Multiple Drivers of Decline in the Global Status of Freshwater Crayfish (Decapoda: Astacidea)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Alien Crayfish Species in Central Europe
NEW ALIEN CRAYFISH SPECIES IN CENTRAL EUROPE Introduction pathways, life histories, and ecological impacts DISSERTATION zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm vorgelegt von Christoph Chucholl aus Rosenheim Ulm 2012 NEW ALIEN CRAYFISH SPECIES IN CENTRAL EUROPE Introduction pathways, life histories, and ecological impacts DISSERTATION zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm vorgelegt von Christoph Chucholl aus Rosenheim Ulm 2012 Amtierender Dekan: Prof. Dr. Axel Groß Erstgutachter: Prof. Dr. Manfred Ayasse Zweitgutachter: Prof. apl. Dr. Gerhard Maier Tag der Prüfung: 16.7.2012 Cover picture: Orconectes immunis male (blue color morph) (photo courtesy of Dr. H. Bellmann) Table of contents Part 1 – Summary Introduction ............................................................................................................................ 1 Invasive alien species – a global menace ....................................................................... 1 “Invasive” matters .......................................................................................................... 2 Crustaceans – successful invaders .................................................................................. 4 The case of alien crayfish in Europe .............................................................................. 5 New versus Old alien crayfish ....................................................................................... -
Ecosystem Profile Madagascar and Indian
ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra, -
Crayfishes and Shrimps) of Arkansas with a Discussion of Their Ah Bitats Raymond W
Journal of the Arkansas Academy of Science Volume 34 Article 9 1980 Inventory of the Decapod Crustaceans (Crayfishes and Shrimps) of Arkansas with a Discussion of Their aH bitats Raymond W. Bouchard Southern Arkansas University Henry W. Robison Southern Arkansas University Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Bouchard, Raymond W. and Robison, Henry W. (1980) "Inventory of the Decapod Crustaceans (Crayfishes and Shrimps) of Arkansas with a Discussion of Their aH bitats," Journal of the Arkansas Academy of Science: Vol. 34 , Article 9. Available at: http://scholarworks.uark.edu/jaas/vol34/iss1/9 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 34 [1980], Art. 9 AN INVENTORY OF THE DECAPOD CRUSTACEANS (CRAYFISHES AND SHRIMPS) OF ARKANSAS WITH A DISCUSSION OF THEIR HABITATS i RAYMOND W. BOUCHARD 7500 Seaview Avenue, Wildwood Crest, New Jersey 08260 HENRY W. ROBISON Department of Biological Sciences Southern Arkansas University, Magnolia, Arkansas 71753 ABSTRACT The freshwater decapod crustaceans of Arkansas presently consist of two species of shrimps and 51 taxa of crayfishes divided into 47 species and four subspecies. -
Decapoda: Cambaridae) of Arkansas Henry W
Journal of the Arkansas Academy of Science Volume 71 Article 9 2017 An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas Henry W. Robison Retired, [email protected] Keith A. Crandall George Washington University, [email protected] Chris T. McAllister Eastern Oklahoma State College, [email protected] Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Robison, Henry W.; Crandall, Keith A.; and McAllister, Chris T. (2017) "An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas," Journal of the Arkansas Academy of Science: Vol. 71 , Article 9. Available at: http://scholarworks.uark.edu/jaas/vol71/iss1/9 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas Cover Page Footnote Our deepest thanks go to HWR’s numerous former SAU students who traveled with him in search of crayfishes on many fieldtrips throughout Arkansas from 1971 to 2008. Personnel especially integral to this study were C. -
Comparative Phylogeography and the Population Genetics of Three Endangered Freshwater Euastacus Spp
