Thesis May Never Have Been Completed

Total Page:16

File Type:pdf, Size:1020Kb

Thesis May Never Have Been Completed UvA-DARE (Digital Academic Repository) Digital Equipment Corporation (DEC): A case study of indecision, innovation and company failure Goodwin, D.T. Publication date 2016 Document Version Final published version Link to publication Citation for published version (APA): Goodwin, D. T. (2016). Digital Equipment Corporation (DEC): A case study of indecision, innovation and company failure. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:26 Sep 2021 Digital Equipment Corporation (DEC) (DEC) Corporation Digital Equipment David Thomas David Goodwin Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure David Thomas Goodwin Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure David Thomas Goodwin 1 Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. ir. K.I.J. Maex ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op donderdag 8 september 2016, te 12:00 uur door David Thomas Goodwin geboren te Liverpool, Verenigd Koninkrijk 2 Promotiecommissie: Promotor: Prof. dr. P. van Baalen Universiteit van Amsterdam Co-promotor: Prof. dr. W. Buitelaar Universiteit van Amsterdam Overige Leden: Prof. dr. H.W.G.M. van Heck Erasmus Universiteit Rotterdam Prof. dr. J. Strikwerda Universiteit van Amsterdam Prof. dr. P.C. van Fenema Nederlandse Defensie Academie Dr. ir. J.W. Stoelhorst Universiteit van Amsterdam Prof. dr. L. Karsten Rijksuniversiteit Groningen Prof. dr. E.J. Fischer Universiteit van Amsterdam Faculteit Economie en Bedrijfskunde 3 Acknowledgements I would like to thank a number of people without whose assistance this thesis may never have been completed. Firstly I should like to thank my promotor Prof. dr. Peter van Baalen and my co- promotor Prof. dr. Wout Buitelaar, without whose guidance I would not have completed my transition into a more academic thought process. Gordon Bell, who directed me to the company archives and offered advice, Paula Jabloner, chief archivist at the Computer History Museum for her assistance in my study of the Digital Equipment Corporation archives, and to Dan Tymann for his facilitation in allowing me unrestricted access to the Ken Olsen archives, particularly obtaining the Olsen family permission and for allowing me to work long hours at the archives. I would also like to acknowledge the assistance of HP management who confirmed they would not seek to prevent my use of the Notesfiles as part of my argument. Thanks are also given to Bob Glorioso for his insight into the world of high performance computing and DEC’s RISC strategy. I am particularly grateful to Don Gaubatz for his contribution on DEC Workstation Engineering, his encouragement and assistance, and for giving me access to his archives as part of my research. He facilitated contact with many high-level former employees, without which a full understanding of events at DEC would not have been possible. I would also like to acknowledge the many ex-DEC people (some of whom wish to remain anonymous) who have given me encouragement, have related personal recollections of their time at Digital and provided many documents about technology and strategy. In particular, thanks go to Dave Cutler for meeting me in Seattle and speaking so forthrightly about DEC, Bob Supnik for his many emails on products, technologies and management, Dileep Bhandarkar for his commentary on RISC and Bill Strecker for his view of DEC after Gordon Bell’s departure. Last but not least, I would like to thank my wife for her encouragement and patience during the years that I have been researching DEC and for allowing me to visit the archives on a number of occasions. Most of all I dedicate this thesis to Ken Olsen, who was the father of the company and to its employees for thirty-five years, and who sadly passed away before I could complete. 4 Glossary ACM Association for Computing Machinery AMD Advanced Micro Devices ARD American Research and Development ARM Advanced RISC Machine ARPA Advanced Research Projects Agency AXP Alpha Processor Codename BBN Bolt Beranek and Newman BIPS Billions of Instructions per Second BOD Board of Directors CAD Computer Aided Design CalTech California Institute of Technology CEO Chief Executive Officer CFO Chief Financial Officer CMOS Complementary Metal-Oxide Semiconductor CPSR Computer Professionals for Social Responsibility DARPA Defence Advanced Research Projects Agency DEC Digital Equipment Corporation DECUS Digital Equipment Computer Users’ Society DG Data General DVN Digital Video Network ECL Emitter Coupled Logic EDS Electronic Data Systems EDSAC Electronic Delay Storage Automatic Calculator EDVAC Electronic Discrete Variable Automatic Computer EMC EMC Corporation EMCC Eckert-Mauchly Computer Corporation EMEA Europe, Middle East and Africa ENIAC Electronic Numerical Integrator and Computer FAB Semiconductor Fabrication Facility FBI Federal Bureau of Investigation FTC Federal Trade Commission GE General Electric Company HP Hewlett Packard HR-32 