Classification of the Phylum Ciliophora (Eukaryota, Alveolata)

Total Page:16

File Type:pdf, Size:1020Kb

Classification of the Phylum Ciliophora (Eukaryota, Alveolata) 1! The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised 2! Classification of the Phylum Ciliophora (Eukaryota, Alveolata) 3! 4! Feng Gao a, Alan Warren b, Qianqian Zhang c, Jun Gong c, Miao Miao d, Ping Sun e, 5! Dapeng Xu f, Jie Huang g, Zhenzhen Yi h,* & Weibo Song a,* 6! 7! a Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 8! China; b Department of Life Sciences, Natural History Museum, London, UK; c Yantai 9! Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; d 10! College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; 11! e Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, 12! Xiamen University, Xiamen, China; f State Key Laboratory of Marine Environmental 13! Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 14! China; g Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; h 15! School of Life Science, South China Normal University, Guangzhou, China. 16! 17! Running Head: Phylogeny and evolution of Ciliophora 18! *!Address correspondence to Zhenzhen Yi, [email protected]; or Weibo Song, 19! [email protected] 20! ! ! 1! Table S1. List of species for which SSU rDNA, 5.8S rDNA, LSU rDNA, and alpha-tubulin were newly sequenced in the present work. ! ITS1-5.8S- Class Subclass Order Family Speicies Sample sites SSU rDNA LSU rDNA a-tubulin ITS2 A freshwater pond within the campus of 1 COLPODEA Colpodida Colpodidae Colpoda inflata the South China Normal University, KM222106 KM222071 KM222160 Guangzhou (23° 09′N, 113° 22′ E) Climacostomum No. 2 Bathing Beach, Qingdao (36° 03′ N, 2 HETEROTRICHEA Heterotrichida Climacostomidae KM222165 KM221978 virens 120° 21′ E) Mariculture pond, Weifang (37°06′′N, 3 HETEROTRICHEA Heterotrichida Climacostomidae Fabrea salina KM222110 KM222078 KM222167 KM222005 119°30′′) Condylostoma Wanggezhuang mudflats, Qingdao (36° 17′ 4 HETEROTRICHEA Heterotrichida Condylostomatidae KM222108 KM222076 KM222163 KM221981 magnum N, 120° 39′ E) Folliculina Zhongyuan Dock, Qingdao (36° 03′ N, 5 HETEROTRICHEA Heterotrichida Folliculinidae KM222079 KM222168 KM221977 simplex 120° 19′ E) Estuary of Baisha River, Qingdao (36° 15′ 6 HETEROTRICHEA Heterotrichida Peritromidae Peritromus faurei KM222080 KM222169 N, 120° 19′ E) Anigsteinia No. 1 Bathing Beach, Qingdao (36° 03′ N, 7 HETEROTRICHEA Heterotrichida Spirostomidae KM222109 KM222077 KM222166 KM221982 clarissima 120° 21′ E) A freshwater pond within the campus of 8 HETEROTRICHEA Heterotrichida Spirostomidae Spirostomum sp. the South China Normal University, KM222081 KM222170 KM222008 Guangzhou (23° 09′N, 113° 22′ E) Huguangyan scenic spot, Zhanjiang (21° 9 HETEROTRICHEA Heterotrichida Stentoridae Stentor sp. KM222111 KM222082 KM222171 KM222003 09′ N, 110° 18′ E) Loxodes cf. Seagull Island, Guagnzhou (22° 59′ N, 10 KARYORELICTEA Loxodida Loxodidae KM222107 KM222075 KM222162 striatus 113° 32′ E) Remanella Sculpture Park Bathing Beach, Qingdao 11 KARYORELICTEA Loxodida Loxodidae KM221984 granulosa (36° 05′N, 120° 27′ E) Protoheterotrichi No. 1 