Systematic Index

Total Page:16

File Type:pdf, Size:1020Kb

Systematic Index Systematic Index The systematic index contains the scientific names of all taxa mentioned in the book e.g., Anisonema sp., Anopheles and the vernacular names of protists, for example, tintinnids. The index is two-sided, that is, species ap - pear both with the genus-group name first e.g., Acineria incurvata and with the species-group name first ( incurvata , Acineria ). Species and genera, valid and invalid, are in italics print. The scientific name of a subgenus, when used with a binomen or trinomen, must be interpolated in parentheses between the genus-group name and the species- group name according to the International Code of Zoological Nomenclature. In the following index, these paren - theses are omitted to simplify electronic sorting. Thus, the name Apocolpodidium (Apocolpodidium) etoschense is list - ed as Apocolpodidium Apocolpodidium etoschense . Note that this name is also listed under “ Apocolpodidium etoschense , Apocolpodidium ” and “ etoschense , Apocolpodidium Apocolpodidium ”. Suprageneric taxa, communities, and vernacular names are represented in normal type. A boldface page number indicates the beginning of a detailed description, review, or discussion of a taxon. f or ff means include the following one or two page(s), respectively. A Actinobolina vorax 84 Aegyriana paroliva 191 abberans , Euplotes 193 Actinobolina wenrichii 84 aerophila , Centropyxis 87, 191 abberans , Frontonia 193 Actinobolonidae 216 f aerophila sphagnicola , Centropyxis 87 abbrevescens , Deviata 140, 200, 212 Actinophrys sol 84 aerophila sylvatica , Centropyxis 87 abbreviata , Vorticella 109 Actinorhabdos 73, 211, 216f aeruginosa , Trichotaxis 73 abdita , Afroamphisiella 140, 197 Actinorhabdos trichocystiferra 110 aeruginosa , Trichototaxis 81, 196 abdita , Lamtostyla 70, 140 Actinorhabdos trichocystiferrus 184 aesculacantha , Hastatella 93 Acacia 150 Actinorhabdos trichocystiferus 67, 183, 197 affine , Gonostomum 93, 140 f, 202 Acacia erioloba 157, 168 Actinosphaerium eichhornii 84 affine , Zoothamnium 347 Acanthamoeba 314 aculeata , Grandoria 93 affinis , Euplotes 92 Acanthamoeba sp . 323, 328 aculeata , Stichotricha 105 affinis , Oxytricha 140 Acanthamoeba spp . 313, 315, 324 aculeatus , Dileptus 193 africana africana , Rostrophryides 83, 140, acanthocryptum , Ctedoctema 89, 110, 344 aculetata oblonga -like , Centropyxis 87 208 Acanthodiophrya almae 192 acuminata , Frontonia 92, 257, 344 africana , Apocolpoda 67, 192 acanthodus , Euplotes 140, 201 acuminata , Lagynophrya 95 africana etoschensis , Rostrophryides 66, acarus , Mesodinium 96 acuminata , Maryna 78, 96 140, 208 Acer negunda 347 acuminata , Salpingella 417 africana , Holophrya 77, 194 aciculare , Spathidium 72, 140, 208 acuminata , Strombidinopsis 420 africana , Oxytricha 70, 140, 205 acidophila , Chlamydomonas 300 acuminata , Urosoma 108 africana , Rostrophryides 72, 103, 