AI Chips: What They Are and Why They Matter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Taxonomy of Accelerator Architectures and Their
A taxonomy of accelerator C. Cas$caval S. Chatterjee architectures and their H. Franke K. J. Gildea programming models P. Pattnaik As the clock frequency of silicon chips is leveling off, the computer architecture community is looking for different solutions to continue application performance scaling. One such solution is the multicore approach, i.e., using multiple simple cores that enable higher performance than wide superscalar processors, provided that the workload can exploit the parallelism. Another emerging alternative is the use of customized designs (accelerators) at different levels within the system. These are specialized functional units integrated with the core, specialized cores, attached processors, or attached appliances. The design tradeoff is quite compelling because current processor chips have billions of transistors, but they cannot all be activated or switched at the same time at high frequencies. Specialized designs provide increased power efficiency but cannot be used as general-purpose compute engines. Therefore, architects trade area for power efficiency by placing in the design additional units that are known to be active at different times. The resulting system is a heterogeneous architecture, with the potential of specialized execution that accelerates different workloads. While designing and building such hardware systems is attractive, writing and porting software to a heterogeneous platform is even more challenging than parallelism for homogeneous multicore systems. In this paper, we propose a taxonomy that allows us to define classes of accelerators, with the goal of focusing on a small set of programming models for accelerators. We discuss several types of currently popular accelerators and identify challenges to exploiting such accelerators in current software stacks. -
News, Information, Rumors, Opinions, Etc
http://www.physics.miami.edu/~chris/srchmrk_nws.html ● Miami-Dade/Broward/Palm Beach News ❍ Miami Herald Online Sun Sentinel Palm Beach Post ❍ Miami ABC, Ch 10 Miami NBC, Ch 6 ❍ Miami CBS, Ch 4 Miami Fox, WSVN Ch 7 ● Local Government, Schools, Universities, Culture ❍ Miami Dade County Government ❍ Village of Pinecrest ❍ Miami Dade County Public Schools ❍ ❍ University of Miami UM Arts & Sciences ❍ e-Veritas Univ of Miami Faculty and Staff "news" ❍ The Hurricane online University of Miami Student Newspaper ❍ Tropic Culture Miami ❍ Culture Shock Miami ● Local Traffic ❍ Traffic Conditions in Miami from SmartTraveler. ❍ Traffic Conditions in Florida from FHP. ❍ Traffic Conditions in Miami from MSN Autos. ❍ Yahoo Traffic for Miami. ❍ Road/Highway Construction in Florida from Florida DOT. ❍ WSVN's (Fox, local Channel 7) live Traffic conditions in Miami via RealPlayer. News, Information, Rumors, Opinions, Etc. ● Science News ❍ EurekAlert! ❍ New York Times Science/Health ❍ BBC Science/Technology ❍ Popular Science ❍ Space.com ❍ CNN Space ❍ ABC News Science/Technology ❍ CBS News Sci/Tech ❍ LA Times Science ❍ Scientific American ❍ Science News ❍ MIT Technology Review ❍ New Scientist ❍ Physorg.com ❍ PhysicsToday.org ❍ Sky and Telescope News ❍ ENN - Environmental News Network ● Technology/Computer News/Rumors/Opinions ❍ Google Tech/Sci News or Yahoo Tech News or Google Top Stories ❍ ArsTechnica Wired ❍ SlashDot Digg DoggDot.us ❍ reddit digglicious.com Technorati ❍ del.ic.ious furl.net ❍ New York Times Technology San Jose Mercury News Technology Washington -
Artificial Intelligence in Health Care: the Hope, the Hype, the Promise, the Peril
Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril Michael Matheny, Sonoo Thadaney Israni, Mahnoor Ahmed, and Danielle Whicher, Editors WASHINGTON, DC NAM.EDU PREPUBLICATION COPY - Uncorrected Proofs NATIONAL ACADEMY OF MEDICINE • 500 Fifth Street, NW • WASHINGTON, DC 20001 NOTICE: This publication has undergone peer review according to procedures established by the National Academy of Medicine (NAM). Publication by the NAM worthy of public attention, but does not constitute endorsement of conclusions and recommendationssignifies that it is the by productthe NAM. of The a carefully views presented considered in processthis publication and is a contributionare those of individual contributors and do not represent formal consensus positions of the authors’ organizations; the NAM; or the National Academies of Sciences, Engineering, and Medicine. Library of Congress Cataloging-in-Publication Data to Come Copyright 2019 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. Suggested citation: Matheny, M., S. Thadaney Israni, M. Ahmed, and D. Whicher, Editors. 2019. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. Washington, DC: National Academy of Medicine. PREPUBLICATION COPY - Uncorrected Proofs “Knowing is not enough; we must apply. Willing is not enough; we must do.” --GOETHE PREPUBLICATION COPY - Uncorrected Proofs ABOUT THE NATIONAL ACADEMY OF MEDICINE The National Academy of Medicine is one of three Academies constituting the Nation- al Academies of Sciences, Engineering, and Medicine (the National Academies). The Na- tional Academies provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. -