Bathing Beach, Qingdao (36° 03′ N, 12 KARYORELICTEA Geleiidae Geleia sinica KM222074 KM222161 da 120° 21′ E) Kentrophoros No. 6 Bathing Beach, Qingdao (36° 03′ N, 13 KARYORELICTEA Protostomatida Kentrophoridae KM222029 gracilis 120° 19′ E) Licnophora cf. Daya Bay, Guangzhou (22° 36′N, 114° 33′ 77 LICNOPHORIEA Licnophorida Licnophoridae FJ876955 KM222164 KM222007 lyngbycola E) Daya Bay, Guangzhou (22° 36′N, 114° 33′ 14 LITOSTOMATEA Haptoria Haptorida Acropisthiidae Chaenea sp. KM222059 KM222153 E) Helicoprorodon Sculpture Park Bathing Beach, Qingdao 15 LITOSTOMATEA Haptoria Haptorida Helicoprorodontidae KM222102 KM222061 KM222154 KM221989 maximus (36° 05′N, 120° 27′ E) A freshwater pond within the campus of 16 LITOSTOMATEA Haptoria Haptorida Tracheliidae Dileptus sp. the South China Normal University, KM222100 KM222152 KM221975 Guangzhou (23° 09′N, 113° 22′ E) Circulating water system of a fish culture, 17 LITOSTOMATEA Haptoria Pleurostomatida Amphileptidae Amphileptus songi FJ876974 KM222058 Qingdao (36° 04′N, 120° 21′ E) Mesodinium Wanggezhuang mudflats, Qingdao (36° 17′ 18 MESODINIEA Mesodiniida Mesodiniidae KM222101 acarus N, 120° 39′ E) Discotricha Stone man bathing beach, Qingdao (36° 06′ 19 NASSOPHOREA Discotrichida Discotrichidae KM222067 papillifera N, 120° 29′ E) A freshwater pond in Changfeng 20 NASSOPHOREA Nassulida Furgasoniidae Parafurgasonia sp. Park, Shanghai, China (31° 14′ N, 121° 24′ KM222070 KM222159 E). Daya Bay, Guangzhou (22° 36′N, 114° 33′ 21 NASSOPHOREA Nassulida Nassulidae Nassula labiata KM222069 E) Daya Bay, Guangzhou (22° 36′N, 114° 33′ 22 OLIGOHYMENOPHOREA Peniculia Paranassulida Paranassulidae Paranassula sp. KM222068 E) Frontonia Huguangyan scenic spot, Zhanjiang (21° 23 OLIGOHYMENOPHOREA Peniculia Peniculida Frontoniidae KM222112 KM222083 KM222172 KM222002 canadensis 09′ N, 110° 18′ E) Huguangyan scenic spot, Zhanjiang (21° 24 OLIGOHYMENOPHOREA Peniculia Peniculida Lembadionidae Lembadion sp. KM222113 KM222084 KM222173 09′ N, 110° 18′ E) Mangrove Reserve, Shenzhen (22° 32′N, 25 OLIGOHYMENOPHOREA Peritrichia Sessilida Epistylididae Epistylis sp. KM222114 KM222085 KM222174 KM222025 114° 00′ E) Pseudepistylis Nan'ao Island, Shantou (23° 28′N, 117° 06′ 26 OLIGOHYMENOPHOREA Peritrichia Sessilida Epistylididae KM222115 KM222086 KM222175 KM222023 songi E) Mangrove Reserve, Shenzhen (22° 32′N, 27 OLIGOHYMENOPHOREA Peritrichia Sessilida Opisthonectidae Opisthonecta sp. KM222119 KM222090 KM222179 KM222024 114° 00′ E) Pseudovorticella Donghai Island, Zhanjiang (21°05′N, 110° 28 OLIGOHYMENOPHOREA Peritrichia Sessilida Vorticellidae KM222116 KM222087 KM222176 KM222020 shii 32′ E) Daya Bay, Guangzhou (22° 36′N, 114° 33′ 29 OLIGOHYMENOPHOREA Peritrichia Sessilida Vorticellidae Vorticella chiangi KM222117 KM222088 KM222177 KM222021 E) Zoothamnium Mipu Reserve, Hongkong (22° 30′N, 114° 30 OLIGOHYMENOPHOREA Peritrichia Sessilida Zoothamniidae KM222118 KM222089 KM222178 KM222022 hentscheli 04′ E) Zoothamnopsis Seawater along the coast of Yellow Sea, 31 OLIGOHYMENOPHOREA Peritrichia Sessilida Zoothamniidae KM222031 sinica Qingdao (36° 03′ N, 120° 22′ E) Cinetochilum 32 OLIGOHYMENOPHOREA