Checklist of the Crayfish and Freshwater Shrimp (Decapoda) of Indiana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amphidromy in Shrimps: a Life Cycle Between Rivers and the Sea
Lat. Am. J. Aquat. Res., 41(4): 633-650, 2013 Amphidromy in shrimps: a life cycle 633 “Studies on Freshwater Decapods in Latin America” Ingo S. Wehrtmann & Raymond T. Bauer (Guest Editors) DOI: 103856/vol41-issue4-fulltext-2 Review Amphidromy in shrimps: a life cycle between rivers and the sea Raymond T. Bauer1 1Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-2451 USA ABSTRACT. Amphidromy is a diadromous life history pattern, common in tropical and subtropical freshwater caridean shrimps, in which adults live, breed and spawn small-sized embryos in freshwater but have extended larval development (ELD) in marine waters. Most completely freshwater species spawn large embryos with either direct or abbreviated larval development (ALD). An important benefit of amphidromy is dispersal among river systems via marine larvae, which increases their access to alternative habitats. Thus, amphidromous species have much broader geographic distributions than closely related completely freshwater ones with ALD. ALD and freshwater ELD species appear to have evolved from amphidromous species with marine ancestors. Delivery of larvae to the sea in many amphidromous species is accomplished by upstream hatching and river drift of larvae to the sea. In other species, the females themselves apparently migrate down to marine waters to spawn. After development, the postlarvae must find a river mouth and migrate upstream to the adult habitat. Migrations occur at night, with juveniles swimming or crawling along the river or stream bank. Larvae are released during the wet or flood season of the year, while juvenile migrations take place during the dry or low-flow season. -
Decapod Crustacean Grooming: Functional Morphology, Adaptive Value, and Phylogenetic Significance
Decapod crustacean grooming: Functional morphology, adaptive value, and phylogenetic significance N RAYMOND T.BAUER Center for Crustacean Research, University of Southwestern Louisiana, USA ABSTRACT Grooming behavior is well developed in many decapod crustaceans. Antennular grooming by the third maxillipedes is found throughout the Decapoda. Gill cleaning mechanisms are qaite variable: chelipede brushes, setiferous epipods, epipod-setobranch systems. However, microstructure of gill cleaning setae, which are equipped with digitate scale setules, is quite conservative. General body grooming, performed by serrate setal brushes on chelipedes and/or posterior pereiopods, is best developed in decapods at a natant grade of body morphology. Brachyuran crabs exhibit less body grooming and virtually no specialized body grooming structures. It is hypothesized that the fouling pressures for body grooming are more severe in natant than in replant decapods. Epizoic fouling, particularly microbial fouling, and sediment fouling have been shown r I m ans of amputation experiments to produce severe effects on olfactory hairs, gills, and i.icubated embryos within short lime periods. Grooming has been strongly suggested as an important factor in the coevolution of a rhizocephalan parasite and its anomuran host. The behavioral organization of grooming is poorly studied; the nature of stimuli promoting grooming is not understood. Grooming characters may contribute to an understanding of certain aspects of decapod phylogeny. The occurrence of specialized antennal grooming brushes in the Stenopodidea, Caridea, and Dendrobranchiata is probably not due to convergence; alternative hypotheses are proposed to explain the distribution of this grooming character. Gill cleaning and general body grooming characters support a thalassinidean origin of the Anomura; the hypothesis of brachyuran monophyly is supported by the conservative and unique gill-cleaning method of the group. -
Palaemonetes Kadiakensis Rathbun: Post Embryonic Growth in the Laboratory (Decapoda, Palaemonidae)