Hudson RISC, 32 bit. IBM International Business Machines IDC International Data Corporation IEEE Institute of Electrical and Electronics Engineers IPI Intelligent Peripheral Interface 5 IT/MIS Information Technology/Management Information Services LCG Large Computer Group (DEC department) LSI Large Scale Integration MCI Telecommunications company MICA Multi-personality Operating System MIPS (architecture) Microprocessor without Interlocked Pipeline Stages MIPS (company) MIPS technologies MIT Massachusetts Institute of Technology MTBF Mean Time Between Failures NBER National Bureau of Economic Research NCR National Cash Register NFS Network File System NIST National Institute of Standards and Technology NUMA Non Uniform Memory Access NVAX DEC VAX Microprocessor OEM Original Equipment Manufacturer OSF Open Software Foundation PARC Palo Alto Research Centre PCI Peripheral Component Interconnect PDP Programmable Data Processor PDT Programmable Data Terminal (DEC based LSI-11 microprocessor based system) PM&D Product Management and Development PRIME PRIME Computer Inc. PRISM PaRallel Instruction Set Machine PRO DEC’s PROfessional range of PC’s. PRTM Pittiglio Rabin Todd & McGrath QE2 Queen Elizabeth 2nd cruise liner. R&D Research and Development RISC Reduced Instruction Set Computing RSX Resource Sharing eXecutive SAFE Streamline Architecture for Fast Execution SAGE Semi-Automatic Ground Environment SAP System Analysis and Products in Data Processing, (German Company) SEC Securities and Exchange Commission SG&A Selling and General Administrative Expense SGI Silicon Graphics Inc. SHOT Society for the History of Technology SMP Symmetric Multiprocessing 6 SPARC Scalable Processor Architecture SPRU Science Policy Research Unit SRA Systems Research and Applications STF Strategic Task Force SUN Stanford University Network TCP/IP Transmission Control Protocol/Internet Protocol TTL Transistor-Transistor Logic UNIX UNiplexed Information and Computing System VAX Virtual Address Extension VLDB Very Large Data Base VLSI Very Large Scale Integration VMS Virtual Memory System VNS Vogon News Service VTX (DEC’s) Videotext service VUP VAX Unit of Power WRL DEC Western Research Laboratory WWW World Wide Web 7 Contents Acknowledgements .......................................................................... 4 Glossary ........................................................................................... 5 1 Introduction ............................................................................ 13 1.1 Introduction ..................................................................... 13 1.2 Research Question ........................................................... 14 1.3 DEC ................................................................................. 14 2 Failure, Innovation and Disruptive Technology .................... 16 2.1 Introduction ..................................................................... 16 2.2 Innovation and Failure..................................................... 17 2.3 Downsizing ...................................................................... 30 2.4 Rise of Silicon Valley...................................................... 34 2.5 Theoretical Perspectives .................................................. 36 2.6 Management of Technological Innovation...................... 40 2.7 Conclusion ....................................................................... 42 3 Methodologies
Recommended publications
  • Engineering Specification for the KA43 Processor Module Revision 1.0 1–May–1989 COMPANY CONFIDENTIAL RESTRICTED DISTRIBUTION
    Engineering Specification for the KA43 Processor Module Revision 1.0 1–May–1989 COMPANY CONFIDENTIAL RESTRICTED DISTRIBUTION COPYRIGHT (c) 1989 by DIGITAL EQUIPMENT CORPORATION This information shall not be disclosed to non-Digital personnel or generally distributed within Digital. Distribution is restricted to persons authorized and designated by the responsible en- gineer or manager. This document shall not be left unattended, and when not in use shall be stored in a locked storage container. The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may occur in this document. The information in this document does not describe any program or product currently available from Digital Equipment Corporation. Nor does Digital Equipment Corporation commit to imple- ment this specification in any program or product. Digital Equipment Corporation makes no commitment that this document accurately describes any product which it might ever make. Digital Equipment Corporation CONTENTS Preface . ........................................................... v Chapter 1 INTRODUCTION .............................................. 1 1.1 Scope of Document ................................................... 1 1.2 General Description .................................................. 1 1.3 Applicable Documents ................................................. 2 Chapter 2 KA43 ROM MEMORY ........................................