Comparative Phylogeography and the Population Genetics of Three Endangered Freshwater Euastacus spp. Crayfish and the Commensal Temnosewellia flatworms; from Mountaintops in Queensland, Australia Author Hurry, Charlotte Published 2016 Thesis Type Thesis (PhD Doctorate) School Griffith School of Environment DOI https://doi.org/10.25904/1912/461 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/367606 Griffith Research Online https://research-repository.griffith.edu.au Comparative phylogeography and the population genetics of three endangered freshwater Euastacus spp. crayfish and the commensal Temnosewellia flatworms; from mountaintops in Queensland, Australia Charlotte Hurry Bachelor of Science (Hons) Griffith School of Environment Griffith Sciences Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy October 2015 Q: Why wouldn't the crayfish share? A: Because he was a little shellfish! Synopsis The overall aim of this project was to consider several freshwater invertebrates that are restricted both geographically and climatically to determine their population genetic structure, population distribution and population viability. The study was set in a framework of genetic analysis as genetics can be used to answer a whole suite of conservation focused questions. Specifically, the study concentrated on the population dynamics of three freshwater crayfish from the genus Euastacus: E. hystricosus, E. urospinosus and E. robertsi. Also, in this study I explored the role of two commensal flatworms as proxy species, to aid in disentangling the population structure of their crayfish hosts. These flatworms were Temnosewellia batiola, which is specific to E. hystricosus and Temnosewellia albata, which is specific to E. -
Report of a Mass Mortality of Euastacus Valentulus (Decapoda
Report of a mass mortality of Euastacus valentulus (Decapoda: Parastacidae) in southeast Queensland, Australia, with a discussion of the potential impacts of climate change induced severe weather events on freshwater crayfish species Author Furse, James, Coughran, Jason, Wild, Clyde Published 2012 Journal Title Crustacean Research Copyright Statement © 2012 The Carcinological Society of Japan. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/50569 Link to published version http://rose.hucc.hokudai.ac.jp/~s16828/cr/e-site/Top_page.html Griffith Research Online https://research-repository.griffith.edu.au CRUSTACEAN RESEARCH, SPECIAL NUMBER 7: 15–24, 2012 Report of a mass mortality of Euastacus valentulus (Decapoda: Parastacidae) in southeast Queensland, Australia, with a discussion of the potential impacts of climate change induced severe weather events on freshwater crayfish species James M. Furse, Jason Coughran and Clyde H. Wild Abstract.—In addition to predicted changes Leckie, 2007) including in “vast” numbers in climate, more frequent and intense severe (Viosca, 1939; Olszewski, 1980). Mass weather events (e.g. tropical cyclones, severe emersions and mortalities have also been storms and droughts) have been identified as recorded in marine crayfish in hypoxic serious and emerging threats to the World’s conditions (Jasus lalandii H. Milne Edwards) freshwater crayfish. This paper documents a (Cockroft, 2001). It is also known that some single, high intensity rainfall event (in an area freshwater crayfish species are particularly known for phenomenal rainfall events) that led sensitive to severe flooding events (Parkyn & to a flash flood and mass mortality of Euastacus Collier, 2004; Meyer et al., 2007) and mass valentulus in the Numinbah Valley of southeast emersions/strandings have been reported in Queensland in 2008. -
South Carolina Department of Natural Resources
FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas. -
Checklist of the Crayfish and Freshwater Shrimp (Decapoda) of Indiana
2001. Proceedings of the Indiana Academy of Science 110:104-110 CHECKLIST OF THE CRAYFISH AND FRESHWATER SHRIMP (DECAPODA) OF INDIANA Thomas P. Simon: U.S. Fish and Wildlife Service, 620 South Walker Street, Bloomington, Indiana 47401 ABSTRACT. Crayfish and freshwater shrimp are members of the order Decapoda. All crayfish in In- diana are members of the family Cambaridae, while the freshwater shrimp belong to Palaemonidae. Two genera of freshwater shrimps, each represented by a single species, occur in Indiana. Palaemonetes ka- diakensis and Macrobrachium ohione are lowland forms. Macrobrachium ohione occurs in the Ohio River drainage, while P. kadiakensis