A Characterization of Processor Performance in the VAX-1 L/780
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Storage the CPU-Memory
Data Storage •Disks • Hard disk (HDD) • Solid state drive (SSD) •Random Access Memory • Dynamic RAM (DRAM) • Static RAM (SRAM) •Registers • %rax, %rbx, ... Sean Barker 1 The CPU-Memory Gap 100,000,000.0 10,000,000.0 Disk 1,000,000.0 100,000.0 SSD Disk seek time 10,000.0 SSD access time 1,000.0 DRAM access time Time (ns) Time 100.0 DRAM SRAM access time CPU cycle time 10.0 Effective CPU cycle time 1.0 0.1 CPU 0.0 1985 1990 1995 2000 2003 2005 2010 2015 Year Sean Barker 2 Caching Smaller, faster, more expensive Cache 8 4 9 10 14 3 memory caches a subset of the blocks Data is copied in block-sized 10 4 transfer units Larger, slower, cheaper memory Memory 0 1 2 3 viewed as par@@oned into “blocks” 4 5 6 7 8 9 10 11 12 13 14 15 Sean Barker 3 Cache Hit Request: 14 Cache 8 9 14 3 Memory 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sean Barker 4 Cache Miss Request: 12 Cache 8 12 9 14 3 12 Request: 12 Memory 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sean Barker 5 Locality ¢ Temporal locality: ¢ Spa0al locality: Sean Barker 6 Locality Example (1) sum = 0; for (i = 0; i < n; i++) sum += a[i]; return sum; Sean Barker 7 Locality Example (2) int sum_array_rows(int a[M][N]) { int i, j, sum = 0; for (i = 0; i < M; i++) for (j = 0; j < N; j++) sum += a[i][j]; return sum; } Sean Barker 8 Locality Example (3) int sum_array_cols(int a[M][N]) { int i, j, sum = 0; for (j = 0; j < N; j++) for (i = 0; i < M; i++) sum += a[i][j]; return sum; } Sean Barker 9 The Memory Hierarchy The Memory Hierarchy Smaller On 1 cycle to access CPU Chip Registers Faster Storage Costlier instrs can L1, L2 per byte directly Cache(s) ~10’s of cycles to access access (SRAM) Main memory ~100 cycles to access (DRAM) Larger Slower Flash SSD / Local network ~100 M cycles to access Cheaper Local secondary storage (disk) per byte slower Remote secondary storage than local (tapes, Web servers / Internet) disk to access Sean Barker 10. -
18-447 Computer Architecture Lecture 6: Multi-Cycle and Microprogrammed Microarchitectures
18-447 Computer Architecture Lecture 6: Multi-Cycle and Microprogrammed Microarchitectures Prof. Onur Mutlu Carnegie Mellon University Spring 2015, 1/28/2015 Agenda for Today & Next Few Lectures n Single-cycle Microarchitectures n Multi-cycle and Microprogrammed Microarchitectures n Pipelining n Issues in Pipelining: Control & Data Dependence Handling, State Maintenance and Recovery, … n Out-of-Order Execution n Issues in OoO Execution: Load-Store Handling, … 2 Reminder on Assignments n Lab 2 due next Friday (Feb 6) q Start early! n HW 1 due today n HW 2 out n Remember that all is for your benefit q Homeworks, especially so q All assignments can take time, but the goal is for you to learn very well 3 Lab 1 Grades 25 20 15 10 5 Number of Students 0 30 40 50 60 70 80 90 100 n Mean: 88.0 n Median: 96.0 n Standard Deviation: 16.9 4 Extra Credit for Lab Assignment 2 n Complete your normal (single-cycle) implementation first, and get it checked off in lab. n Then, implement the MIPS core using a microcoded approach similar to what we will discuss in class. n We are not specifying any particular details of the microcode format or the microarchitecture; you can be creative. n For the extra credit, the microcoded implementation should execute the same programs that your ordinary implementation does, and you should demo it by the normal lab deadline. n You will get maximum 4% of course grade n Document what you have done and demonstrate well 5 Readings for Today n P&P, Revised Appendix C q Microarchitecture of the LC-3b q Appendix A (LC-3b ISA) will be useful in following this n P&H, Appendix D q Mapping Control to Hardware n Optional q Maurice Wilkes, “The Best Way to Design an Automatic Calculating Machine,” Manchester Univ. -
45-Year CPU Evolution: One Law and Two Equations