    [Show full text]
  • Spacewarduino
    1 SPACEWARDUINO Kaivan Wadia (Department of EECS) – Massachusetts Institute of Technology Advisor: Prof. Philip Tan ABSTRACT Spacewar! was one of the first ever computer games developed in the early 1960s. Steve Russell, Martin Graetz and Wayne Witaenem of the fictitious "Hingham Institute" conceived of the game in 1961, with the intent of implementing it on a DEC PDP-1 computer at MIT. Alan Kotok obtained some sine and cosine routines from DEC following which Steve Russell started coding and the first version was produced by February 1962. Spacewar! was the first computer game written at MIT. In the duration of this project we hope to implement the same game on an Arduino Microcontroller with a Gameduino shield while examining the original assembly code and staying as true to the original version of the game as possible. 2 TABLE OF CONTENTS 1. INTRODUCTION 3 2. UNDERSTANDING THE SOURCE CODE 4 3. VECTOR GRAPHICS AND SPACESHIPS 7 4. SPACEWAR! NIGHT SKY 9 5. THE ARDUINO/GAMEDUINO IMPLEMENTATION 11 6. CONCLUSION 13 7. REFERENCES 14 3 1. INTRODUCTION The major aim of this project is to replicate the first computer game written at MIT, Spacewar!. In the process we aim to learn a lot about the way video games were written for the machines in the pioneering days of computing. Spacewar! is game of space combat created for the DEC PDP-1 by hackers at MIT, including Steve Russell, Martin Graetz, Wayne Witaenem, Alan Kotok, Dan Edwards, and Peter Samson. The game can be played on a Java emulator at http://spacewar.oversigma.com/.
    [Show full text]
  • Alphaserver 4000/4100 Configuration and Installation Guide
    AlphaServer 4000/4100 Configuration and Installation Guide Order Number: EK–4100A–CG. E01 This manual is for manufacturing and field personnel, and resellers who require AlphaServer 4000/4100 system drawer configuration information. Digital Equipment Corporation Maynard, Massachusetts First Printing, June 1997 Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description. The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. The software, if any, described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies. Copyright 1997 by Digital Equipment Corporation. All rights reserved. The following are trademarks of Digital Equipment Corporation: AlphaServer, OpenVMS, StorageWorks, VAX, and the DIGITAL logo. The following are third-party trademarks: UNIX is a registered trademark in the U.S. and other countries, licensed exclusively through X/Open Company Ltd. Windows NT is a trademark of Microsoft, Inc. All other trademarks and registered trademarks are the property of their respective holders. FCC Notice: The equipment described in this manual generates, uses, and may emit radio frequency energy.
    [Show full text]
  • Configurable RISC-V Softcore Processor for FPGA Implementation
    1 Configurable RISC-V softcore processor for FPGA implementation Joao˜ Filipe Monteiro Rodrigues, Instituto Superior Tecnico,´ Universidade de Lisboa Abstract—Over the past years, the processor market has and development of several programming tools. The RISC-V been dominated by proprietary architectures that implement Foundation controls the RISC-V evolution, and its members instruction sets that require licensing and the payment of fees to are responsible for promoting the adoption of RISC-V and receive permission so they can be used. ARM is an example of one of those companies that sell its microarchitectures to participating in the development of the new ISA. In the list of the manufactures so they can implement them into their own members are big companies like Google, NVIDIA, Western products, and it does not allow the use of its instruction set Digital, Samsung, or Qualcomm. (ISA) in other implementations without licensing. The RISC-V The main goal of this work is the development of a RISC- instruction set appeared proposing the hardware and software V softcore processor to be implemented in an FPGA, using development without costs, through the creation of an open- source ISA. This way, it is possible that any project that im- a non-RISC-V core as the base of this architecture. The plements the RISC-V ISA can be made available open-source or proposed solution is focused on solving the problems and even implemented in commercial products. However, the RISC- limitations identified in the other RISC-V cores that were V solutions that have been developed do not present the needed analyzed in this thesis, especially in terms of the adaptability requirements so they can be included in projects, especially the and flexibility, allowing future modifications according to the research projects, because they offer poor documentation, and their performances are not suitable.
