History of Processor Performance
Total Page:16
File Type:pdf, Size:1020Kb
History of Processor Performance )NTELª8EON ªª'(Z BITª)NTELª8EON ªª'(Z !-$ª/PTERON ªª'(Z )NTELª0ENTIUMª ª'(Z !-$ª!THLON ªª'(Z )NTELª0ENTIUMª))) ªª'(Z !LPHAª! ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª! ªª'(Z 0OWER0#ª ª'(Z !LPHAª ªª'(Z (0ª0! 2)3# ªª'(Z )"-ª23 YEAR 0ERFORMANCEªVS6!8 -)03ª-ª -)03ª- 3UN 6!8ª 6!8 YEAR 6!8 &)'52%ää 'ROWTHäINäPROCESSORäPERFORMANCEäSINCEäTHEäMID S 4HISäCHARTäPLOTSäPERFORMANCEäRELATIVEäTOäTHEä6!8ää ASäMEASUREDäBYäTHEä30%#INTäBENCHMARKSäSEEä3ECTIONä ä0RIORäTOäTHEäMID S äPROCESSORäPERFORMANCEäGROWTHäWASäLARGELYäTECHNOLOGY DRIVENäANDäAVERAGEDäABOUTääPERäYEARä4HEäINCREASEäINäGROWTHäTOäABOUTääSINCEäTHENäISäATTRIBUTABLEäTOäMOREäADVANCEDäARCHITECTURALäANDä ORGANIZATIONALäIDEASä"Yä äTHISäGROWTHäLEDäTOä AäDIFFERENCEäINäPERFORMANCEäOFäABOUTäAäFACTORäOFäSEVENä0ERFORMANCEäFORämäOATING POINT ORIENTEDäCALCULATIONSäHASäINCREASEDäEVENäFASTERä3INCEä äTHEäLIMITSäOFäPOWER äAVAILABLEäINSTRUCTION LEVELäPARALLELISM äANDäLONGäMEMORYäLATENCYä HAVEäSLOWEDäUNIPROCESSORäPERFORMANCEäRECENTLY äTOäABOUTääPERäYEARä#OPYRIGHTäÚää%LSEVIER ä)NCä!LLäRIGHTSäRESERVED 1 History of Processor Performance )NTELª8EON ªª'(Z BITª)NTELª8EON ªª'(Z !-$ª/PTERON ªª'(Z )NTELª0ENTIUMª ª'(Z CSEE 3827 !-$ª!THLON ªª'(Z )NTELª0ENTIUMª))) ªª'(Z !LPHAª! ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª! ªª'(Z 0OWER0#ª ª'(Z !LPHAª ªª'(Z (0ª0! 2)3# ªª'(Z )"-ª23 YEAR 0ERFORMANCEªVS6!8 -)03ª-ª -)03ª- 3UN 6!8ª 6!8 YEAR 6!8 &)'52%ää 'ROWTHäINäPROCESSORäPERFORMANCEäSINCEäTHEäMID S 4HISäCHARTäPLOTSäPERFORMANCEäRELATIVEäTOäTHEä6!8ää ASäMEASUREDäBYäTHEä30%#INTäBENCHMARKSäSEEä3ECTIONä ä0RIORäTOäTHEäMID S äPROCESSORäPERFORMANCEäGROWTHäWASäLARGELYäTECHNOLOGY DRIVENäANDäAVERAGEDäABOUTääPERäYEARä4HEäINCREASEäINäGROWTHäTOäABOUTääSINCEäTHENäISäATTRIBUTABLEäTOäMOREäADVANCEDäARCHITECTURALäANDä ORGANIZATIONALäIDEASä"Yä äTHISäGROWTHäLEDäTOä AäDIFFERENCEäINäPERFORMANCEäOFäABOUTäAäFACTORäOFäSEVENä0ERFORMANCEäFORämäOATING POINT ORIENTEDäCALCULATIONSäHASäINCREASEDäEVENäFASTERä3INCEä äTHEäLIMITSäOFäPOWER äAVAILABLEäINSTRUCTION LEVELäPARALLELISM äANDäLONGäMEMORYäLATENCYä HAVEäSLOWEDäUNIPROCESSORäPERFORMANCEäRECENTLY äTOäABOUTääPERäYEARä#OPYRIGHTäÚää%LSEVIER ä)NCä!LLäRIGHTSäRESERVED 2 History of Processor Performance )NTELª8EON ªª'(Z BITª)NTELª8EON ªª'(Z !