ABO3S461 Porphyromonas gingivais W83 ABO3S462 Porphyromonas gingivais SUNY 1021 ABO3S463 Porphyromonas gingivais A7A1-28 ABO3.5464 Porphyromonas gingivais ATCC 33277 ABO3S465 Porphyromonas gingivais ATCC 33277 ABO3S471 (EF-G) Prochiorothrix holiandica UO9445 Pseudomonas aeruginosa PAO-1 Genome project Pseudomonas puttida Genome project’ Rickettsia prowazeki Madrid E A23S272 Rickettsia prowazeki Madrid E A23S270 (EF-G) Rickettsia prowazeki Madrid E ZS4171 (EF-G) Salmonella Choleraestis Subsp. choleraesuisserotype Typhimurium X64591 (EF-G) Salmonella Choleraestis Subsp. choleraesuisserotype Typhimurium LT2 trpE91 XSS 116 Salmonella Choleraestis Subsp. choleraesuisserotype Typhimurium X55117 Serputina hyodysenteriae U51635 Serraia marcescens AFOS8451 Shewanelia puttrefaciens DSMSO426 Shewanelia puttrefaciens MR-1 Genome project Spirochaeta aurantia DSM 1902 X76874 Staphylococcusatiretts A237696 (EF-G) Staphylococcusatiretts EMRSA-16 Genome project’ Staphylococcusatiretts NCTC 8325 Genome project US 8,182,996 B2 143 144 TABLE 11-continued Microbial species for which tuf and/or atpD and/or recA sequences are available in public databases. Species Strain Accession number Coding gene Staphylococcusatiretts COL Genome project tu Staphylococcusatiretts EMRSA-16 Genome project tuf (EF-G) Stigmatella aurantiaca DW4 X8282O Stigmatella aurantiaca Sga1 X76870 Streptococci is mutans GS-5 Kuramitsu U75481 Streptococci is mutans UAB159 Genome project tu Streptococci is oralis NTCC 11427 P331.701 Streptococci is pyogenes Genome project tuf (EF-G) Streptococci is pyogenes M1-GAS Genome project tu Streptomyces attreofaciens ATCC 10762 AFOOf12S Streptomyces cinnamonetis Tue&9 X98831 Streptomyces coelicolor A3(2) ALO31013 tuf (EF-G) Streptomyces coelicolor A3(2) X77039 tuf (EF-G) Streptomyces coelicolor M145 X77039 Streptomyces collinus BSM4O733 S794.08 Streptomyces neiropsis Tu1063 AF153618 Streptomyces ranocissini is X67.057 Streptomyces ranocissini is X67058 Streptomyces ranocissini is X67.057 tuf (E Synechococci is sp. PCC 6301 X17442 tuf (E Synechococci is sp. PCC 6301 X17442 Synechocystis sp. PCC 6803 D90913 tuf (EF-G) Synechocystis sp. PCC 6803 D90913 Synechocystis sp. PCC 6803 X651.59 tuf (EF-G) Taxeobacter occealits Myx 2105 X77.036 Thermotoga maritima Genome project tuf (EF-G) Thermotoga maritima M27479 Thermits aquaticits EP 00276 X66322 Thermus thermophilus HB8 X16278 tuf (EF-G) Thermus thermophilus HB8 XO5977 Thermus thermophilus HB8 XO6657 Thiomonas cuprina DSM5495 U783OO Thiomonas cuprina DSM5495 U783OO tuf (EF-G) Thiomonas cuprina Hoes X76871 Treponema denticola Genome project tu Treponema denticola Genome project tu Treponema pallidiin AEOO12O2 Treponema pallidiin AEOO1222 Treponema pallidiin AEOO1248 Ureaplasma trealytictim ATCC 33697 Z34275 Ureaplasma trealytictim Serovar 3 biovar 1 AE002151 Ureaplasma trealytictim Serovar 3 biovar 1 AE002151 tuf (EF-G) Vibrio choierae N1696.1 Genome project tu Wolinella succinogenes DSM 1740 X76872 Yersinia pestis CO-92 Genome project tu Yersinia pestis CO-92 Genome project tuf (EF-G) Archaebacteria Archaeoglobits filgidus Genome project tuf (EF-G) Haiobacterium marismortati X16677 Methanobacterium thermoautrophicum delta H AEOOO877 Methanococcus jannaschii ATCC 43067 U674.86 Meihanococcus vanniei XOS698 Pyrococcus abyssi Orsay AJ248.285 Thermoplasma acidophilum DSM 1728 XS3866 Fungi Absidia giatica CBS 101.48 X54730 ) Artila adeninivorans LS3 ZA7379 ) Aspergilius Oryzae KBN616 ABOO7770 ) Aureobasidium pitilitians R106 U19723 ) Candida albicans SCS314 Genome project tu Candida albicans SCS314 M2993.4 ) Candida albicans SCS314 M2993S ) Cryptococci is neoformans B3SO1 U818O3 ) Cryptococci is neoformans M1-106 U81804 ) Eremothecium gossypii ATCC 10895 X73978 ) Eremothecium gossypii A2982O ) Fusarium oxysportin NRRL 26037 AFOO8498 ) Histoplasma capsulatin 186AS U141OO ) Podospora aniserina X74799 ) Podospora curvicolia VLV X96614 ) Prototheca wickerhamii 263-11 AJ245.645 ) Puccinia graminis race 32 X73.529 ) Recinomonas a mericana ATCC SO394 AFOOf261 US 8,182,996 B2 145 146 TABLE 11-continued Microbial species for which tuf and/or atpD and/or recA sequences are available in public databases. Species Strain Accession number Coding gene