    [Show full text]
  • Connecticut DEEP's List of Compliant Electronics Manufacturers Notice to Connecticut Retailersi
    Connecticut DEEP’s List of Compliant Electronics manufacturers Notice to Connecticut Retailersi: This list below identifies electronics manufacturers that are in compliance with the registration and payment obligations under Connecticut’s State-wide Electronics Program. Retailers must check this list before selling Covered Electronic Devices (“CEDs”) in Connecticut. If there is a brand of a CED that is not listed below including retail over the internet, the retailer must not sell the CED to Connecticut consumers pursuant to section 22a-634 of the Connecticut General Statutes. Manufacturer Brands CED Type Acer America Corp. Acer Computer, Monitor, Television, Printer eMachines Computer, Monitor Gateway Computer, Monitor, Television ALR Computer, Monitor Gateway 2000 Computer, Monitor AG Neovo Technology AG Neovo Monitor Corporation Amazon Fulfillment Service, Inc. Kindle Computers Amazon Kindle Kindle Fire Fire American Future Technology iBuypower Computer Corporation dba iBuypower Apple, Inc. Apple Computer, Monitor, Printer NeXT Computer, Monitor iMac Computer Mac Pro Computer Mac Mini Computer Thunder Bolt Display Monitor Archos, Inc. Archos Computer ASUS Computer International ASUS Computer, Monitor Eee Computer Nexus ASUS Computer EEE PC Computer Atico International USA, Inc. Digital Prism Television ATYME CORPRATION, INC. ATYME Television Bang & Olufsen Operations A/S Bang & Olufsen Television BenQ America Corp. BenQ Monitor Best Buy Insignia Television Dynex Television UB Computer Toshiba Television VPP Matrix Computer, Monitor Blackberry Limited Balckberry PlayBook Computer Bose Corp. Bose Videowave Television Brother International Corp. Brother Monitor, Printer Canon USA, Inc. Canon Computer, Monitor, Printer Oce Printer Imagistics Printer Cellco Partnership Verizon Ellipsis Computer Changhong Trading Corp. USA Changhong Television (Former Guangdong Changhong Electronics Co. LTD) Craig Electronics Craig Computer, Television Creative Labs, Inc.
    [Show full text]
  • Accelerated AC Contingency Calculation on Commodity Multi
    1 Accelerated AC Contingency Calculation on Commodity Multi-core SIMD CPUs Tao Cui, Student Member, IEEE, Rui Yang, Student Member, IEEE, Gabriela Hug, Member, IEEE, Franz Franchetti, Member, IEEE Abstract—Multi-core CPUs with multiple levels of parallelism In the computing industry, the performance capability of (i.e. data level, instruction level and task/core level) have become the computing platform has been growing rapidly in the last the mainstream CPUs for commodity computing systems. Based several decades at a roughly exponential rate [3]. The recent on the multi-core CPUs, in this paper we developed a high performance computing framework for AC contingency calcula- mainstream commodity CPUs enable us to build inexpensive tion (ACCC) to fully utilize the computing power of commodity computing systems with similar computational power as the systems for online and real time applications. Using Woodbury supercomputers just ten years ago. However, these advances in matrix identity based compensation method, we transform and hardware performance result from the increasing complexity pack multiple contingency cases of different outages into a of the computer architecture and they actually increase the dif- fine grained vectorized data parallel programming model. We implement the data parallel programming model using SIMD ficulty of fully utilizing the available computational power for instruction extension on x86 CPUs, therefore, fully taking advan- a specific application [4]. This paper focuses on fully utilizing tages of the CPU core with SIMD floating point capability. We the computing power of modern CPUs by code optimization also implement a thread pool scheduler for ACCC on multi-core and parallelization for specific hardware, enabling the real- CPUs which automatically balances the computing loads across time complete ACCC application for practical power grids on CPU cores to fully utilize the multi-core capability.