-$ª/PTERON ªª'(Z )NTELª0ENTIUMª ª'(Z !-$ª!THLON ªª'(Z )NTELª0ENTIUMª))) ªª'(Z !LPHAª! ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª! ªª'(Z 0OWER0#ª ª'(Z !LPHAª ªª'(Z (0ª0! 2)3# ªª'(Z )"-ª23 YEAR 0ERFORMANCEªVS6!8 -)03ª-ª -)03ª- 3UN 6!8ª 6!8 COMS 4824 YEAR 6!8 &)'52%ää 'ROWTHäINäPROCESSORäPERFORMANCEäSINCEäTHEäMID S 4HISäCHARTäPLOTSäPERFORMANCEäRELATIVEäTOäTHEä6!8ää ASäMEASUREDäBYäTHEä30%#INTäBENCHMARKSäSEEä3ECTIONä ä0RIORäTOäTHEäMID S äPROCESSORäPERFORMANCEäGROWTHäWASäLARGELYäTECHNOLOGY DRIVENäANDäAVERAGEDäABOUTääPERäYEARä4HEäINCREASEäINäGROWTHäTOäABOUTääSINCEäTHENäISäATTRIBUTABLEäTOäMOREäADVANCEDäARCHITECTURALäANDä ORGANIZATIONALäIDEASä"Yä äTHISäGROWTHäLEDäTOä AäDIFFERENCEäINäPERFORMANCEäOFäABOUTäAäFACTORäOFäSEVENä0ERFORMANCEäFORämäOATING POINT ORIENTEDäCALCULATIONSäHASäINCREASEDäEVENäFASTERä3INCEä äTHEäLIMITSäOFäPOWER äAVAILABLEäINSTRUCTION LEVELäPARALLELISM äANDäLONGäMEMORYäLATENCYä HAVEäSLOWEDäUNIPROCESSORäPERFORMANCEäRECENTLY äTOäABOUTääPERäYEARä#OPYRIGHTäÚää%LSEVIER ä)NCä!LLäRIGHTSäRESERVED 3 Abstract Stages of Execution Instruction Fetch (Instructions fetched from memory into CPU) Instruction Issue / Execution (Instructions executed on ALU or other functional unit) Instruction Completion / Commit (Architectural state updated, i.e., regfile or memory) 4 Multiple Instruction Issue Processors Multiple instructions fetched, executed, and committed in each cycle F: In superscalar processors instructions E: are scheduled by the HW C: In VLIW processors instructions are F: E: scheduled by the SW C: In all cases, the goal is to exploit instruction-level parallelism (ILP) 5 Flynn’s Taxonomy Single Instruction, Single Data (SISD) Single Instruction, Multiple Data (SIMD) Multiple Instruction, Single Data (MISD) Multiple Instruction, Multiple Data (MIMD) Exploits instr-level parallelism (ILP) Exploits data-level parallelism (DLP) 6 Out-of-order execution In in-order execution, In out-of-order execution (OOO), instructions are fetched, instructions are fetched, and executed, and committed in committed in compiler, order; may be compiler order executed in some other order F: F: One stalls, independent One stalls, instrs may they all stall proceed E: E: Relatively Additional simple hardware HW required for C: C: reordering Another way to exploit instruction-level parallelism (ILP) 7 Speculation