Zoologica Scripta
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novel Contributions to the Peritrich Family Vaginicolidae
applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2019, 187, 1–30. With 13 figures. Novel contributions to the peritrich family Vaginicolidae (Protista: Ciliophora), with morphological and Downloaded from https://academic.oup.com/zoolinnean/article-abstract/187/1/1/5434147/ by Ocean University of China user on 08 October 2019 phylogenetic analyses of poorly known species of Pyxicola, Cothurnia and Vaginicola BORONG LU1, LIFANG LI2, XIAOZHONG HU1,5,*, DAODE JI3,*, KHALED A. S. AL-RASHEID4 and WEIBO SONG1,5 1Institute of Evolution and Marine Biodiversity, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China 2Marine College, Shandong University, Weihai 264209, China 3School of Ocean, Yantai University, Yantai 264005, China 4Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 5Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China Received 29 September 2018; revised 26 December 2018; accepted for publication 13 February 2019 The classification of loricate peritrich ciliates is difficult because of an accumulation of several taxonomic problems. In the present work, three poorly described vaginicolids, Pyxicola pusilla, Cothurnia ceramicola and Vaginicola tincta, were isolated from the surface of two freshwater/marine algae in China. In our study, the ciliature of Pyxicola and Vaginicola is revealed for the first time, demonstrating the taxonomic value of infundibular polykineties. The small subunit rDNA, ITS1-5.8S rDNA-ITS2 region and large subunit rDNA of the above species were sequenced for the first time. Phylogenetic analyses based on these genes indicated that Pyxicola and Cothurnia are closely related. -
Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed. -
The Macronuclear Genome of Stentor Coeruleus Reveals Tiny Introns in a Giant Cell
University of Pennsylvania ScholarlyCommons Departmental Papers (Biology) Department of Biology 2-20-2017 The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Mark M. Slabodnick University of California, San Francisco J. G. Ruby University of California, San Francisco Sarah B. Reiff University of California, San Francisco Estienne C. Swart University of Bern Sager J. Gosai University of Pennsylvania See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/biology_papers Recommended Citation Slabodnick, M. M., Ruby, J. G., Reiff, S. B., Swart, E. C., Gosai, S. J., Prabakaran, S., Witkowska, E., Larue, G. E., Gregory, B. D., Nowacki, M., Derisi, J., Roy, S. W., Marshall, W. F., & Sood, P. (2017). The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell. Current Biology, 27 (4), 569-575. http://dx.doi.org/10.1016/j.cub.2016.12.057 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/biology_papers/49 For more information, please contact [email protected]. The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Abstract The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities—if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3]. -
ABSTRACT Title of Dissertation: IDENTIFICATION, LIFE HISTORY
ABSTRACT Title of Dissertation: IDENTIFICATION, LIFE HISTORY, AND ECOLOGY OF PERITRICH CILIATES AS EPIBIONTS ON CALANOID COPEPODS IN THE CHESAPEAKE BAY Laura Roberta Pinto Utz, Doctor of Philosophy, 2003 Dissertation Directed by: Professor Eugene B. Small Department of Biology Adjunct Professor D. Wayne Coats Department of Biology and Smithsonian Environmental Research Center Epibiotic relationships are a widespread phenomenon in marine, estuarine and freshwater environments, and include diverse epibiont organisms such as bacteria, protists, rotifers, and barnacles. Despite its wide occurrence, epibiosis is still poorly known regarding its consequences, advantages, and disadvantages for host and epibiont. Most studies performed about epibiotic communities have focused on the epibionts’ effects on host fitness, with few studies emphasizing on the epibiont itself. The present work investigates species composition, spatial and temporal fluctuations, and aspects of the life cycle and attachment preferences of Peritrich epibionts on calanoid copepods in Chesapeake Bay, USA. Two species of Peritrich ciliates (Zoothamnium intermedium Precht, 1935, and Epistylis sp.) were identified to live as epibionts on the two most abundant copepod species (Acartia tonsa and Eurytemora affinis) during spring and summer months in Chesapeake Bay. Infestation prevalence was not significantly correlated with environmental variables or phytoplankton abundance, but displayed a trend following host abundance. Investigation of the life cycle of Z. intermedium suggested that it is an obligate epibiont, being unable to attach to non-living substrates in the laboratory or in the field. Formation of free-swimming stages (telotrochs) occurs as a result of binary fission, as observed for other peritrichs, and is also triggered by death or molt of the crustacean host. -
PROTISTAS MARINOS Viviana A