140 Acineria 84 acuminatum , Colpidium 88 africana , Rostrophryides africana 83, 140, Acineria incurvata 84, 344 acuminatus , Conchopthirus 350 208 Acineria nasuta 84 acuminatus , Tropidoatractus 108 africana , Sterculia 169 Acineria uncinata 84 acuta , Amphisiella 67, 140 africana , Teuthophrys 111 Acineta flava 84 acuta , Amphorellopsis 417 africana , Teuthophrys trisulca 83, 106 Acineta grandis 84, 345 acuta , Avestina 86 africana , Tracheloraphis 111 Acineta tuberosa 84 acuta , Condylostoma 193 africanum , Paramecium 140, 206 acinus , Anisonema 84 acuta , Cyrtolophosis 90, 140, 200 africanum , Trachelophyllum 72, 140, 210 aciphyllum , Chorisodontium 178 acuta , Geleia 193 africanus , Prorodon 195 acrobaticus , Stentor 104 acuta , Grossglockneria 69, 93, 140, 202 africanus , Tracheloraphis 196 Acropisthiidae 81, 84, 168, 215 ff acuta , Paramphisiella 79, 206 Afroamphisiella 73, 75, 211, 216 Acropisthiina 81 acuta , Tintinnopsis 266 Afroamphisiella abdita 140, 197 Acropisthium 84, 168, 211, 215 f acuta , Urosoma 196 Afroamphisiella multinucleata 67, 166, 197 Acropisthium mutabile 84, 168, 197 acutum , Loxophyllum 194 Afrophrya 73 acropodia , Phryganella 100 acutum , Stegochilum 104 Afrophrya camerounensis 75 Acrospathidium sp . 251 adami , Anteholosticha 140, 197 Afrophrya macrostoma 75 acrostoma , Semiplatyophrya 72, 140, 208 adami , Archiastomata 67, 112 Afrothrix 73, 211, 216 acrostomia , Askenasia 67, 85, 140, 198 adami , Holosticha 69, 113, 140 Afrothrix darbyshirei 67, 112, 151, 197 Actinobolina 84, 216 admirabilis , Histriculus 69, 194 Afrothrix multinucleata 67, 166, 197 Actinobolina multinucleata 67, 166, 197 aediculatus , Euplotes 92, 140, 201, 413 f agiliformis , Urosomoida 73, 108, 141, 189 Actinobolina radians 84 aediculatus , Euplotoides 284 agilis , Pseudomicrothorax 102 Actinobolina smalli 84, 136, 178, 197 aegyptia , Flamella 187, 202 agilis , Urosomoida 108 425 agilis , Urotricha 108 amphacanthus , Coleps 88, 141, 199 anguilla , Dileptus 142 Akanthamöben 319, 325 amphikineta , Hemimastix 69, 93, 187, 202 anguilla , Spathidium 103, 142, 208 aklitolophon , Holophrya 77 Amphileptidae 216 f anguillula , Dileptus 90, 142, 200 akrokomos , Mallomonas 332 Amphileptina 84 angulata , Metacylis 420, 422 alba , Beggiatoa 86 amphileptoides , Dileptoides 142 angusta angusta , Frontonia 83, 142, 202 albus , Stentor 104 amphileptoides , Dileptus 142 angusta , Buitkampia 68 alekperovi , Bryometopus 110 amphileptoides , Dimacrocaryon 90, 142, 200 angusta , Frontonia 92 alfredkahli , Oxytricha 110 amphileptoides , Rimaleptus 142 angusta , Frontonia angusta 83, 142, 202 alfredkahli , Trimyema 107 Amphileptus 84, 216 angusta obovata , Frontonia 66, 142, 202 algicola , Gonostomum 93, 141, 202 Amphileptus carchesii 84 angusta solea , Frontonia 83, 191 algivora , Chilodonella 141 Amphileptus claparedii 84 angustipilosa , Hartmannula 193 algivora , Keronopsis 78 Amphileptus piger 75, 84, 173, 197 angustistoma , Pseudomonilicaryon 72, 142, algivora , Pseudochilodonopsis 80, 101, 141, Amphileptus pleurosigma 75, 84 207 207 Amphileptus plurivacuolatus 75 angustivittata , Tracheloraphis 111 Alinostoma 84, 216 Amphileptus procerus 84 Anictostoma 73, 84, 158, 211 Alinostoma burkli 67, 112, 147, 197 Amphileptus punctatus 75, 84 Anictostoma grelli 67, 112, 158 Alinostoma plurivacuolatum 192 Amphileptus rotundus 75 Anictostoma terricola 67 Allotricha antarctica 155 Amphileptus spp . 344 Anigsteinia 217 almae , Acanthodiophrya 192 Amphileptus utriculariae 185 Anigsteinia clarissima 149, 197 almae , Almophrya 155, 192 Amphisia diademata 151 Anisonema acinus 84 almae , Dicoelophrya 193 Amphisiella 84, 216 Anisonema sp . 84 almae , Metaradiophrya 194 Amphisiella acuta 67, 140 annulata , Amphisiella 142, 197 Almophrya almae 155, 192 Amphisiella annulata 142, 197 annulata , Cothurnia 89 Alnetum viridis 142, 167, 175, 177, 181 Amphisiella antarctica 192 annulata , Holosticha 142 Aloe dichotoma 166, 168, 174 f, 179 Amphisiella australis 67, 84, 145, 192, 197 Anomalocardiae brasiliana 142 aloisi , Gastronauta 92, 141, 202 Amphisiella binucleata 75, 84 anomalocardiae , Myxophthirus 136, 142, 204, alpestris alpestris , Odontochlamys 83, 141, 205 Amphisiella binucleata binucleata 82 213 alpestris biciliata , Odontochlamys 66, 141, 205 Amphisiella binucleata multicirrata 66, 146, Anopheles 314 ff , 319, 324 f, 328 alpestris , Chlamydonella 68, 88, 141, 199 197 Anopheles gambiae 328 alpestris , Epistylis 69, 91, 193 Amphisiella dorsicirrata 111 Anophryoides haemopila 397 f alpestris , Holosticha 112 Amphisiella edaphoni 152, 197 Anoplophrya marylandensis 397 f alpestris , Litonotus 70, 95, 194 Amphisiella elegans 67, 153, 197 Anoplophryidae 216 f alpestris , Metopus 70, 194 Amphisiella faurei 192 anser , Dileptus 90, 142, 200 alpestris , Odontochlamys 70, 98, 141, 191 Amphisiella longiseries 67, 163, 197 anser , Vibrio 142, 212 alpestris , Odontochlamys alpestris 83, 141, 205 Amphisiella magnigranulosa 67, 84, 164, 197, antarctica , Allotricha 155 alpestris , Pseudocyrtolophosis 71, 102, 141, 284 antarctica , Amphisiella 192 207 Amphisiella multinucleata 67, 166, 197 antarctica , Deschampsia 142 alpestris , Trithigmostoma 73, 196 Amphisiella namibiensis 67, 168, 197 antarctica , Grimmia 170 alpestris , Vorticella 73, 196 Amphisiella perisincirra 75 antarctica , Maryna 70, 142, 204 alpini , Rumicetum 161, 177 Amphisiella polycirrata 67, 84 antarctica , Metanophrys 191 alpinum , Enchelydium 68, 193 Amphisiella procera 67, 174, 197 antarctica , Notohymena 70, 142, 205, 289 alpinus , Dileptus 90, 141, 200 Amphisiella quadrinucleata 67 antarctica , Pseudomaryna 80 Alveolata 314 f, 333 Amphisiella terricola 84, 181, 197 antarctica , Thigmokeronopsis 142, 209 alveolata , Pelagothrix 79 Amphisiella vitiphila 75, 186, 197 antarctica , Tontonia 142, 209 alveolata , Urotricha 108 Amphisiellidae 84, 216 f antarctica , Urosomoida 73, 142, 