X86 Platform Coprocessor/Prpmc (PC on a PMC)
x86 Platform Coprocessor/PrPMC (PC on a PMC) 32b/33MHz PCI bus PN1/PN2 +5V to Kbd/Mouse/USB power Vcore Power +3.3V +2.5v Conditioning +3.3VIO 1K100 FPGA & 512KB 10/100TX TMS2250 PCI BIOS/PLA Ethernet RJ45 Compact to PCI bridge Flash Memory PLA I/O Flash site 8 32b/33MHz Internal PCI bus Analog SVGA Video Pwr Seq AMD SC2200 Signal COM 1 (RXD/TXD only) IDE "GEODE (tm)" Conditioning COM 2 (RXD/TXD only) Processor USB Port 1 Rear I/O PN4 I/O Rear 64 USB Port 2 LPC Keyboard/Mouse Floppy 36 Pin 36 Pin Connector PC87364 128MB SDRAM Status LEDs Super I/O (16MWx64b) PC Spkr This board is a Processor PMC (PrPMC) implementing A PrPMC implements a TMS2250 PCI-to-PCI bridge to an x86-based PC architecture on a single-wide, stan- the host, and a “Coprocessor” cofniguration implements dard height PMC form factor. This delivers a complete back-to-back 16550 compatible COM ports. The “Mon- x86 platform with comprehensive I/O support, a 10/100- arch” signal selects either PrPMC or Co-processor TX Ethernet interface, and disk access (both floppy and mode. IDE drives). The board features an on-board hard drive using Compact Flash. A 512Kbyte FLASH memory holds the 1K100 PLA im- age that is automatically loaded on power up. It also At the heart of the design is an Advanced Micro De- contains the General Software Embedded BIOS 2000™ vices SC2200 GEODE™ processor that integrates video, BIOS code that is included with each board. -
Convey Overview
THE WORLD’S FIRST HYBRID-CORE COMPUTER. CONVEY HYBRID-CORE COMPUTING Hybrid-core Computing Convey HC-1 High Performance of application- specific hardware Heterogenous solutions • can be much more efficient Performance/ • still hard to program Programmability and Power efficiency deployment ease of an x86 server Application Multicore solutions • don’t always scale well • parallel programming is hard Low Difficult Ease of Deployment Easy 1/22/2010 3 Hybrid-Core Computing Application-Specific Personalities Applications • Extend the x86 instruction set • Implement key operations in Convey Compilers hardware Life Sciences x86-64 ISA Custom ISA CAE Custom Financial Oil & Gas Shared Virtual Memory Cache-coherent, shared memory • Both ISAs address common memory *ISA: Instruction Set Architecture 7/12/2010 4 HC-1 Hardware PCI I/O FPGA FPGA Intel Personalities Chipset FPGA FPGA 8 GB/s 80 GB/s Memory Memory Cache Coherent, Shared Virtual Memory 1/22/2010 5 Using Personalities C/C++ Fortran • Personalities are user specifies reloadable personality at instruction sets Convey Software compile time Development Suite • Compiler instruction generates x86 descriptions and coprocessor instructions from Hybrid-Core Executable P ANSI standard x86-64 and Coprocessor Personalities C/C++ & Fortran Instructions • Executable can run on x86 nodes FPGA Convey HC-1 or Convey Hybrid- bitfiles Core nodes Intel x86 Coprocessor personality loaded at runtime by OS 1/22/2010 6 SYSTEM ARCHITECTURE HC-1 Architecture “Commodity” Intel Server Convey FPGA-based coprocessor Direct -
AI Computer Wraps up 4-1 Victory Against Human Champion Nature Reports from Alphago's Victory in Seoul
The Go Files: AI computer wraps up 4-1 victory against human champion Nature reports from AlphaGo's victory in Seoul. Tanguy Chouard 15 March 2016 SEOUL, SOUTH KOREA Google DeepMind Lee Sedol, who has lost 4-1 to AlphaGo. Tanguy Chouard, an editor with Nature, saw Google-DeepMind’s AI system AlphaGo defeat a human professional for the first time last year at the ancient board game Go. This week, he is watching top professional Lee Sedol take on AlphaGo, in Seoul, for a $1 million prize. It’s all over at the Four Seasons Hotel in Seoul, where this morning AlphaGo wrapped up a 4-1 victory over Lee Sedol — incidentally, earning itself and its creators an honorary '9-dan professional' degree from the Korean Baduk Association. After winning the first three games, Google-DeepMind's computer looked impregnable. But the last two games may have revealed some weaknesses in its makeup. Game four totally changed the Go world’s view on AlphaGo’s dominance because it made it clear that the computer can 'bug' — or at least play very poor moves when on the losing side. It was obvious that Lee felt under much less pressure than in game three. And he adopted a different style, one based on taking large amounts of territory early on rather than immediately going for ‘street fighting’ such as making threats to capture stones. This style – called ‘amashi’ – seems to have paid off, because on move 78, Lee produced a play that somehow slipped under AlphaGo’s radar. David Silver, a scientist at DeepMind who's been leading the development of AlphaGo, said the program estimated its probability as 1 in 10,000. -