Scuticociliatia Loxocephalida Cinetochilidae A port in Qingdao (36° 05′ N, 120° 19′ E) KM221956 ovale Pseudoplatynemat No. 1 Bathing Beach, Qingdao (36° 03′ N, 33 OLIGOHYMENOPHOREA Scuticociliatia Loxocephalida Cinetochilidae KM221967 um denticulatum 120° 21′ E) Sathrophilus Stone man bathing beach, Qingdao (36° 06′ 34 OLIGOHYMENOPHOREA Scuticociliatia Loxocephalida Cinetochilidae KM221968 holtae N, 120° 29′ E) Cardiostomatella Taiping Bay, Qingdao (36° 03′ N, 120° 22′ 35 OLIGOHYMENOPHOREA Scuticociliatia Loxocephalida Loxocephalidae KM221955 vermiformis E) Paratetrahymena Daya Bay, Guangzhou (22° 36′N, 114° 33′ 36 OLIGOHYMENOPHOREA Scuticociliatia Loxocephalida Loxocephalidae KM221963 wassi E) Metanophrys Mariculture pond, Weifang (37°06′′N, 37 OLIGOHYMENOPHOREA Scuticociliatia Philasterida Orchitophryidae KM221961 sinensis 119°30′′) Mariculture pond, Weifang (37°06′′N, 38 OLIGOHYMENOPHOREA Scuticociliatia Philasterida Parauronematidae Miamiensis avidus KM221962 119°30′′) Philasterides No. 6 Bathing Beach, Qingdao (36° 03′ N, 39 OLIGOHYMENOPHOREA Scuticociliatia Philasterida Philasteridae KM221964 armatalis 120° 19′ E) Pseudocohnilembu Nansan Island, Zhanjiang (21° 11′ N, 110° 40 OLIGOHYMENOPHOREA Scuticociliatia Philasterida Pseudocohnilembidae KM221966 s hargisi 27′ E) Seawater along the coast of Yellow Sea, 41 OLIGOHYMENOPHOREA Scuticociliatia Philasterida Uronematidae Uronema marinum KM221969 Qingdao (36°18′ N, 120°43′ E) Mesanophrys Clear Water Bay, Hong Kong (22° 20′ N, 42 OLIGOHYMENOPHOREA Scuticociliatia Philasterida Orchitophryidae KM221960 carcini 114°17′ E) Ancistrum From the mantle cavity of the marine 43 OLIGOHYMENOPHOREA Scuticociliatia Pleuronematida Ancistridae KM221953 crassum mollusk Ruditapes philippinarum, Qingdao (36° 04′ N, 120° 23′ E) Hippocomos Yangkou sandy beach, Qingdao (36º14'N, 44 OLIGOHYMENOPHOREA Scuticociliatia Pleuronematida Ctedoctematidae KM221959 salinus 120º40'E) No. 1 Bathing Beach, Qingdao (36° 03′ N, 45 OLIGOHYMENOPHOREA Scuticociliatia Pleuronematida Cyclidiidae Cristigera media KM221957 120° 21′ E) Protocyclidium Estuary of Baisha River, Qingdao (36° 15′ 46 OLIGOHYMENOPHOREA Scuticociliatia Pleuronematida Cyclidiidae KM221958 citrullus N, 120° 19′ E) Sculpture Park Bathing Beach, Qingdao 47 OLIGOHYMENOPHOREA Scuticociliatia Pleuronematida Eurystomateliidae Wilbertia typica KM221970 (36° 05′N, 120° 27′ E) From the mantle cavity of the marine Boveria 48 OLIGOHYMENOPHOREA Scuticociliatia Pleuronematida Hemispeiridae mollusk Pinna pectinata, Qingdao (36° 04′ KM221954 subcyclindrica N, 120° 23′ E) Pleuronema 49 OLIGOHYMENOPHOREA Scuticociliatia Pleuronematida Pleuronematidae A port in Qingdao (36° 05′ N, 120° 19′ E) KM221965 setigerum Trithigmostoma Longxue Island, Guangzhou (22° 42′ N, 50 PHYLLOPHARYNGEA Cyrtophoria Chlamydodontida Chilodonellidae KM222063 KM222156 KM221985 cucullulus 113° 39′ E) Chlamydodon Nansha Port, Guangzhou (22° 48′N, 113° 51 PHYLLOPHARYNGEA Cyrtophoria Chlamydodontida Chlamydodontidae KM221986 mnemosyne 36′ E) Chlamydonella Daya Bay, Guangzhou (22° 36′N, 114° 33′ 52 PHYLLOPHARYNGEA Cyrtophoria Chlamydodontida Lynchellidae KM222001 pseudochilodon E) Mai Island, Qingdao (36° 04′ N, 120° 27′ 53 PHYLLOPHARYNGEA Cyrtophoria Dysteriida Dysteriidae Dysteria derouxi KM222105 KM222064