210 alveolatum , Monodinium 78 Amphisiellides 73, 84, 216 antarcticum , Buehringa 142 alwinae , Australothrix 67, 112, 141, 198 Amphisiellides atypicus 75 antarcticum , Intranstylum 192 amarus , Prorodon 195 Amphisiellides illuvialis 67, 160, 197 antarcticum , Kentrophyllum 142, 203, 213 ambigua , Frontonia 193 amphorella , Codonella 268 antarcticum , Strombidium 142, 209, 214 ambigua , Urosoma 141, 164, 210 Amphorellopsis 421 antarcticus , Litonotus 143, 204 ambiguum , Spirostomum 104 Amphorellopsis acuta 417 antarcticus , Placus 143, 189 Americana , Codonellopsis 420 amphoriforme , Astylozoon 85 Anteholosticha 216 americana , Uroglena 332 amphoriforme , Epispathidium 77, 91, 142, 201 Anteholosticha adami 140, 197 americanum , Blepharisma 86, 141, 198 amphoriforme rectitoratum , Epispathidium 77 Anteholosticha
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • Cryptosporidium and Water
    Cryptosporidium and Water: A Public Health Handbook 1997 WG WCWorking Group on Waterborne Cryptosporidiosis Suggested Citation Cryptosporidium and Water: A Public Health Handbook. Atlanta, Georgia: Working Group on Waterborne Cryptosporidiosis. CDCENTERS FOR DISEASEC CONTROL AND PREVENTION For additional copies of this handbook, write to: Centers for Disease Control and Prevention National Center for Infectious Diseases Division of Parasitic Diseases Mailstop F-22 4770 Buford Highway N.E. Atlanta, GA 30341-3724 CONTENTS Executive Summary Introduction 1- Coordination and Preparation 2- Epidemiologic Surveillance 3- Clinical Laboratory Testing 4- Evaluating Water Test Results Drinking Water Sources, Treatment, and Testing Environmental Sampling Methods Issuing and Rescinding a Boil Water Advisory 5- Outbreak Management Outbreak Assessment News Release Information Frequently Asked Questions Protocols for Special Audiences and Contingencies 6- Educational Information Preventing Cryptosporidiosis: A Guide for Persons With HIV and AIDS Preventing Cryptosporidiosis: A Guide for the Public Preventing Cryptosporidiosis: A Guide to Water Filters and Bottled Water 7- Recreational Water Appendix Selected Articles Key Words and Phrases Figures A-F Index Working Group on Waterborne Cryptosporidiosis (WGWC) Daniel G. Colley and Dennis D. Juranek, Coordinators, WGWC Division of Parasitic Diseases (DPD) National Center for Infectious Diseases Centers for Disease Control and Prevention Scott A. Damon, Publications Coordinator, WGWC, Centers for Disease Control and Prevention Margaret Hurd, Communications Coordinator, WGWC, Centers for Disease Control and Prevention Mary E. Bartlett, DPD Editor, Centers for Disease Control and Prevention Leslie S. Parker, Visual Information Specialist, Centers for Disease Control and Prevention Task Forces and Other Contributors: The draft materials for this handbook were developed through the work of multiple task forces and individuals whose names appear at the beginning of each chapter/section.