PALAEMONETES KADIAKENSIS RATHBUN: POST EMBRYONIC GROWTH IN THE LABORATORY (DECAPODA, PALAEMONIDAE) BY JERRY H. HUBSCHMAN and JO ANN ROSE Department of Biology, Wright State University, Dayton, Ohio 45431, U.S.A. and Franz Theodore Stone Laboratory, Put In Bay, Ohio, U.S.A. INTRODUCTION The study of larval development in decapod Crustacea has become continually refined during the past decade. Historically, the descriptive phases of larval development of marine decapods has been based upon the study of series collected in the plankton. In time, a wide range of species representing a number of decapod orders have been reared from egg to metamorphosis in the laboratory. As a result of this work, much of the variation in size and form observed in the plankton material has also been demonstrable in the laboratory. Five species of Eastern U.S. Palaemonete.r have been reared successfully through metamorphosis in the laboratory. These represent three marine forms: Palaemonete.r vulgaris (Say) and P. pugio Holthuis by Broad (1957a, b) and P. intermedius Holthuis by Broad & Hubschman (1962); and two freshwater species: Palaemonete.r k.adiaken.ri.r Rath- bun by Broad & Hubschman (1960, 1963) and P. paludo.ru.r (Gibbes) by Dobkin (1963). Broad ( 1957b) has demonstrated variation in molting frequency and duration of larval life as a function of diet. It is apparent that the sequence of morpholo- gical and physiological changes leading to metamorphosis bears no direct relation- ship to molting history. Indeed, the control mechanisms involved in both larval processes are not known. In adult shrimp, the initiation of molting is mediated by eyestalk hormones. -
Crayfishes and Shrimps) of Arkansas with a Discussion of Their Ah Bitats Raymond W
Journal of the Arkansas Academy of Science Volume 34 Article 9 1980 Inventory of the Decapod Crustaceans (Crayfishes and Shrimps) of Arkansas with a Discussion of Their aH bitats Raymond W. Bouchard Southern Arkansas University Henry W. Robison Southern Arkansas University Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Bouchard, Raymond W. and Robison, Henry W. (1980) "Inventory of the Decapod Crustaceans (Crayfishes and Shrimps) of Arkansas with a Discussion of Their aH bitats," Journal of the Arkansas Academy of Science: Vol. 34 , Article 9. Available at: http://scholarworks.uark.edu/jaas/vol34/iss1/9 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 34 [1980], Art. 9 AN INVENTORY OF THE DECAPOD CRUSTACEANS (CRAYFISHES AND SHRIMPS) OF ARKANSAS WITH A DISCUSSION OF THEIR HABITATS i RAYMOND W. BOUCHARD 7500 Seaview Avenue, Wildwood Crest, New Jersey 08260 HENRY W. ROBISON Department of Biological Sciences Southern Arkansas University, Magnolia, Arkansas 71753 ABSTRACT The freshwater decapod crustaceans of Arkansas presently consist of two species of shrimps and 51 taxa of crayfishes divided into 47 species and four subspecies. -
Decapoda: Cambaridae) of Arkansas Henry W
Journal of the Arkansas Academy of Science Volume 71 Article 9 2017 An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas Henry W. Robison Retired, [email protected] Keith A. Crandall George Washington University, [email protected] Chris T. McAllister Eastern Oklahoma State College, [email protected] Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Robison, Henry W.; Crandall, Keith A.; and McAllister, Chris T. (2017) "An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas," Journal of the Arkansas Academy of Science: Vol. 71 , Article 9. Available at: http://scholarworks.uark.edu/jaas/vol71/iss1/9 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas Cover Page Footnote Our deepest thanks go to HWR’s numerous former SAU students who traveled with him in search of crayfishes on many fieldtrips throughout Arkansas from 1971 to 2008. Personnel especially integral to this study were C. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
South Carolina Department of Natural Resources
FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas. -
Recommendations for Freshwater Diversion to Louisiana Estuaries