Recommended publications
  • Novel Contributions to the Peritrich Family Vaginicolidae
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2019, 187, 1–30. With 13 figures. Novel contributions to the peritrich family Vaginicolidae (Protista: Ciliophora), with morphological and Downloaded from https://academic.oup.com/zoolinnean/article-abstract/187/1/1/5434147/ by Ocean University of China user on 08 October 2019 phylogenetic analyses of poorly known species of Pyxicola, Cothurnia and Vaginicola BORONG LU1, LIFANG LI2, XIAOZHONG HU1,5,*, DAODE JI3,*, KHALED A. S. AL-RASHEID4 and WEIBO SONG1,5 1Institute of Evolution and Marine Biodiversity, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China 2Marine College, Shandong University, Weihai 264209, China 3School of Ocean, Yantai University, Yantai 264005, China 4Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 5Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China Received 29 September 2018; revised 26 December 2018; accepted for publication 13 February 2019 The classification of loricate peritrich ciliates is difficult because of an accumulation of several taxonomic problems. In the present work, three poorly described vaginicolids, Pyxicola pusilla, Cothurnia ceramicola and Vaginicola tincta, were isolated from the surface of two freshwater/marine algae in China. In our study, the ciliature of Pyxicola and Vaginicola is revealed for the first time, demonstrating the taxonomic value of infundibular polykineties. The small subunit rDNA, ITS1-5.8S rDNA-ITS2 region and large subunit rDNA of the above species were sequenced for the first time. Phylogenetic analyses based on these genes indicated that Pyxicola and Cothurnia are closely related.
    [Show full text]
  • The Macronuclear Genome of Stentor Coeruleus Reveals Tiny Introns in a Giant Cell
    University of Pennsylvania ScholarlyCommons Departmental Papers (Biology) Department of Biology 2-20-2017 The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Mark M. Slabodnick University of California, San Francisco J. G. Ruby University of California, San Francisco Sarah B. Reiff University of California, San Francisco Estienne C. Swart University of Bern Sager J. Gosai University of Pennsylvania See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/biology_papers Recommended Citation Slabodnick, M. M., Ruby, J. G., Reiff, S. B., Swart, E. C., Gosai, S. J., Prabakaran, S., Witkowska, E., Larue, G. E., Gregory, B. D., Nowacki, M., Derisi, J., Roy, S. W., Marshall, W. F., & Sood, P. (2017). The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell. Current Biology, 27 (4), 569-575. http://dx.doi.org/10.1016/j.cub.2016.12.057 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/biology_papers/49 For more information, please contact [email protected]. The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Abstract The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities—if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3].