Speculation is executing an instruction before it is known that it should be executed Speculate If correct If incorrect F: F: F: Mis- E: E: speculation executes E: excess instructions, C: C: costing time and power C: 8 The Memory Wall Performance CPU speeds increase approx 25-20% annually DRAM speeds increase approx 2-11% annually Time A result of this gap is that cache design has increased in importance over the years. This has resulted in innovations such as victim caches and trace caches. 9 Modern Processor Performance While single threaded performance has leveled, multithreaded performance potential scaling. )NTELª8EON ªª'(Z BITª)NTELª8EON ªª'(Z !-$ª/PTERON ªª'(Z )NTELª0ENTIUMª ª'(Z !-$ª!THLON ªª'(Z )NTELª0ENTIUMª))) ªª'(Z !LPHAª! ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª ªª'(Z !LPHAª! ªª'(Z 0OWER0#ª ª'(Z !LPHAª ªª'(Z (0ª0! 2)3# ªª'(Z )"-ª23 YEAR COMS 6824 0ERFORMANCEªVS6!8 -)03ª-ª -)03ª- + 3UN 6!8ª COMS 4130 6!8 YEAR 6!8 (Parallel Programming) &)'52%ää 'ROWTHäINäPROCESSORäPERFORMANCEäSINCEäTHEäMID S 4HISäCHARTäPLOTSäPERFORMANCEäRELATIVEäTOäTHEä6!8ää ASäMEASUREDäBYäTHEä30%#INTäBENCHMARKSäSEEä3ECTIONä ä0RIORäTOäTHEäMID S äPROCESSORäPERFORMANCEäGROWTHäWASäLARGELYäTECHNOLOGY DRIVENäANDäAVERAGEDäABOUTääPERäYEARä4HEäINCREASEäINäGROWTHäTOäABOUTääSINCEäTHENäISäATTRIBUTABLEäTOäMOREäADVANCEDäARCHITECTURALäANDä ORGANIZATIONALäIDEASä"Yä äTHISäGROWTHäLEDäTOä AäDIFFERENCEäINäPERFORMANCEäOFäABOUTäAäFACTORäOFäSEVENä0ERFORMANCEäFORämäOATING POINT ORIENTEDäCALCULATIONSäHASäINCREASEDäEVENäFASTERä3INCEä äTHEäLIMITSäOFäPOWER äAVAILABLEäINSTRUCTION LEVELäPARALLELISM äANDäLONGäMEMORYäLATENCYä HAVEäSLOWEDäUNIPROCESSORäPERFORMANCEäRECENTLY äTOäABOUTääPERäYEARä#OPYRIGHTäÚää%LSEVIER ä)NCä!LLäRIGHTSäRESERVED 10 )NTELª8EON ªª'(Z BITª)NTELª8EON ªª'(Z !-$ª/PTERON ªª'(Z )NTELª0ENTIUMª ª'(Z 5 !-$ª!THLON ªª'(Z Area Performance Power MIPS/Watt (%) )NTELª0ENTIUMª))) ªª'(Z 4 !LPHAª! ªª'(Z 3 !LPHAª ªª'(Z 2 !LPHAª ªª'(Z Increase !LPHAª ªª'(Z 1 !LPHAª ªª'(Z 0 Pipelined Superscalar OOO-Speculation!LPHAª! ªª'(ZDeep Pipelined -1 0OWER0#ª ª'(Z !LPHAª ªª'(Z (0ª0! 