Going Vertical: a New Integration Era in the Semiconductor Industry Table of Contents
Going vertical: A new integration era in the semiconductor industry Table of contents 01 Executive overview Integration in the 02 semiconductor industry Strategic options for 03 semiconductor companies Moving forward: what semiconductor 04 companies must consider today Going vertical: A new integration era in the semiconductor industry 2 Executive overview Like many industries, the semiconductor industry is not immune to waves of diversification and consolidation through inorganic and organic growth. While inflection points with large-scale systemic changes in the value chain are relatively rare, our perspective is that there is a systemic change currently trending in the industry. Since the inception of the industry, semiconductor companies have recognized the value of technology. Accordingly, the market has rewarded semiconductor companies for specializing in distinct parts of the value chain by developing technological advantages by investing in R&D and by scaling technology through horizontal integration. This way of working transformed an industry that was initially vertically integrated (semiconductor design, semiconductor manufacturing, and system integration) into an ecosystem focused on specific areas of design, manufacturing, and/or systems. In the past five years, business value in some segments has moved from underlying technology to specific use cases to better monetize end-customer data and experience. • 5G, automotive, AI, cloud, system integration and hardware-software integration System integrators and software and cloud platform companies are no longer just important customers for the semiconductor industry—they are directly expanding into multiple upstream areas. • Taking advantage of silicon and system design • Control more of the technology stack • Optimize system performance • Improve the customer experience This vertical integration trend is distinctly different from the vertical integration which occurred at the inception of the semiconductor and integrated device manufacturing industry more than 50 years ago. -
Reinforcement Learning (1) Key Concepts & Algorithms
Winter 2020 CSC 594 Topics in AI: Advanced Deep Learning 5. Deep Reinforcement Learning (1) Key Concepts & Algorithms (Most content adapted from OpenAI ‘Spinning Up’) 1 Noriko Tomuro Reinforcement Learning (RL) • Reinforcement Learning (RL) is a type of Machine Learning where an agent learns to achieve a goal by interacting with the environment -- trial and error. • RL is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. • The purpose of RL is to learn an optimal policy that maximizes the return for the sequences of agent’s actions (i.e., optimal policy). https://en.wikipedia.org/wiki/Reinforcement_learning 2 • RL have recently enjoyed a wide variety of successes, e.g. – Robot controlling in simulation as well as in the real world Strategy games such as • AlphaGO (by Google DeepMind) • Atari games https://en.wikipedia.org/wiki/Reinforcement_learning 3 Deep Reinforcement Learning (DRL) • A policy is essentially a function, which maps the agent’s each action to the expected return or reward. Deep Reinforcement Learning (DRL) uses deep neural networks for the function (and other components). https://spinningup.openai.com/en/latest/spinningup/rl_intro.html 4 5 Some Key Concepts and Terminology 1. States and Observations – A state s is a complete description of the state of the world. For now, we can think of states belonging in the environment. – An observation o is a partial description of a state, which may omit information. – A state could be fully or partially observable to the agent. If partial, the agent forms an internal state (or state estimation). https://spinningup.openai.com/en/latest/spinningup/rl_intro.html 6 • States and Observations (cont.) – In deep RL, we almost always represent states and observations by a real-valued vector, matrix, or higher-order tensor. -
Architectures for Adaptive Low-Power Embedded Multimedia Systems