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Wrc Research Report No. 131 Effects of Feedlot Runoff
    WRC RESEARCH REPORT NO. 131 EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA BY Kenneth S. Todd, Jr. College of Veterinary Medicine Department of Veterinary Pathology and Hygiene University of Illinois Urbana, Illinois 61801 FINAL REPORT PROJECT NO. A-074-ILL This project was partially supported by the U. S. ~epartmentof the Interior in accordance with the Water Resources Research Act of 1964, P .L. 88-379, Agreement No. 14-31-0001-7030. UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 AUGUST 1977 ABSTRACT Water samples and free-living and sessite ciliated protozoa were col- lected at various distances above and below a stream that received runoff from a feedlot. No correlation was found between the species of protozoa recovered, water chemistry, location in the stream, or time of collection. Kenneth S. Todd, Jr'. EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA Final Report Project A-074-ILL, Office of Water Resources Research, Department of the Interior, August 1977, Washington, D.C., 13 p. KEYWORDS--*ciliated protozoa/feed lots runoff/*water pollution/water chemistry/Illinois/surface water INTRODUCTION The current trend for feeding livestock in the United States is toward large confinement types of operation. Most of these large commercial feedlots have some means of manure disposal and programs to prevent runoff from feed- lots from reaching streams. However, there are still large numbers of smaller feedlots, many of which do not have adequate facilities for disposal of manure or preventing runoff from reaching waterways. The production of wastes by domestic animals was often not considered in the past, but management of wastes is currently one of the largest problems facing the livestock industry.
    [Show full text]
  • Based on SSU Rdna Sequences
    J. Eukaryot. Microbiol., 48(5), 2001 pp. 604±607 q 2001 by the Society of Protozoologists Phylogenetic Position of Sorogena stoianovitchae and Relationships within the Class Colpodea (Ciliophora) Based on SSU rDNA Sequences ERICA LASEK-NESSELQUISTa and LAURA A. KATZa,b aDepartment of Biological Sciences, Smith College, Northampton, Massachusetts 01063, and bProgram in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA ABSTRACT. The ciliate Sorogena stoianovitchae, which can form a multicellular fruiting body, has been classi®ed based upon its ultrastructure and morphology: the oral and somatic infraciliature of S. stoianovitchae most closely resemble those of members of the order Cyrtolophosidida in the class Colpodea. We characterized the small subunit ribosomal DNA (SSU rDNA) gene sequence from S. stoianovitchae and compared this sequence with those from representatives of all ciliate classes. These analyses placed S. stoianovitchae as either sister to members of the class Nassophorea or Colpodea. In an in-group analysis, including all SSU rDNA sequences from members of the classes Nassophorea and Colpodea and representatives of appropriate outgroups, S. stoianovitchae was always sister to Platyophrya vorax (class Colpodea, order Cyrtolophosidida). However, our analyses failed to support the monophyly of the class Colpodea. Instead, our data suggest that there are essentially three unresolved clades: (1) the class Nassophorea; (2) Bresslaua vorax, Colpoda in¯ata, Pseudoplatyophrya nana, and Bursaria truncatella (class Colpodea); and (3) P. vorax and S. stoianovitchae (class Colpodea). Key Words. Bursariomorphida, ciliate phylogeny, Colpodida, Cyrtolophosidida, molecular systematics, Nassophorea, Sorogenida. OROGENA stoianovitchae is a unique ciliate that aggregates partial B. sphagni sequence), provide the ®rst molecular hy- S to produce an aerial fruiting body when cells are starved.