    [Show full text]
  • Identification of a Novel Fused Gene Family Implicates Convergent
    Chen et al. BMC Genomics (2018) 19:306 https://doi.org/10.1186/s12864-018-4685-y RESEARCH ARTICLE Open Access Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling Fei Chen1,2,3, Liangsheng Zhang1, Zhenguo Lin4 and Zong-Ming Max Cheng2,3* Abstract Background: Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results: Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK,comprisesSnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions: This report identified a novel gene fusion and dated its precise fusion time
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • 7Fa228ee469dc6254b4b09b017
    GBE Multigenomic Delineation of Plasmodium Species of the Laverania Subgenus Infecting Wild-Living Chimpanzees and Gorillas Weimin Liu1, Sesh A. Sundararaman1,2, Dorothy E. Loy1,2, Gerald H. Learn1,YingyingLi1, Lindsey J. Plenderleith3, Jean-Bosco N. Ndjango4, Sheri Speede5,RebecaAtencia6,DebbyCox6,7, George M. Shaw1,2, Ahidjo Ayouba8, Martine Peeters8,JulianC.Rayner9, Beatrice H. Hahn1,2,and Paul M. Sharp3,* 1Department of Medicine, Perelman School of Medicine, University of Pennsylvania 2Department of Microbiology, Perelman School of Medicine, University of Pennsylvania 3Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom 4Faculty of Sciences, University of Kisangani, Democratic Republic of the Congo 5Sanaga-Yong Chimpanzee Rescue Center, IDA-Africa, Portland, Oregon 6Tchimpounga Chimpanzee Rehabilitation Center, Pointe-Noire, Republic of the Congo 7Africa Programmes, Jane Goodall Institute, Vienna, Virginia 8UMI 233, Institut de Recherche pour le De´veloppement (IRD), INSERM U1175, and University of Montpellier, France 9Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK *Corresponding author: E-mail: [email protected]. Accepted: May 24, 2016 Data deposition: This project has been deposited at NCBI GenBank under the accession numbers listed in supplementary table S5, Supplementary Material online. Abstract Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • A Fossilized Microcenosis in Triassic Amber
    J Eukaqlnr. Micmbrol., 46(6), 1999 pp. 571-584 0 1999 by the Society of Protozoologists A Fossilized Microcenosis in Triassic Amber WILFRIED SCHONBORN,a HEINRICH DORFELT? WILHELM FOISSNER,’ LOTHAR KRIENITZd and URSULA SCHAFER” “Friedrich-Schiller-UniversitatJena, Institut fur Okologie, Arbeitsgruppe Limnologie, Winzerlaer StraJe 10, 0-0774.5 Jena, Germany, and bFriedrich-Schiller-Univer.sitatJenn,lnstitut fiir Ernahrung und Umwelt, Lehrgebiet Lnndschaftsokologie und Naturschutz, DornburgerslraJe 159, 0-07743 Jena, Germany, and ‘Universitut Salzburg, Institut fur Zoologie, HellbrunnerstraJe 34, A-5020 Salzburg, Austria, and dInstitut fur Gewasseriikologie und Binnenjscherei, Alte Fischerhiitte 2, 0-16775 Neuglobsow, Germany ABSTRACT. Detailed data on bacterial and protistan microfossils are presented from a 0.003 mm3 piece of Triassic amber (Schlier- seerit, Upper Triassic period, 220-230 million years old). This microcenosis, which actually existed as such within a very small, probably semiaquatic habitat, included the remains of about two bacteria species, four fungi (Palaeodikaryomyces baueri, Pithomyces-like conidia, capillitium-like hyphae, yeast cells) two euglenoids, two chlamydomonas (Chlamydomonas sp., Chloromonas sp.), two coccal green microalgae (Chlorellu sp., Chorzcystis-like cells), one zooflagellate, three testate amoebae (Centropyxis aculeata var. oblonga-like, Cyclopyxis eurystoma-like, Hyalosphenia baueri n. sp.), seven ciliates (Pseudoplatyophrya nana-like, Mykophagophrys rerricola-like, Cvrtolophosis mucicola-like, Paracondylostoma
    [Show full text]
  • Plasmodium Falciparum Is Not As Lonely As Previously Considered
    AUTOPHAGIC PUNCTUM ARTICLE ADDENDUM Virulence 2:1, 71-76; January/February 2011; © 2011 Landes Bioscience Plasmodium falciparum is not as lonely as previously considered Franck Prugnolle,1,* Francisco Ayala,2 Benjamin Ollomo,3 Céline Arnathau,1 Patrick Durand1 and François Renaud1,* 1Laboratoire MIVEGEC; UM1-CNRS 5290-IRD 224, IRD Montpellier, France; 2Department of Ecology and Evolutionary Biology; University of California; Irvine, CA USA; 3Centre International de Recherches Médicales de Franceville; Franceville, Gabon ntil very recently, only one species The identification of Plasmodium spe- U(P. reichenowi) was known to be a cies circulating in great apes in Africa phylogenetic sister lineage of P. falciparum, was primarily done during the first half the main malignant agent of human of the twentieth century, on the basis of malaria. In 2009 and 2010, new studies morphological features.1 This approach have revealed the existence of several new has several limitations.4 First, phenotypic phylogenetic species related to this deadly plasticity can lead to incorrect identifica- parasite and infecting chimpanzees and tions. Second, morphological keys are gorillas in Africa. These discoveries invite often effective only for a particular life us to explore a whole set of new questions, stage which cannot always be observed which we briefly do in this article. or is difficult to be. Finally, and perhaps most important, this approach overlooks The Plasmodium species infecting morphologically cryptic taxa. These limi- humans and non-human primates cluster tations, together with the difficulty to into two distinct phylogenetic lineages collect and manipulate great apes, were (Fig. 1). One of these lineages (in yellow certainly, at least in part, responsible for in Fig.