occurs statewide in wetlands and lowland areas including inland lakes. Currently, 21 crayfish taxa, including an undescribed form of Cambarus diogenes, are found in Indiana. Another two species are considered hypothetical in occurrence. Conservation status is recommended for the Ohio shrimp Macrobrachium ohione, Indiana crayfish Orconectes indianensis, and both forms of the cave crayfish Orconectes biennis inennis and O. i. testii. Keywords: Cambaridae, Palaemonidae, conservation, ecology The crayfish and freshwater shrimp belong- fish is based on collections between 1990 and ing to the order Decapoda are among the larg- 2000. Collections were made at over 3000 lo- est of Indiana's aquatic invertebrates. Crayfish calities statewide, made in every county of the possess five pair of periopods, the first is mod- state, but most heavily concentrated in south- ified into a large chela and dactyl (Pennak ern Indiana, where the greatest diversity of 1978; Hobbs 1989). The North American species occurs. families, crayfish belong to two Astacidae and The current list of species is intended to Cambaridae with all members east of the Mis- provide a record of the extant and those ex- sissippi River belong to the family Cambari- tirpated from the fauna of Indiana over the last dae (Hobbs 1974a). -
Goldstein Et Al 2019
Journal of Crustacean Biology Advance Access published 24 August 2019 Journal of Crustacean Biology The Crustacean Society Journal of Crustacean Biology 39(5), 574–581, 2019. doi:10.1093/jcbiol/ruz055 Downloaded from https://academic.oup.com/jcb/article-abstract/39/5/574/5554142/ by University of New England Libraries user on 04 October 2019 Development in culture of larval spotted spiny lobster Panulirus guttatus (Latreille, 1804) (Decapoda: Achelata: Palinuridae) Jason S. Goldstein1, Hirokazu Matsuda2, , Thomas R. Matthews3, Fumihiko Abe4, and Takashi Yamakawa4, 1Wells National Estuarine Research Reserve, Maine Coastal Ecology Center, 342 Laudholm Farm Road, Wells, ME 04090 USA; 2Mie Prefecture Fisheries Research Institute, 3564-3, Hamajima, Shima, Mie 517-0404 Japan; 3Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 2796 Overseas Hwy, Suite 119, Marathon, FL 33050 USA; and 4Department of Aquatic Bioscience, Graduate School of Agricultual and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 Japan HeadA=HeadB=HeadA=HeadB/HeadA Correspondence: J.S. Goldstein: e-mail: [email protected] HeadB=HeadC=HeadB=HeadC/HeadB (Received 15 May 2019; accepted 11 July 2019) HeadC=HeadD=HeadC=HeadD/HeadC Ack_Text=DisHead=Ack_Text=HeadA ABSTRACT NList_lc_rparentheses_roman2=Extract1=NList_lc_rparentheses_roman2=Extract1_0 There is little information on the early life history of the spotted spiny lobster Panulirus guttatus (Latreille, 1804), an obligate reef resident, despite its growing importance as a fishery re- BOR_HeadA=BOR_HeadB=BOR_HeadA=BOR_HeadB/HeadA source in the Caribbean and as a significant predator. We cultured newly-hatched P. guttatus BOR_HeadB=BOR_HeadC=BOR_HeadB=BOR_HeadC/HeadB larvae (phyllosomata) in the laboratory for the first time, and the growth, survival, and mor- BOR_HeadC=BOR_HeadD=BOR_HeadC=BOR_HeadD/HeadC phological descriptions are reported through 324 days after hatch (DAH). -
Phylogenetic Evidence from Freshwater Crayfishes That Cave Adaptation Is Not an Evolutionary Dead- End David B
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@Florida International University Florida International University FIU Digital Commons Center for Coastal Oceans Research Faculty Institute of Water and Enviornment Publications 9-20-2017 Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead- end David B. Stern George Washington University Jesse Breinholt University of Florida Carlos Pedrazaz-Lara Universidad Nacional Autónoma de México Marilu Lopez-Mejia Universidad de Quintana Roo Christopher L. Owen George Washington University See next page for additional authors Follow this and additional works at: https://digitalcommons.fiu.edu/merc_fac Part of the Life Sciences Commons Recommended Citation Stern, David B.; Breinholt, Jesse; Pedrazaz-Lara, Carlos; Lopez-Mejia, Marilu; Owen, Christopher L.; Bracken-Grissom, Heather D.; Fetzner, James W. Jr.; and Crandall, Keith A., "Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead-end" (2017). Center for Coastal Oceans Research Faculty Publications. 