    [Show full text]
  • Phylogenomic Analysis of Balantidium Ctenopharyngodoni (Ciliophora, Litostomatea) Based on Single-Cell Transcriptome Sequencing
    Parasite 24, 43 (2017) © Z. Sun et al., published by EDP Sciences, 2017 https://doi.org/10.1051/parasite/2017043 Available online at: www.parasite-journal.org RESEARCH ARTICLE Phylogenomic analysis of Balantidium ctenopharyngodoni (Ciliophora, Litostomatea) based on single-cell transcriptome sequencing Zongyi Sun1, Chuanqi Jiang2, Jinmei Feng3, Wentao Yang2, Ming Li1,2,*, and Wei Miao2,* 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China 2 Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei Province, PR China 3 Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan 430056, PR China Received 22 April 2017, Accepted 12 October 2017, Published online 14 November 2017 Abstract- - In this paper, we present transcriptome data for Balantidium ctenopharyngodoni Chen, 1955 collected from the hindgut of grass carp (Ctenopharyngodon idella). We evaluated sequence quality and de novo assembled a preliminary transcriptome, including 43.3 megabits and 119,141 transcripts. Then we obtained a final transcriptome, including 17.7 megabits and 35,560 transcripts, by removing contaminative and redundant sequences. Phylogenomic analysis based on a supermatrix with 132 genes comprising 53,873 amino acid residues and phylogenetic analysis based on SSU rDNA of 27 species were carried out herein to reveal the evolutionary relationships among six ciliate groups: Colpodea, Oligohymenophorea, Litostomatea, Spirotrichea, Hetero- trichea and Protocruziida. The topologies of both phylogenomic and phylogenetic trees are discussed in this paper. In addition, our results suggest that single-cell sequencing is a sound method of obtaining sufficient omics data for phylogenomic analysis, which is a good choice for uncultivable ciliates.
    [Show full text]
  • A Fossilized Microcenosis in Triassic Amber
    J Eukaqlnr. Micmbrol., 46(6), 1999 pp. 571-584 0 1999 by the Society of Protozoologists A Fossilized Microcenosis in Triassic Amber WILFRIED SCHONBORN,a HEINRICH DORFELT? WILHELM FOISSNER,’ LOTHAR KRIENITZd and URSULA SCHAFER” “Friedrich-Schiller-UniversitatJena, Institut fur Okologie, Arbeitsgruppe Limnologie, Winzerlaer StraJe 10, 0-0774.5 Jena, Germany, and bFriedrich-Schiller-Univer.sitatJenn,lnstitut fiir Ernahrung und Umwelt, Lehrgebiet Lnndschaftsokologie und Naturschutz, DornburgerslraJe 159, 0-07743 Jena, Germany, and ‘Universitut Salzburg, Institut fur Zoologie, HellbrunnerstraJe 34, A-5020 Salzburg, Austria, and dInstitut fur Gewasseriikologie und Binnenjscherei, Alte Fischerhiitte 2, 0-16775 Neuglobsow, Germany ABSTRACT. Detailed data on bacterial and protistan microfossils are presented from a 0.003 mm3 piece of Triassic amber (Schlier- seerit, Upper Triassic period, 220-230 million years old). This microcenosis, which actually existed as such within a very small, probably semiaquatic habitat, included the remains of about two bacteria species, four fungi (Palaeodikaryomyces baueri, Pithomyces-like conidia, capillitium-like hyphae, yeast cells) two euglenoids, two chlamydomonas (Chlamydomonas sp., Chloromonas sp.), two coccal green microalgae (Chlorellu sp., Chorzcystis-like cells), one zooflagellate, three testate amoebae (Centropyxis aculeata var. oblonga-like, Cyclopyxis eurystoma-like, Hyalosphenia baueri n. sp.), seven ciliates (Pseudoplatyophrya nana-like, Mykophagophrys rerricola-like, Cvrtolophosis mucicola-like, Paracondylostoma
    [Show full text]
  • ABSTRACT Title of Dissertation: IDENTIFICATION, LIFE HISTORY
    ABSTRACT Title of Dissertation: IDENTIFICATION, LIFE HISTORY, AND ECOLOGY OF PERITRICH CILIATES AS EPIBIONTS ON CALANOID COPEPODS IN THE CHESAPEAKE BAY Laura Roberta Pinto Utz, Doctor of Philosophy, 2003 Dissertation Directed by: Professor Eugene B. Small Department of Biology Adjunct Professor D. Wayne Coats Department of Biology and Smithsonian Environmental Research Center Epibiotic relationships are a widespread phenomenon in marine, estuarine and freshwater environments, and include diverse epibiont organisms such as bacteria, protists, rotifers, and barnacles. Despite its wide occurrence, epibiosis is still poorly known regarding its consequences, advantages, and disadvantages for host and epibiont. Most studies performed about epibiotic communities have focused on the epibionts’ effects on host fitness, with few studies emphasizing on the epibiont itself. The present work investigates species composition, spatial and temporal fluctuations, and aspects of the life cycle and attachment preferences of Peritrich epibionts on calanoid copepods in Chesapeake Bay, USA. Two species of Peritrich ciliates (Zoothamnium intermedium Precht, 1935, and Epistylis sp.) were identified to live as epibionts on the two most abundant copepod species (Acartia tonsa and Eurytemora affinis) during spring and summer months in Chesapeake Bay. Infestation prevalence was not significantly correlated with environmental variables or phytoplankton abundance, but displayed a trend following host abundance. Investigation of the life cycle of Z. intermedium suggested that it is an obligate epibiont, being unable to attach to non-living substrates in the laboratory or in the field. Formation of free-swimming stages (telotrochs) occurs as a result of binary fission, as observed for other peritrichs, and is also triggered by death or molt of the crustacean host.