2)3# ªª'(Z )"-ª23 YEAR 0ERFORMANCEªVS6!8 -)03ª-ª -)03ª- 3UN 6!8ª 6!8 YEAR 6!8 &)'52%ää 'ROWTHäINäPROCESSORäPERFORMANCEäSINCEäTHEäMID S 4HISäCHARTäPLOTSäPERFORMANCEäRELATIVEäTOäTHEä6!8ää ASäMEASUREDäBYäTHEä30%#INTäBENCHMARKSäSEEä3ECTIONä ä0RIORäTOäTHEäMID S äPROCESSORäPERFORMANCEäGROWTHäWASäLARGELYäTECHNOLOGY DRIVENäANDäAVERAGEDäABOUTääPERäYEARä4HEäINCREASEäINäGROWTHäTOäABOUTääSINCEäTHENäISäATTRIBUTABLEäTOäMOREäADVANCEDäARCHITECTURALäANDä ORGANIZATIONALäIDEASä"Yä äTHISäGROWTHäLEDäTOä AäDIFFERENCEäINäPERFORMANCEäOFäABOUTäAäFACTORäOFäSEVENä0ERFORMANCEäFORämäOATING POINT ORIENTEDäCALCULATIONSäHASäINCREASEDäEVENäFASTERä3INCEä äTHEäLIMITSäOFäPOWER äAVAILABLEäINSTRUCTION LEVELäPARALLELISM äANDäLONGäMEMORYäLATENCYä HAVEäSLOWEDäUNIPROCESSORäPERFORMANCEäRECENTLY äTOäABOUTääPERäYEARä#OPYRIGHTäÚää%LSEVIER ä)NCä!LLäRIGHTSäRESERVED Source: Hennessy and Patterson, “Computer Architecture: A Quantitative Approach” )NTELª8EON ªª'(Z BITª)NTELª8EON ªª'(Z !-$ª/PTERON ªª'(Z )NTELª0ENTIUMª ª'(Z 5 !-$ª!THLON ªª'(Z Area Performance Power MIPS/Watt (%) )NTELª0ENTIUMª))) ªª'(Z 4 !LPHAª! ªª'(Z 3 !LPHAª ªª'(Z 2 !LPHAª ªª'(Z Increase !LPHAª ªª'(Z 1 !LPHAª ªª'(Z 0 Pipelined Superscalar OOO-Speculation!LPHAª! ªª'(ZDeep Pipelined -1 0OWER0#ª ª'(Z !LPHAª ªª'(Z (0ª0! 2)3# ªª'(Z )"-ª23 YEAR 0ERFORMANCEªVS6!8 -)03ª-ª -)03ª- 3UN 6!8ª 6!8 YEAR 6!8 &)'52%ää 'ROWTHäINäPROCESSORäPERFORMANCEäSINCEäTHEäMID S 4HISäCHARTäPLOTSäPERFORMANCEäRELATIVEäTOäTHEä6!8ää ASäMEASUREDäBYäTHEä30%#INTäBENCHMARKSäSEEä3ECTIONä ä0RIORäTOäTHEäMID S äPROCESSORäPERFORMANCEäGROWTHäWASäLARGELYäTECHNOLOGY DRIVENäANDäAVERAGEDäABOUTääPERäYEARä4HEäINCREASEäINäGROWTHäTOäABOUTääSINCEäTHENäISäATTRIBUTABLEäTOäMOREäADVANCEDäARCHITECTURALäANDä ORGANIZATIONALäIDEASä"Yä äTHISäGROWTHäLEDäTOä AäDIFFERENCEäINäPERFORMANCEäOFäABOUTäAäFACTORäOFäSEVENä0ERFORMANCEäFORämäOATING POINT ORIENTEDäCALCULATIONSäHASäINCREASEDäEVENäFASTERä3INCEä äTHEäLIMITSäOFäPOWER äAVAILABLEäINSTRUCTION LEVELäPARALLELISM äANDäLONGäMEMORYäLATENCYä HAVEäSLOWEDäUNIPROCESSORäPERFORMANCEäRECENTLY äTOäABOUTääPERäYEARä#OPYRIGHTäÚää%LSEVIER ä)NCä!LLäRIGHTSäRESERVED Source: Hennessy and Patterson, “Computer Architecture: A Quantitative Approach” The Power Wall #LOCK2ATE 0OWER 0OWER7ATTS #LOCK2ATE-(Z 0ENTIUM #ORE 0RESCOTT 0ENTIUM +ENTSFIELD 0ENTIUM 0ENTIUM 7ILLAMETTE 0RO 1, Ê£°£xÊÊÊÊ VÊÀ>ÌiÊ>`Ê*ÜiÀÊvÀÊÌiÊÝnÈÊVÀ«ÀViÃÃÀÃÊÛiÀÊi} ÌÊ}iiÀ>ÌÃÊ >`ÊÓxÊÞi>ÀðÊ4HE0ENTIUMMADEADRAMATICJUMPINCLOCKRATEANDPOWERBUTLESSSOINPERFORMANCE 4HE0RESCOTTTHERMALPROBLEMSLEDTOTHEABANDONMENTOFTHE0ENTIUMLINE4HE#ORELINEREVERTSTOA SIMPLERPIPELINEWITHLOWERCLOCKRATESANDMULTIPLEPROCESSORSPERCHIP#OPYRIGHTÚ%LSEVIER