    [Show full text]
  • Windows XP History and Versions
    Lecture 23: Windows XP History and Versions n Mid-80ies Microsoft and IBM cooperated to develop OS/2 n Windows XP is produced by Microsoft Co. n 1988 - Microsoft started to develop its own new technology (NT) OS n XP is multi-user, multi-process, preemptive multitasking OS, 30M lines of source code capable of running OS/2, Windows and Unix apps. Hired Dave Cutler - architect of DEC VAX/VMS to head the design n It is developed to support multiple platforms and targeted towards enterprise workstations and server market as well as n NT v. 3.1 first released commercially July 1993 desktops n NT v 4.0 adopted Windows 95 user interface, graphics code moved into kernel to improve performance n In today’s lecture n 2000 – improved networking and laptop support, support for plug-and- u XP’s predecessors, the history of XP design, XP versions play devices, support for more processors (up to 8) and memory, u design principles becomes true multi-user through terminal server u components n XP (released Oct 2001) – update for 2000 replacement for 95/98 F hardware abstraction layer u simplifies user interface, improved reliability, performance F executive improvements, partial 64-bit support F environmental subsystems n versions F file system u desktop: XP personal – 95/98 replacement, professional – advanced features like POSIX support, some network features 1 u server: .NET – support for web/print service, clusters, large memory2 and multiple processors Design goals Components n XP is microkernel-based, modular n security – NT was C-2 certified (US
    [Show full text]
  • Case No COMP/M.1694 - EMC / DATA GENERAL
    EN Case No COMP/M.1694 - EMC / DATA GENERAL Only the English text is available and authentic. REGULATION (EEC) No 4064/89 MERGER PROCEDURE Article 6(1)(b) NON-OPPOSITION Date: 06/10/1999 Also available in the CELEX database Document No 399M1694 Office for Official Publications of the European Communities L-2985 Luxembourg COMMISSION OF THE EUROPEAN COMMUNITIES Brussels, 06.10.1999 SG(99)D/7991 In the published version of this decision, some information has been omitted pursuant to Article 17(2) of Council Regulation (EEC) No PUBLIC VERSION 4064/89 concerning non-disclosure of business secrets and other confidential information. The MERGER PROCEDURE omissions are shown thus […]. ARTICLE 6(1)(b) DECISION Where possible the information omitted has been replaced by ranges of figures or a general description. To the notifying party Dear Sirs, Subject : Case No IV/M.1694-EMC/DATA GENERAL Notification of 3-09-19999 pursuant to Article 4 of Council Regulation No 4064/89. 1. On 3 September 1999, the Commission received a notification of a proposed concentration pursuant to Article 4 of Council Regulation (EEC) No 4064/891 by which EMC Corporation (“EMC”), USA, will acquire sole control of Data General Corporation (“Data General”), USA. 2. After examination of the notification the Commission has concluded that the notified operation falls within the scope of Council Regulation (EEC) No 4064/89 and does not raise serious doubts as to its compatibility with the common market and with the EEA Agreement. I. THE PARTIES 3. EMC Corporation , based in the U.S.A, is active mainly in the design and manufacture of a wide range of information technology products, including hardware, software and related services.
    [Show full text]
  • HS1CP Device Channel Processor Operating Software HSOF V3.1
    TM HS1CP Device Channel Processor Operating Software HSOF Version 3.1 Release Notes Order Number: EK−HS1CP−RN. E01 This document summarizes features and characteristics of the HS1CP Device Channel Processor operating software Version 3.1 that are not covered elsewhere in the documentation. These release notes also contain instructions for installing the software. _____________________________ Note____________________________ These Release Notes contain instructions for C_SWAP and HSUTIL that supersede information in the product documentation. Keep these Release Notes near your StorageWorks subsystem. ______________________________________________________________ Software Version: HSOF V3.1 Digital Equipment Corporation Maynard, Massachusetts April 1997 While Digital Equipment Corporation believes the information included in this manual is correct as of the date of publication, it is subject to change without notice. DIGITAL makes no representations that the interconnection of its products in the manner described in this document will not infringe existing or future patent rights, nor do the descriptions contained in this document imply the granting of licenses to make, use, or sell equipment or software in accordance with the description. No responsibility is assumed for the use or reliability of firmware on equipment not supplied by DIGITAL or its affiliated companies. Possession, use, or copying of the software or firmware described in this documentation is authorized only pursuant to a valid written license from DIGITAL, an authorized sublicensor, or the identified licensor. Commercial Computer Software, Computer Software Documentation and Technical Data for Commercial Items are licensed to the U.S. Government with DIGITAL’s standard commercial license and, when applicable, the rights in DFAR 252.227-7015, “Technical Data—Commercial Items.” © Digital Equipment Corporation 1997.