Rhizontcor racemosus ATCC 1216B X17475 Rhizontcor racemosus ATCC 1216B JO26OS Rhizontcor racemosus ATCC 1216B X17476 Rhodotoria mucilaginosa AFO16239 Saccharomyces cerevisiae KOO428 Saccharomyces cerevisiae MS9369 Saccharomyces cerevisiae XOO779 Saccharomyces cerevisiae XO1638 Saccharomyces cerevisiae M10992 Saccharomyces cerevisiae Alpha S288 X78993 Saccharomyces cerevisiae M15666 Saccharomyces cerevisiae Z35987 Saccharomyces cerevisiae S288C (AB972) U51033 Schizophyllum commune 1-40 X94913 Schizosaccharomyces pombe 972 ALO21816 Schizosaccharomyces pombe 972 ALO21813 Schizosaccharomyces pombe 972 D82571 ( E Schizosaccharomyces pombe tuf (EF-1) Schizosaccharomyces pombe PR745 D89112 Sordaria macrospora OOO X96615 Trichoderma reesei QM9414 Z23012 Yarrowia lipolytica AFOS4S10 Parasites

Blastocystis hominis HE87-1 D6408O Cryptosporidium parvum U69697 teneia LS18 A1755521 Entamoeba histolytica HM1:IMSS X83565 Entamoeba histolytica NIH2OO M92O73 Giardia iambia D14342 Kentrophoros sp. AFOS 6101 Leishmania amazonensis IFLABRf67 PH8 M92653 Leishmania braziensis U72244 Onchocerca voivulus M64333 Porphyra purpurea Avonport UO8844 Plasmodium berghei ANKA AJ224150 Plasmodium falciparum X60488 Piasmodium knowiesi line H AJ224153 Toxoplasma gondii RH Y11431 Trichomonas tenax ATCC 30207 D784.79 Trypanosoma brucei LVH 75. U10562 USAMRU-K18 Trypanosoma Cruzi Y ( E ) Human and plants

Arabidopsis thaliana Columbia X89227 Glycine max Ceresia X890.58 Glycine max Ceresia Y15107 Glycine max Ceresia Y15108 Glycine max Maple Arrow X66062 Homo sapiens XO3558 Pyramimonas disomata ABOO8O10 atp) sequences

Bacteria

Acetobacterium woodi DSM 1030 U10505 Actinobacilius actinomycetemcomitans HK1651 Genome project Bacilius anthracis Ames Genome project Bacilius firmus OF4 M6O117 Bacilius negaterium QM B1551 M2O255 Bacilius Stearothermophilus D38058 Bacilius Stearothermophilus IFO1035 D38060 Bacilius subtiis 168 Z28592 Bacteroides fragilis DSM 2151 M22247 Bordeteila bronchiseptica RBSO Genome project Bordeteila pertissis Tohama 1 Genome project Borrelia burgdorferi B31 AEOO1122 ( V) Burkholderia cepacia DSMSO181 X76877 Burkholderia pseudomaiei K96243 Genome project Campylobacterieitini NCTC 11168 CJ11168X1 Chlamydia pneumoniae Genome projec 2 Chlamydia trachomatis MoPn Genome projec 2 V. Chlorobium vibrioforme DSM 263 X76873 Citrobacter fieundi JEO503 AFO371S6 D