PROTISTAS MARINOS Viviana A. Alder INTRODUCCIÓN plantas y animales. Según este esquema básico, a las plantas les correspondían las características de En 1673, el editor de Philosophical Transac- ser organismos sésiles con pigmentos fotosinté- tions of the Royal Society of London recibió una ticos para la síntesis de las sustancias esenciales carta del anatomista Regnier de Graaf informan- para su metabolismo a partir de sustancias inor- do que un comerciante holandés, Antonie van gánicas (nutrición autótrofa), y de poseer células Leeuwenhoek, había “diseñado microscopios rodeadas por paredes de celulosa. En oposición muy superiores a aquéllos que hemos visto has- a las plantas, les correspondía a los animales los ta ahora”. Van Leeuwenhoek vendía lana, algo- atributos de tener motilidad activa y de carecer dón y otros materiales textiles, y se había visto tanto de pigmentos fotosintéticos (debiendo por en la necesidad de mejorar las lentes de aumento lo tanto procurarse su alimento a partir de sustan- que comúnmente usaba para contar el número cias orgánicas sintetizadas por otros organismos) de hebras y evaluar la calidad de fibras y tejidos. como de paredes celulósicas en sus células. Así fue que construyó su primer microscopio de Es a partir de los estudios de Georg Gol- lente única: simple, pequeño, pero con un poder dfuss (1782-1848) que estos diminutos organis- de magnificación de hasta 300 aumentos (¡diez mos, invisibles a ojo desnudo, comienzan a ser veces más que sus precursores!). Este magnífico clasificados como plantas primarias -
Protist Phylogeny and the High-Level Classification of Protozoa
Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane). -
Protozoologica
Acta Protozool. (2014) 53: 207–213 http://www.eko.uj.edu.pl/ap ACTA doi:10.4467/16890027AP.14.017.1598 PROTOZOOLOGICA Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA Micah DUNTHORN1, Meaghan HALL2, Wilhelm FOISSNER3, Thorsten STOECK1 and Laura A. KATZ2,4 1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; 3FB Organismische Biologie, Universität Salzburg, A-5020 Salzburg, Austria; 4Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Abstract. Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, al- though support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences. -
Systematic Index
Systematic Index The systematic index contains the scientific names of all taxa mentioned in the book e.g., Anisonema sp., Anopheles and the vernacular names of protists, for example, tintinnids. The index is two-sided, that is, species ap - pear both with the genus-group name first e.g., Acineria incurvata and with the species-group name first ( incurvata , Acineria ). Species and genera, valid and invalid, are in italics print. The scientific name of a subgenus, when used with a binomen or trinomen, must be interpolated in parentheses between the genus-group name and the species- group name according to the International Code of Zoological Nomenclature. In the following index, these paren - theses are omitted to simplify electronic sorting. Thus, the name Apocolpodidium (Apocolpodidium) etoschense is list - ed as Apocolpodidium Apocolpodidium etoschense . Note that this name is also listed under “ Apocolpodidium etoschense , Apocolpodidium ” and “ etoschense , Apocolpodidium Apocolpodidium ”. Suprageneric taxa, communities, and vernacular names are represented in normal type. A boldface page number indicates the beginning of a detailed description, review, or discussion of a taxon. f or ff means include the following one or two page(s), respectively. A Actinobolina vorax 84 Aegyriana paroliva 191 abberans , Euplotes 193 Actinobolina wenrichii 84 aerophila , Centropyxis 87, 191 abberans , Frontonia 193 Actinobolonidae 216 f aerophila sphagnicola , Centropyxis 87 abbrevescens , Deviata 140, 200, 212 Actinophrys sol 84 aerophila sylvatica -
Nanosims and Tissue Autoradiography Reveal Symbiont Carbon fixation and Organic Carbon Transfer to Giant Ciliate Host
The ISME Journal (2018) 12:714–727 https://doi.org/10.1038/s41396-018-0069-1 ARTICLE NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host 1 2 1 3 4 Jean-Marie Volland ● Arno Schintlmeister ● Helena Zambalos ● Siegfried Reipert ● Patricija Mozetič ● 1 4 2 1 Salvador Espada-Hinojosa ● Valentina Turk ● Michael Wagner ● Monika Bright Received: 23 February 2017 / Revised: 3 October 2017 / Accepted: 9 October 2017 / Published online: 9 February 2018 © The Author(s) 2018. This article is published with open access Abstract The giant colonial ciliate Zoothamnium niveum harbors a monolayer of the gammaproteobacteria Cand. Thiobios zoothamnicoli on its outer surface. Cultivation experiments revealed maximal growth and survival under steady flow of high oxygen and low sulfide concentrations. We aimed at directly demonstrating the sulfur-oxidizing, chemoautotrophic nature of the symbionts and at investigating putative carbon transfer from the symbiont to the ciliate host. We performed pulse-chase incubations with 14C- and 13C-labeled bicarbonate under varying environmental conditions. A combination of tissue autoradiography and nanoscale secondary ion mass spectrometry coupled with transmission electron microscopy was used to fi 1234567890();,: follow the fate of the radioactive and stable isotopes of carbon, respectively. We show that symbiont cells x substantial amounts of inorganic carbon in the presence of sulfide, but also (to a lesser degree) in the absence of sulfide by utilizing internally stored sulfur. Isotope labeling patterns point to translocation of organic carbon to the host through both release of these compounds and digestion of symbiont cells. The latter mechanism is also supported by ultracytochemical detection of acid phosphatase in lysosomes and in food vacuoles of ciliate cells. -
Ciliophora, Heterotrichea