45-year CPU evolution: one law and two equations Daniel Etiemble LRI-CNRS University Paris Sud Orsay, France [email protected] Abstract— Moore’s law and two equations allow to explain the a) IC is the instruction count. main trends of CPU evolution since MOS technologies have been b) CPI is the clock cycles per instruction and IPC = 1/CPI is the used to implement microprocessors. Instruction count per clock cycle. c) Tc is the clock cycle time and F=1/Tc is the clock frequency. Keywords—Moore’s law, execution time, CM0S power dissipation. The Power dissipation of CMOS circuits is the second I. INTRODUCTION equation (2). CMOS power dissipation is decomposed into static and dynamic powers. For dynamic power, Vdd is the power A new era started when MOS technologies were used to supply, F is the clock frequency, ΣCi is the sum of gate and build microprocessors. After pMOS (Intel 4004 in 1971) and interconnection capacitances and α is the average percentage of nMOS (Intel 8080 in 1974), CMOS became quickly the leading switching capacitances: α is the activity factor of the overall technology, used by Intel since 1985 with 80386 CPU. circuit MOS technologies obey an empirical law, stated in 1965 and 2 Pd = Pdstatic + α x ΣCi x Vdd x F (2) known as Moore’s law: the number of transistors integrated on a chip doubles every N months. Fig. 1 presents the evolution for II. CONSEQUENCES OF MOORE LAW DRAM memories, processors (MPU) and three types of read- only memories [1]. The growth rate decreases with years, from A. -
Cuda C Best Practices Guide
CUDA C BEST PRACTICES GUIDE DG-05603-001_v9.0 | June 2018 Design Guide TABLE OF CONTENTS Preface............................................................................................................ vii What Is This Document?..................................................................................... vii Who Should Read This Guide?...............................................................................vii Assess, Parallelize, Optimize, Deploy.....................................................................viii Assess........................................................................................................ viii Parallelize.................................................................................................... ix Optimize...................................................................................................... ix Deploy.........................................................................................................ix Recommendations and Best Practices.......................................................................x Chapter 1. Assessing Your Application.......................................................................1 Chapter 2. Heterogeneous Computing.......................................................................2 2.1. Differences between Host and Device................................................................ 2 2.2. What Runs on a CUDA-Enabled Device?...............................................................3 Chapter 3. Application Profiling............................................................................. -
A 4.7 Million-Transistor CISC Microprocessor
Auriga2: A 4.7 Million-Transistor CISC Microprocessor J.P. Tual, M. Thill, C. Bernard, H.N. Nguyen F. Mottini, M. Moreau, P. Vallet Hardware Development Paris & Angers BULL S.A. 78340 Les Clayes-sous-Bois, FRANCE Tel: (+33)-1-30-80-7304 Fax: (+33)-1-30-80-7163 Mail: [email protected] Abstract- With the introduction of the high range version of parallel multi-processor architecture. It is used in a family of the DPS7000 mainframe family, Bull is providing a processor systems able to handle up to 24 such microprocessors, which integrates the DPS7000 CPU and first level of cache on capable to support 10 000 simultaneously connected users. one VLSI chip containing 4.7M transistors and using a 0.5 For the development of this complex circuit, a system level µm, 3Mlayers CMOS technology. This enhanced CPU has design methodology has been put in place, putting high been designed to provide a high integration, high performance emphasis on high-level verification issues. A lot of home- and low cost systems. Up to 24 such processors can be made CAD tools were developed, to meet the stringent integrated in a single system, enabling performance levels in performance/area constraints. In particular, an integrated the range of 850 TPC-A (Oracle) with about 12 000 Logic Synthesis and Formal Verification environment tool simultaneously active connections. The design methodology has been developed, to deal with complex circuitry issues involved massive use of formal verification and symbolic and to enable the designer to shorten the iteration loop layout techniques, enabling to reach first pass right silicon on between logical design and physical implementation of the several foundries. -