Architectures for Adaptive Low-Power Embedded Multimedia Systems zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften der Fakultät für Informatik Karlsruhe Institute of Technology (KIT) (The cooperation of the Universität Fridericiana zu Karlsruhe (TH) and the national research center of the Helmholtz-Gemeinschaft) genehmigte Dissertation von Muhammad Shafique Tag der mündlichen Prüfung: 31.01.2011 Referent: Prof. Dr.-Ing. Jörg Henkel, Karlsruhe Institute of Technology (KIT), Fakultät für Informatik, Lehrstuhl für Eingebettete Systeme (CES) Korreferent: Prof. Dr. Samarjit Chakraborty, Technische Universität München (TUM), Fakultät für Elektrotechnik und Informationtechnik, Lehrstuhl für Realzeit- Computersysteme (RCS) Muhammad Shafique Adlerstr. 3a 76133 Karlsruhe Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbständig verfasst habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen – die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. ____________________________________ Muhammad Shafique Acknowledgements I would like to present my cordial gratitude to my advisor Prof. Dr. Jörg Henkel for his erudite and invaluable supervision with sustained inspirations and incessant motivation. He guided me to explore the challenging research problems while giving me the complete flexibility, which provided the rationale to unleash my ingenuity and creativity along with an in-depth exploration of various research issues. His encouragement and meticulous feedback wrapped in constructive criticism helped me to keep the impetus and to remain streamlined on the road of research that resulted in the triumphant completion of this work. -
SIMD Extensions
SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel. -
0321741331.Pdf
THE PHOTOSHOP ELEMENTS 9 BOOK FOR DIGITAL PHOTOGRAPHERS The Photoshop Elements Published by 9 Book for Digital New Riders Photographers Team Copyright ©2011 by Scott Kelby CREATIVE DIRECTOR Felix Nelson First edition: November 2010 TECHNICAL EDITORS All rights reserved. No part of this book may be reproduced or transmitted in any Cindy Snyder form, by any means, electronic or mechanical, including photocopying, recording, Kim Doty or by any information storage and retrieval system, without written permission from the publisher, except for inclusion of brief quotations in a review. TRAFFIC DIRECTOR Kim Gabriel Composed in Frutiger, Lucida, and Apple Garamond Light by Kelby Media Group, Inc. PRODUCTION MANAGER Dave Damstra Trademarks All terms mentioned in this book that are known to be trademarks or service marks ART DIRECTOR have been appropriately capitalized. New Riders cannot attest to the accuracy of Jessica Maldonado this information. Use of a term in the book should not be regarded as affecting the validity of any trademark or service mark. COVER PHOTOS COURTESY OF Photoshop Elements is a registered trademark of Adobe Systems, Inc. Scott Kelby Windows is a registered trademark of Microsoft Corporation. Matt Kloskowski Macintosh is a registered trademark of Apple Inc. iStockphoto.com Warning and Disclaimer This book is designed to provide information about Photoshop Elements for digital photographers. Every effort has been made to make this book as complete and as accurate as possible, but no warranty of fitness is implied. The information is provided on an as-is basis. The authors and New Riders shall have neither the liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it. -
OLIVAW: Mastering Othello with Neither Humans Nor a Penny Antonio Norelli, Alessandro Panconesi Dept
1 OLIVAW: Mastering Othello with neither Humans nor a Penny Antonio Norelli, Alessandro Panconesi Dept. of Computer Science, Universita` La Sapienza, Rome, Italy Abstract—We introduce OLIVAW, an AI Othello player adopt- of companies. Another aspect of the same problem is the ing the design principles of the famous AlphaGo series. The main amount of training needed. AlphaGo Zero required 4.9 million motivation behind OLIVAW was to attain exceptional competence games played during self-play. While to attain the level of in a non-trivial board game at a tiny fraction of the cost of its illustrious predecessors. In this paper, we show how the grandmaster for games like Starcraft II and Dota 2 the training AlphaGo Zero’s paradigm can be successfully applied to the required 200 years and more than 10,000 years of gameplay, popular game of Othello using only commodity hardware and respectively [7], [8]. free cloud services. While being simpler than Chess or Go, Thus one of the major problems to emerge in the wake Othello maintains a considerable search space and difficulty of these breakthroughs is whether comparable results can be in evaluating board positions. To achieve this result, OLIVAW implements some improvements inspired by recent works to attained at a much lower cost– computational and financial– accelerate the standard AlphaGo Zero learning process. The and with just commodity hardware. In this paper we take main modification implies doubling the positions collected per a small step in this direction, by showing that AlphaGo game during the training phase, by including also positions not Zero’s successful paradigm can be replicated for the game played but largely explored by the agent.