Phylogeny of two poorly known ciliate genera (Ciliophora, Heterotrichea), with notes on the redenition of Gruberia uninucleata Kahl, 1932 and Linostomella vorticella (Ehrenberg, 1833) based on populations found in China Yong Chi Ocean University of China Yuqing Li Ocean University of China Qianqian Zhang Chinese Academy of Sciences Mingzhen Ma Ocean University of China Alan Warren Natural History Museum Xiangrui Chen ( [email protected] ) Weibo Song Ocean University of China Research article Keywords: Heterotrichous, Morphology, Phylogeny, SSU rDNA Posted Date: February 3rd, 2020 DOI: https://doi.org/10.21203/rs.2.22447/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 2nd, 2020. See the published version at https://doi.org/10.1186/s12866-020-01879-4. Page 1/27 Abstract Background Heterotrichous ciliates are common members of microeukaryote communities which play important roles in the transfer of material and energy ow in aquatic food webs. This group has been known over two centuries due to their large body size and cosmopolitan distribution. Nevertheless, species identication and phylogenetic relationships of heterotrichs remain challenging due to the lack of accurate morphological information and insucient molecular data. Results The morphology and phylogeny of two poorly known heterotrichous ciliates, Gruberia uninucleata Kahl, 1932 and Linostomella vorticella (Ehrenberg, 1833) Aescht in Foissner et al. , 1999, were investigated based on their living morphology, infraciliature, and small subunit (SSU) rDNA sequence data. Based on a combination of previous and present studies, detailed morphometric data and the improved diagnoses of both species are supplied here. -
The Ecology of Marine Microbenthos Ii. the Food of Marine Benthic Ciliates
OPHELIA, 5: 73-121 (May 1968). THE ECOLOGY OF MARINE MICROBENTHOS II. THE FOOD OF MARINE BENTHIC CILIATES TOM FENCHEL Marine Biological Laboratory, 3000 Helsinger, Denmark CONTENTS Abstract 73 Introduction 73 Material and methods. .. .......... .. 74 General part. ............................ .. 75 The mechanical properties of the food. 75 Specificity in choice of food. ............. .. 78 Special part. ............................... 84 Orcer Gymnostomatida .. 84 Order Trichostomatida .................•.. 97 Order Hymenostomatida " 100 Order Heterotrichida 108 Order Odontostomatida 113 Order Oligotrichida I 13 Order Hypotrichida , 114 References. .............................. .. I 19 ABSTRACT The paper brings together knowledge on the food of marine benthic ciliates with the exception of sessile forms. References are given to 260 species of which 90 have been studied by the author. The classification of ciliates according to their natural food and the specificity in choice of food is discussed and the ecological significance of discrimination of food according to size is emphasized. INTRODUCTION In a previous study (Fenchel, 1967) the quantitative importance of protozoa - especially ciliates - in marine microbenthos was investigated and it was concluded Downloaded by [Copenhagen University Library], [Mr Tom Fenchel] at 01:12 22 December 2012 that the ciliates play an important role in certain sediments, viz. fine sands and sulphureta. A further analysis of the structure and function of the microfauna communities requires knowledge of factors which influence the animal popula- tions. Of these food is probably one of the most important. Thus Faure-Fremiet 74 TOM FENCHEL (1950a, b, 1951a), Fenchel & Jansson (1966), Lackey (1961), Noland (1925), Perkins (1958), Picken (1937), Stout (1956) and Webb (1956) all stress the im- portance of the food factor for the structure of protozoan communities. -
Report on the 2015 Workshop of the International Research
Acta Protozool. (2016) 55: 119–121 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.16.011.4946 PROTOZOOLOGICA Report on the 2015 workshop of the International Research Coordination Network for Biodiversity of Ciliates (IRCN-BC) held at Ocean University of China (OUC), Qingdao, China, 19–21 October 2015 Alan WARREN1, Nettie McMILLER2, Lúcia SAFI3, Xiaozhong HU4, Jason TARKINGTON5 1 Department of Life Sciences, Natural History Museum, London SW7 5BD, UK; 2 North Carolina Central University, Durham, NC27707, USA; 3 Virginia Institute of Marine Science, Gloucester Point, VA23062, USA; 4 Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; 5Department of Biology and Biochemistry, University of Houston, Houston, TX77023, USA The 4th workshop of the IRCN-BC, entitled ‘Cur- were recorded for the first time in the South China Sea rent Trends, Collaborations and Future Directions including two new strombidiid genera. The coastal wa- in Biodiversity Studies of Ciliates’ and convened by ters of the South China Sea are also the location of the Weibo Song and colleagues at OUC, was attended by last remaining mangrove wetlands in China. Xiaofeng 53 participants from 12 countries. The workshop com- Lin (South China Normal University) reported the dis- prised oral presentations and posters grouped into three covery of > 200 ciliate species, including 60 new spe- themes reflecting the three dimensions of biodiversity, cies and one new family, from three such wetlands over namely: taxonomic diversity, ecological diversity and the past decade, whereas previously < 20 spp. had been genetic diversity. The main aims of the workshop were recorded from all of China’s mangroves.