Mi!!Lxlosalamos SCIENTIFIC LABORATORY
LA=8902-MS C3b ClC-l 4 REPORT COLLECTION REPRODUCTION COPY VAXNMS Benchmarking 1-’ > .— u) 9 g .— mi!!lxLOS ALAMOS SCIENTIFIC LABORATORY Post Office Box 1663 Los Alamos. New Mexico 87545 — wAifiimative Action/Equal Opportunity Employer b . l)lS(”L,\l\ll K “Thisreport wm prcpmd J, an xcttunt ,,1”wurk ,pmwrd by an dgmcy d the tlnitwl SIdtcs (kvcm. mm:. Ncit her t hc llniml SIJIL.. ( Lwcrnmcm nor any .gcncy tlhmd. nor my 08”Ihcif cmployccs. makci my wur,nly. mprcss w mphd. or JwImL.s m> lcg.d Iululity ur rcspmuhdily ltw Ilw w.cur- acy. .vmplctcncs. w uscftthtc>. ttt”any ml’ormdt ml. dpprdl us. prudu.i. w proccw didowd. or rep. resent%Ihd IIS us wuukl not mfrm$e priwtcly mvnd rqdtts. Itcl”crmcti herein 10 my sp.xi!l tom. mrcial ptotlucr. prtxcm. or S.rvskc hy tdc mmw. Irdcnmrl.. nmu(a.lurm. or dwrwi~.. does nut mmwsuily mnstitutc or reply its mdursmwnt. rccummcnddton. or favorin: by the llniwd States (“mvcmment ormy qxncy thctcd. rhc V!C$VSmd opinmm d .mthor% qmxd herein do nut net’. UMrily r;~lt or died lhow. ol”the llnttcd SIJIL.S( ;ovwnnwnt or my ugcncy lhure of. UNITED STATES .. DEPARTMENT OF ENERGY CONTRACT W-7405 -ENG. 36 . ... LA-8902-MS UC-32 Issued: July 1981 G- . VAX/VMS Benchmarking Larry Creel —. I . .._- -- ----- ,. .- .-. .: .- ,.. .. ., ..,..: , .. .., . ... ..... - .-, ..:. .. *._–: - . VAX/VMS BENCHMARKING by Larry Creel ABSTRACT Primary emphasis in this report is on the perform- ance of three Digital Equipment Corporation VAX-11/780 computers at the Los Alamos National Laboratory. Programs used in the study are part of the Laboratory’s set of benchmark programs. -
Cache-Aware Roofline Model: Upgrading the Loft
1 Cache-aware Roofline model: Upgrading the loft Aleksandar Ilic, Frederico Pratas, and Leonel Sousa INESC-ID/IST, Technical University of Lisbon, Portugal ilic,fcpp,las @inesc-id.pt f g Abstract—The Roofline model graphically represents the attainable upper bound performance of a computer architecture. This paper analyzes the original Roofline model and proposes a novel approach to provide a more insightful performance modeling of modern architectures by introducing cache-awareness, thus significantly improving the guidelines for application optimization. The proposed model was experimentally verified for different architectures by taking advantage of built-in hardware counters with a curve fitness above 90%. Index Terms—Multicore computer architectures, Performance modeling, Application optimization F 1 INTRODUCTION in Tab. 1. The horizontal part of the Roofline model cor- Driven by the increasing complexity of modern applica- responds to the compute bound region where the Fp can tions, microprocessors provide a huge diversity of compu- be achieved. The slanted part of the model represents the tational characteristics and capabilities. While this diversity memory bound region where the performance is limited is important to fulfill the existing computational needs, it by BD. The ridge point, where the two lines meet, marks imposes challenges to fully exploit architectures’ potential. the minimum I required to achieve Fp. In general, the A model that provides insights into the system performance original Roofline modeling concept [10] ties the Fp and the capabilities is a valuable tool to assist in the development theoretical bandwidth of a single memory level, with the I and optimization of applications and future architectures. -
Embedded Multi-Core Processing for Networking