    [Show full text]
  • PROTISTAS MARINOS Viviana A
    PROTISTAS MARINOS Viviana A. Alder INTRODUCCIÓN plantas y animales. Según este esquema básico, a las plantas les correspondían las características de En 1673, el editor de Philosophical Transac- ser organismos sésiles con pigmentos fotosinté- tions of the Royal Society of London recibió una ticos para la síntesis de las sustancias esenciales carta del anatomista Regnier de Graaf informan- para su metabolismo a partir de sustancias inor- do que un comerciante holandés, Antonie van gánicas (nutrición autótrofa), y de poseer células Leeuwenhoek, había “diseñado microscopios rodeadas por paredes de celulosa. En oposición muy superiores a aquéllos que hemos visto has- a las plantas, les correspondía a los animales los ta ahora”. Van Leeuwenhoek vendía lana, algo- atributos de tener motilidad activa y de carecer dón y otros materiales textiles, y se había visto tanto de pigmentos fotosintéticos (debiendo por en la necesidad de mejorar las lentes de aumento lo tanto procurarse su alimento a partir de sustan- que comúnmente usaba para contar el número cias orgánicas sintetizadas por otros organismos) de hebras y evaluar la calidad de fibras y tejidos. como de paredes celulósicas en sus células. Así fue que construyó su primer microscopio de Es a partir de los estudios de Georg Gol- lente única: simple, pequeño, pero con un poder dfuss (1782-1848) que estos diminutos organis- de magnificación de hasta 300 aumentos (¡diez mos, invisibles a ojo desnudo, comienzan a ser veces más que sus precursores!). Este magnífico clasificados como plantas primarias
    [Show full text]
  • Systematic Index
    Systematic Index The systematic index contains the scientific names of all taxa mentioned in the book e.g., Anisonema sp., Anopheles and the vernacular names of protists, for example, tintinnids. The index is two-sided, that is, species ap - pear both with the genus-group name first e.g., Acineria incurvata and with the species-group name first ( incurvata , Acineria ). Species and genera, valid and invalid, are in italics print. The scientific name of a subgenus, when used with a binomen or trinomen, must be interpolated in parentheses between the genus-group name and the species- group name according to the International Code of Zoological Nomenclature. In the following index, these paren - theses are omitted to simplify electronic sorting. Thus, the name Apocolpodidium (Apocolpodidium) etoschense is list - ed as Apocolpodidium Apocolpodidium etoschense . Note that this name is also listed under “ Apocolpodidium etoschense , Apocolpodidium ” and “ etoschense , Apocolpodidium Apocolpodidium ”. Suprageneric taxa, communities, and vernacular names are represented in normal type. A boldface page number indicates the beginning of a detailed description, review, or discussion of a taxon. f or ff means include the following one or two page(s), respectively. A Actinobolina vorax 84 Aegyriana paroliva 191 abberans , Euplotes 193 Actinobolina wenrichii 84 aerophila , Centropyxis 87, 191 abberans , Frontonia 193 Actinobolonidae 216 f aerophila sphagnicola , Centropyxis 87 abbrevescens , Deviata 140, 200, 212 Actinophrys sol 84 aerophila sylvatica
    [Show full text]