    [Show full text]
  • PROTISTAS MARINOS Viviana A
    PROTISTAS MARINOS Viviana A. Alder INTRODUCCIÓN plantas y animales. Según este esquema básico, a las plantas les correspondían las características de En 1673, el editor de Philosophical Transac- ser organismos sésiles con pigmentos fotosinté- tions of the Royal Society of London recibió una ticos para la síntesis de las sustancias esenciales carta del anatomista Regnier de Graaf informan- para su metabolismo a partir de sustancias inor- do que un comerciante holandés, Antonie van gánicas (nutrición autótrofa), y de poseer células Leeuwenhoek, había “diseñado microscopios rodeadas por paredes de celulosa. En oposición muy superiores a aquéllos que hemos visto has- a las plantas, les correspondía a los animales los ta ahora”. Van Leeuwenhoek vendía lana, algo- atributos de tener motilidad activa y de carecer dón y otros materiales textiles, y se había visto tanto de pigmentos fotosintéticos (debiendo por en la necesidad de mejorar las lentes de aumento lo tanto procurarse su alimento a partir de sustan- que comúnmente usaba para contar el número cias orgánicas sintetizadas por otros organismos) de hebras y evaluar la calidad de fibras y tejidos. como de paredes celulósicas en sus células. Así fue que construyó su primer microscopio de Es a partir de los estudios de Georg Gol- lente única: simple, pequeño, pero con un poder dfuss (1782-1848) que estos diminutos organis- de magnificación de hasta 300 aumentos (¡diez mos, invisibles a ojo desnudo, comienzan a ser veces más que sus precursores!). Este magnífico clasificados como plantas primarias
    [Show full text]
  • Pusillus Poseidon's Guide to Protozoa
    Pusillus Poseidon’s guide to PROTOZOA GENERAL NOTES ABOUT PROTOZOANS Protozoa are also called protists. The word “protist” is the more general term and includes all types of single-celled eukaryotes, whereas “protozoa” is more often used to describe the protists that are animal-like (as opposed to plant-like or fungi-like). Protists are measured using units called microns. There are 1000 microns in one millimeter. A millimeter is the smallest unit on a metric ruler and can be estimated with your fingers: The traditional way of classifying protists is by the way they look (morphology), by the way they move (mo- tility), and how and what they eat. This gives us terms such as ciliates, flagellates, ameboids, and all those colors of algae. Recently, the classification system has been overhauled and has become immensely complicated. (Infor- mation about DNA is now the primary consideration for classification, rather than how a creature looks or acts.) If you research these creatures on Wikipedia, you will see this new system being used. Bear in mind, however, that the categories are constantly shifting as we learn more and more about protist DNA. Here is a visual overview that might help you understand the wide range of similarities and differences. Some organisms fit into more than one category and some don’t fit well into any category. Always remember that classification is an artificial construct made by humans. The organisms don’t know anything about it and they don’t care what we think! CILIATES Eats anything smaller than Blepharisma looks slightly pink because it Blepharisma itself, even smaller Bleph- makes a red pigment that senses light (simi- arismas.
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]