12 Embedded Multi-Core Processing for Networking Theofanis Orphanoudakis University of Peloponnese Tripoli, Greece [email protected] Stylianos Perissakis Intracom Telecom Athens, Greece [email protected] CONTENTS 12.1 Introduction ............................ 400 12.2 Overview of Proposed NPU Architectures ............ 403 12.2.1 Multi-Core Embedded Systems for Multi-Service Broadband Access and Multimedia Home Networks . 403 12.2.2 SoC Integration of Network Components and Examples of Commercial Access NPUs .............. 405 12.2.3 NPU Architectures for Core Network Nodes and High-Speed Networking and Switching ......... 407 12.3 Programmable Packet Processing Engines ............ 412 12.3.1 Parallelism ........................ 413 12.3.2 Multi-Threading Support ................ 418 12.3.3 Specialized Instruction Set Architectures ....... 421 12.4 Address Lookup and Packet Classification Engines ....... 422 12.4.1 Classification Techniques ................ 424 12.4.1.1 Trie-based Algorithms ............ 425 12.4.1.2 Hierarchical Intelligent Cuttings (HiCuts) . 425 12.4.2 Case Studies ....................... 426 12.5 Packet Buffering and Queue Management Engines ....... 431 399 400 Multi-Core Embedded Systems 12.5.1 Performance Issues ................... 433 12.5.1.1 External DRAMMemory Bottlenecks ... 433 12.5.1.2 Evaluation of Queue Management Functions: INTEL IXP1200 Case ................. 434 12.5.2 Design of Specialized Core for Implementation of Queue Management in Hardware ................ 435 12.5.2.1 Optimization Techniques .......... 439 12.5.2.2 Performance Evaluation of Hardware Queue Management Engine ............. 440 12.6 Scheduling Engines ......................... 442 12.6.1 Data Structures in Scheduling Architectures ..... 443 12.6.2 Task Scheduling ..................... 444 12.6.2.1 Load Balancing ................ 445 12.6.3 Traffic Scheduling ................... -
ARM-Architecture Simulator Archulator
Embedded ECE Lab Arm Architecture Simulator University of Arizona ARM-Architecture Simulator Archulator Contents Purpose ............................................................................................................................................ 2 Description ...................................................................................................................................... 2 Block Diagram ............................................................................................................................ 2 Component Description .............................................................................................................. 3 Buses ..................................................................................................................................................... 3 µP .......................................................................................................................................................... 3 Caches ................................................................................................................................................... 3 Memory ................................................................................................................................................. 3 CoProcessor .......................................................................................................................................... 3 Using the Archulator ...................................................................................................................... -
Multi-Cycle Datapathoperation
Book's Definition of Performance • For some program running on machine X, PerformanceX = 1 / Execution timeX • "X is n times faster than Y" PerformanceX / PerformanceY = n • Problem: – machine A runs a program in 20 seconds – machine B runs the same program in 25 seconds 1 Example • Our favorite program runs in 10 seconds on computer A, which hasa 400 Mhz. clock. We are trying to help a computer designer build a new machine B, that will run this program in 6 seconds. The designer can use new (or perhaps more expensive) technology to substantially increase the clock rate, but has informed us that this increase will affect the rest of the CPU design, causing machine B to require 1.2 times as many clockcycles as machine A for the same program. What clock rate should we tellthe designer to target?" • Don't Panic, can easily work this out from basic principles 2 Now that we understand cycles • A given program will require – some number of instructions (machine instructions) – some number of cycles – some number of seconds • We have a