    [Show full text]
  • HP Integrity Nonstop Operations Guide for H-Series and J-Series Rvus
    HP Integrity NonStop Operations Guide for H-Series and J-Series RVUs HP Part Number: 529869-023 Published: February 2014 Edition: J06.03 and subsequent J-series RVUs and H06.13 and subsequent H-series RVUs © Copyright 2014 Hewlett-Packard Development Company, L.P. Legal Notice Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. Export of the information contained in this publication may require authorization from the U.S. Department of Commerce. Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation. Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Java® is a registered trademark of Oracle and/or its affiliates. Motif, OSF/1, Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The Open Group are trademarks of The Open Group in the U.S. and other countries. Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc.
    [Show full text]
  • The Complete Freebsd
    The Complete FreeBSD® If you find errors in this book, please report them to Greg Lehey <grog@Free- BSD.org> for inclusion in the errata list. The Complete FreeBSD® Fourth Edition Tenth anniversary version, 24 February 2006 Greg Lehey The Complete FreeBSD® by Greg Lehey <[email protected]> Copyright © 1996, 1997, 1999, 2002, 2003, 2006 by Greg Lehey. This book is licensed under the Creative Commons “Attribution-NonCommercial-ShareAlike 2.5” license. The full text is located at http://creativecommons.org/licenses/by-nc-sa/2.5/legalcode. You are free: • to copy, distribute, display, and perform the work • to make derivative works under the following conditions: • Attribution. You must attribute the work in the manner specified by the author or licensor. • Noncommercial. You may not use this work for commercial purposes. This clause is modified from the original by the provision: You may use this book for commercial purposes if you pay me the sum of USD 20 per copy printed (whether sold or not). You must also agree to allow inspection of printing records and other material necessary to confirm the royalty sums. The purpose of this clause is to make it attractive to negotiate sensible royalties before printing. • Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. • For any reuse or distribution, you must make clear to others the license terms of this work. • Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above.
    [Show full text]
  • ILLUSTRATIONS Figure 1.1 Eadweard Muybridge, Descending
    APPENDIX: ILLUSTRATIONS Figure 1.1 Eadweard Muybridge, Descending Stairs and Turning Around, photographs from series Animal Locomotion, 1884-1885. 236 237 Figure 1.2 Marcel Duchamp, Nude Descending a Staircase, No. 2 oil on canvas, 1912. Philadelphia Museum of Art. 238 Figure 1.3 Giacomo Balla, Dynamism of a Dog on a Leash, oil on canvas, 1912. Albright-Knox Art Gallery, Buffalo, New York. 239 Figure 1.4 A. Michael Noll, Gaussian Quadratic, computer-generated image, 1963. 240 Figure 1.5 Stephen Rusell with Peter Samson, Martin Graetz,Wayne Witanen, Alan Kotok, and Dan Edwards, Spacewar!, computer game, designed at MIT on DEC PDP-1 assembler, 1962. Above: view of screen. Below: console. 241 Figure 1.6 Andy Warhol, Self-Portrait, photograph of image created on Commodore Amiga 1000 computer using Graphicraft software, 1986. 242 Figure 1.7 Nam June Paik, Magnet TV, black and white television with magnet, 1965. 243 Figure 1.8 Nam June Paik, Zen for TV, black and white television, 1963-1975. 244 Figure 1.9 Vito Acconci, Centers, performance on video, 20 minutes, 1971. 245 Figure 1.10 Joan Jonas, Left Side, Right Side, performance on video, 1972. Pat Hearn Gallery, New York. 246 Figure 1.11 Dan Graham, Present Continuous Past, installation view, 1974. 247 Figure 1.12 Gary Hill, Hole in the Wall, installation at the Woodstock Artists Association, Woodstock, NY, 1974. 248 Figure 1.13 Nam June Paik, TV Buddha, mixed-media video sculpture, installed at Stedelijk Museum, Amsterdam, 1974. 249 Figure 2.1 jodi (Joan Heemskerk and Dirk Paesmans), wwwwwwwww.jodi.org, screenshot.
    [Show full text]