26. https://digitalcommons.fiu.edu/merc_fac/26 This work is brought to you for free and open access by the Institute of Water and Enviornment at FIU Digital Commons. It has been accepted for inclusion in Center for Coastal Oceans Research Faculty Publications by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Authors David B. Stern, Jesse Breinholt, Carlos Pedrazaz-Lara, Marilu Lopez-Mejia, Christopher L. Owen, Heather D. Bracken-Grissom, James W. Fetzner Jr., and Keith A. Crandall This article is available at FIU Digital Commons: https://digitalcommons.fiu.edu/merc_fac/26 BRIEF COMMUNICATION doi:10.1111/evo.13326 Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead-end David B. -
F a C T S H E E T F a C T S H E
LANDHOLDER SERIES -PROPERTY PLANNING- Threatened Species - Invertebrates Invertebrates are often overlooked but Snails and Starfish) are listed as threatened, Tasmania has a wide range of species, many including freshwater crayfish species. Threats of them endemic to Tasmania and many to invertebrates include loss of habitat, with very limited distribution. In all 121 species impact of livestock, changes to hydrology of invertebrate (Worms, Spiders, Crustacea, and invasive pests such as the European Butterflies and Moths, Caddisflies, Beetles, wasp put Tasmania’s butterflies at risk. Tasmania has 15 species of burrowing crayfish between the far northeast coast and south of Macquarie Harbour in the west inhabiting swampy areas and along streams. A few of these species FACT SHEET have large distributions and are quite adaptable, while others such as the threatened Burnie burrowing crayfish and Central North burrowing crayfish have very restricted distributions. These threatened species are at risk from loss of habitat, impact of livestock, changes to hydrology and water pollution. Maintaining a good fenced native vegetation buffer between cropping and pasture land and waterways reduces pollution andsedimentation within the waterway as well as protecting the Burnie borrowing crayfish riparian zone and burrowing crayfish from Image: Joanna Lyall trampling by livestock. The largest freshwater invertebrate in the world (potentially growing to 6kg), the very slow growing Giant freshwater lobster is another of our threatened species in the Cradle Coast region. It is threatened by loss of habitat through farming and forestry activities that cause siltation, disturbance of river banks and streamside vegetation, water temperature changes and removal of in-stream woody debris. -
First Report of Golden Crayfish Faxonius Luteus (Creaser, 1933) in South Dakota
BioInvasions Records (2021) Volume 10, Issue 1: 149–157 CORRECTED PROOF Rapid Communication First report of golden crayfish Faxonius luteus (Creaser, 1933) in South Dakota Gene Galinat1,*, Mael Glon2 and Brian Dickerson3 1South Dakota Department of Game, Fish and Parks, Rapid City, South Dakota, USA 2The Ohio State University Museum of Biological Diversity, Columbus, Ohio, USA 3U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, Rapid City, SD, 57702, USA Author e-mails: [email protected] (GG), [email protected] (MG), [email protected] (BD) *Corresponding author Citation: Galinat G, Glon M, Dickerson B (2021) First report of golden crayfish Abstract Faxonius luteus (Creaser, 1933) in South Dakota. BioInvasions Records 10(1): 149– The golden crayfish, Faxonius luteus, was identified for the first time in the Black 157, https://doi.org/10.3391/bir.2021.10.1.16 Hills of South Dakota. We collected specimens from three reservoirs and one stream in two adjacent watersheds. The species appears to be established with varying Received: 7 February 2020 sizes and Form I and Form II males being observed. Records show the home range Accepted: 20 August 2020 of F. luteus to be over 600 km east of the Black Hills. The lack of historic information Published: 1 December 2020 on aquatic fauna in the area complicates determining what effects F. luteus may Handling editor: David Hudson have on native and other non-native fauna in the area. Thematic editor: Karolina Bącela- Spychalska Key words: bait, baitfish, Black Hills, non-native Copyright: © Galinat et al.