0 0 RECOMMENDATIONS FOR 0 FRESHWATER DIVERSION TO LOUISIANA ESTUARIES EAST OF THE MISSISSIPPI RIVER 0 0 DEPARTMENT OF NATURAL RESOURCES COASTAL MANAGBIIBNT SECTION 0 0 Cover: a A plume of turbid water emanates from Bayou Lamoque as freshwater is diverted from the Mississippi River into the Breton �ound estuary to control salinity levels �nd enhance oyster production (p. 2). _ 0 0 . , 0 n 0 0 0 � 0 0 This document was published at a cost of $3.17 per copy by the Louisiana Department of Natural Resources, P.O. Box 44396, Baton Rouge, Louisiana, for the purpose of carrying out the requirements of the Louisiana Coastal Zone Management Program under the authority of Act 361 of 1979. This material was printed in accordance with 0 the standards for printing by state agencies established pursuant to R.S. 43:31 and was purchased in accordance with the provisions of Title 43 of the Louisiana Revised Statutes. This project was financed through a grant provided under the Coastal Management Act of l9n, amendeci, which is administered by the U.S. Office of Coastal Zone Management, asNational Oceanic and Atmospheric Administration. 0 � 0 0 0 D RECOMMENDATIONS FOR FRESHWATER DIVERSION TO LOUISIANA EAST OF THE MISSISSIPPI RIVER 0 ESTUARIES ( D by J. L. van Beek 0 D. Roberts D. Davis D. Sabins S. M. Gagliano 0 · Coastal Environments, Inc. 0 Baton Rouge, LA 0 This study was funded by: 0 Office of Coastal Zone Management National Oceanic and Atmospheric Administration 0 Department of Commerce · o prepared for: Coastal Management Section a Louisiana Department of Natural Resources G Baton Rouge, Louisiana 0 JUNE 1982 0 0 0 0 TABLE OF CONTENTS 0 CHAPTER IV: SUPPLEMENTAL FRESHWATER REQUIREMENTS List of Phot()S iii .. -
First Report of Golden Crayfish Faxonius Luteus (Creaser, 1933) in South Dakota
BioInvasions Records (2021) Volume 10, Issue 1: 149–157 CORRECTED PROOF Rapid Communication First report of golden crayfish Faxonius luteus (Creaser, 1933) in South Dakota Gene Galinat1,*, Mael Glon2 and Brian Dickerson3 1South Dakota Department of Game, Fish and Parks, Rapid City, South Dakota, USA 2The Ohio State University Museum of Biological Diversity, Columbus, Ohio, USA 3U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, Rapid City, SD, 57702, USA Author e-mails: [email protected] (GG), [email protected] (MG), [email protected] (BD) *Corresponding author Citation: Galinat G, Glon M, Dickerson B (2021) First report of golden crayfish Abstract Faxonius luteus (Creaser, 1933) in South Dakota. BioInvasions Records 10(1): 149– The golden crayfish, Faxonius luteus, was identified for the first time in the Black 157, https://doi.org/10.3391/bir.2021.10.1.16 Hills of South Dakota. We collected specimens from three reservoirs and one stream in two adjacent watersheds. The species appears to be established with varying Received: 7 February 2020 sizes and Form I and Form II males being observed. Records show the home range Accepted: 20 August 2020 of F. luteus to be over 600 km east of the Black Hills. The lack of historic information Published: 1 December 2020 on aquatic fauna in the area complicates determining what effects F. luteus may Handling editor: David Hudson have on native and other non-native fauna in the area. Thematic editor: Karolina Bącela- Spychalska Key words: bait, baitfish, Black Hills, non-native Copyright: © Galinat et al. -
Coastal Clips, No. 11, Fall 2008
Non-Profit Org. Sea Grant Welcomes New Employees U.S. Postage C O A S T A L C L I P S P A I D Coastal Clips is a Louisiana Sea Grant will enjoy working with them, as well.” omnibus proposal, maintaining project Permit No. 733 quarterly publication of No. Fall Baton Rouge, LA the Louisiana Sea Grant 2008 has two new faces in its Robertson is responsible for files and the program’s databases, College Program. administration offices. the program’s day-to-day responding to inquiries Louisiana Sea Grant College Program Katie Lea is assistant to the business operations and from researchers and Sea Grant Building • Baton Rouge, LA 70803-7507 executive director, and Kelly supervising the accounting the public, and planning Robertson is the program’s office. She comes to Sea