vocabulary that relates these quantities: – cycle time (seconds per cycle) – clock rate (cycles per second) – CPI (cycles per instruction) a floating point intensive application might have a higher CPI – MIPS (millions of instructions per second) this would be higher for a program using simple instructions 3 Performance • Performance is determined by execution time • Do any of the other variables equal performance? – # of cycles to execute program? – # of instructions in program? – # of cycles per second? – average # of cycles per instruction? – average # of instructions per second? • Common pitfall: thinking one of the variables is indicative of performance when it really isn’t. -
Multi-Tier Caching Technology™
Multi-Tier Caching Technology™ Technology Paper Authored by: How Layering an Application’s Cache Improves Performance Modern data storage needs go far beyond just computing. From creative professional environments to desktop systems, Seagate provides solutions for almost any application that requires large volumes of storage. As a leader in NAND, hybrid, SMR and conventional magnetic recording technologies, Seagate® applies different levels of caching and media optimization to benefit performance and capacity. Multi-Tier Caching (MTC) Technology brings the highest performance and areal density to a multitude of applications. Each Seagate product is uniquely tailored to meet the performance requirements of a specific use case with the right memory, NAND, and media type and size. This paper explains how MTC Technology works to optimize hard drive performance. MTC Technology: Key Advantages Capacity requirements can vary greatly from business to business. While the fastest performance can be achieved using Dynamic Random Access Memory (DRAM) cache, the data in the DRAM is not persistent through power cycles and DRAM is very expensive compared to other media. NAND flash data survives through power cycles but it is still very expensive compared to a magnetic storage medium. Magnetic storage media cache offers good performance at a very low cost. On the downside, media cache takes away overall disk drive capacity from PMR or SMR main store media. MTC Technology solves this dilemma by using these diverse media components in combination to offer different levels of performance and capacity at varying price points. By carefully tuning firmware with appropriate cache types and sizes, the end user can experience excellent overall system performance. -
CS2504: Computer Organization
CS2504, Spring'2007 ©Dimitris Nikolopoulos CS2504: Computer Organization Lecture 4: Evaluating Performance Instructor: Dimitris Nikolopoulos Guest Lecturer: Matthew Curtis-Maury CS2504, Spring'2007 ©Dimitris Nikolopoulos Understanding Performance Why do we study performance? Evaluate during design Evaluate before purchasing Key to understanding underlying organizational motivation How can we (meaningfully) compare two machines? Performance, Cost, Value, etc Main issue: Need to understand what factors in the architecture contribute to overall system performance and the relative importance of these factors Effects of ISA on performance 2 How will hardware change affect performance CS2504, Spring'2007 ©Dimitris Nikolopoulos Airplane Performance Analogy Airplane Passengers Range Speed Boeing 777 375 4630 610 Boeing 747 470 4150 610 Concorde 132 4000 1250 Douglas DC-8-50 146 8720 544 Fighter Jet 4 2000 1500 What metric do we use? Concorde is 2.05 times faster than the 747 747 has 1.74 times higher throughput What about cost? And the winner is: It Depends! 3 CS2504, Spring'2007 ©Dimitris Nikolopoulos Throughput vs. Response Time Response Time: Execution time (e.g. seconds or clock ticks) How long does the program take to execute? How long do I have to wait for a result? Throughput: Rate of completion (e.g. results per second/tick) What is the average execution time of the program? Measure of total work done Upgrading to a newer processor will improve: response time Adding processors to the system will improve: throughput 4 CS2504, Spring'2007 ©Dimitris Nikolopoulos Example: Throughput vs. Response Time Suppose we know that an application that uses both a desktop client and a remote server is limited by network performance.