special events such as From the River to the Sea and Back Again business manager. Grant from the LSU Office the Presidents’ Forum “Katie and Kelly bring of Research and Economic on Meeting Coastal during daylight hours, but these are questions strong skill sets to Sea Development, where she was Challenges. Prior to they hope to answer. Grant and will aid in the a grant/contract specialist. joining Sea Grant, she was “The next step we’re taking in 11our research program’s evolution,” said She earned a master of arts manager and interim grant Sara Conner, is to determine the duration of their nocturnal LSG Executive Director Kelly Robertson degree in education and a manager for LSU’s Center Jodi Caskey swimming, top swimming speeds and how (another of Charles Wilson. -
Arkansas Endemic Biota: an Update with Additions and Deletions H
Journal of the Arkansas Academy of Science Volume 62 Article 14 2008 Arkansas Endemic Biota: An Update with Additions and Deletions H. Robison Southern Arkansas University, [email protected] C. McAllister C. Carlton Louisiana State University G. Tucker FTN Associates, Ltd. Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Botany Commons Recommended Citation Robison, H.; McAllister, C.; Carlton, C.; and Tucker, G. (2008) "Arkansas Endemic Biota: An Update with Additions and Deletions," Journal of the Arkansas Academy of Science: Vol. 62 , Article 14. Available at: http://scholarworks.uark.edu/jaas/vol62/iss1/14 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 62 [2008], Art. 14 The Arkansas Endemic Biota: An Update with Additions and Deletions H. Robison1, C. McAllister2, C. Carlton3, and G. Tucker4 1Department of Biological Sciences, Southern Arkansas University, Magnolia, AR 71754-9354 2RapidWrite, 102 Brown Street, Hot Springs National Park, AR 71913 3Department of Entomology, Louisiana State University, Baton Rouge, LA 70803-1710 4FTN Associates, Ltd., 3 Innwood Circle, Suite 220, Little Rock, AR 72211 1Correspondence: [email protected] Abstract Pringle and Witsell (2005) described this new species of rose-gentian from Saline County glades. -
Molecular Analysis of the Freshwater Prawn Macrobrachium Olfersii (Decapoda, Palaemonidae) Supports the Existence of a Single Species Throughout Its Distribution
Molecular Analysis of the Freshwater Prawn Macrobrachium olfersii (Decapoda, Palaemonidae) Supports the Existence of a Single Species throughout Its Distribution Nata´lia Rossi*, Fernando Luis Mantelatto* Laboratory of Bioecology and Crustacean Systematics (LBSC), Program in Comparative Biology, Department of Biology, Faculty of Philosophy, Science and Letters of Ribeira˜o Preto (FFCLRP), University of Sa˜o Paulo (USP), Ribeira˜o Preto, Sa˜o Paulo, Brazil Abstract Macrobrachium olfersii is an amphidromous freshwater prawn, widespread along the eastern coasts of the Americas. This species shows great morphological modifications during ontogenesis, and several studies have verified the existence of a wide intraspecific variation. Because of this condition, the species is often misidentified, and several synonyms have been documented. To elucidate these aspects, individuals of M. olfersii from different populations along its range of distribution were investigated. The taxonomic limit was established, and the degree of genetic variability of this species was described. We extracted DNA from 53 specimens of M. olfersii, M. americanum, M. digueti and M. faustinum, which resulted in 84 new sequences (22 of 16S mtDNA, 45 of Cythocrome Oxidase I (COI) mtDNA, and 17 of Histone (H3) nDNA). Sequences of three genes (single and concatenated) from these species were used in the Maximum Likelihood and Bayesian Inference phylogenetic analyses and COI sequences from M. olfersii were used in population analysis. The genetic variation was evaluated through the alignment of 554 bp from the 16S, 638 bp from the COI, and 338 bp from the H3. The rates of genetic divergence among populations were lower at the intraspecific level. This was confirmed by the haplotype net, which showed a continuous gene flow among populations.