AI Acceleration – Image Processing As a Use Case

Total Page:16

File Type:pdf, Size:1020Kb

AI Acceleration – Image Processing As a Use Case AI acceleration – image processing as a use case Masoud Daneshtalab Associate Professor at MDH www.idt.mdh.se/~md/ Outline • Dark Silicon • Heterogeneouse Computing • Approximation – Deep Neural Networks 2 The glory of Moore’s law Intel 4004 Intel Core i7 980X 2300 transistors 1.17B transistors 740 kHz clock 3.33 GHz clock 10um process 32nm process 10.8 usec/inst 73.4 psec/inst Every 2 Years • Double the number of transistors • Build higher performance general-purpose processors ⁻ Make the transistors available to masses ⁻ Increase performance (1.8×↑) ⁻ Lower the cost of computing (1.8×↓) Semiconductor trends ITRS roadmap for SoC Design Complexity Trens ITRS: International Technology Roadmap for Semiconductors Expected number of processing elements into a System-on-Chip (SoC). 4 Semiconductor trends ITRS roadmap for SoC Design Complexity Trens 5 Semiconductor trends Network-on-Chip (NoC) –based Multi/Many-core Systems Founder: Andreas Olofsson Sponsored by Ericsson AB 6 Dark Silicon Era The catch is powering exponentially increasing number of transistors without melting the chip down. 10 10 Chip Transistor Count 2,200,000,000 109 Chip Power 108 107 106 105 2300 104 103 130 W 102 101 0.5 W 100 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 If you cannot power them, why bother making them? 7 Dark Silicon Era The catch is powering exponentially increasing number of transistors without melting the chip down. 10 10 Chip Transistor Count 2,200,000,000 109 Chip Power 108 107 Dark Silicon 106 105 (Utilization Wall) 2300 104 Fraction of transistors that need to be 103 powered off at all times due to power 130 W 2 constraints. 10 101 0.5 W 100 Lower utilization, Lower performane 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 If you cannot power them, why bother making them? 8 Evaluation of processors 9 Even multicores could not help! [Esmaeilzadeh, Blem, St. Amant, Sankaralingam, Burger, ISCA 2011] 10 End to Moore’s law? Source: Shekhar Borkar, Intel Corporation Multicores are likely to be a stopgap Not likely to continue the historical trends Do not overcome the transistor scaling trends The performance gap is significantly large 11 End to Moore’s law? Source: Shekhar Borkar, Intel Corporation • HW/SW specialization and heterogeneity • Approximate computing • New emerging technologies (under development) 12 Where we are now and what’s the trend? ITRS roadmap for SoC Portable Design Complexity Trens ITRS: International Technology Roadmap for Semiconductors SoC Architecture Template. The SOC embodies a highly parallel architecture consisting of • Main processors (grow slowly) • PEs (Processing Engines) (grow faster) This architecture template enables both high . customized processor processing performance and low power . Accelerators (function). consumption by virtue of parallel processing • Peripherals and hardware realization of specific functions. • Memories (proportional to #PEs) • Die size of 49mm2 gradually decreases to 44mm2 13 Example: OMAP (Open Multimedia Applications Platform) 14 Paradigm Shift from Homogeneity to Heterogeneity Heterogenous (Zynq/HSA-like) HW/SW SoC platform Programmable Logic Application Processing Unit GPU ARM Mali ARM Cortex A53 ARM Cortex A53 64KB L2 Cache ARM Cortex A53 ARM Cortex A53 Security 4x32KB I-Chache 4x32KB D-Chache AES SCU DMA Trust Zone 1MB L2 Cache GIC MMU V/T Monitring Real-Time Processing Unit DMA ARM Cortex R5 ARM Cortex R5 128KB TCM GIC 2x32KB I-Chache 2x32KB I-Chache MMU 15 Heterogeneous Computing Programmable Logic Application Processing Unit GPU ARM Mali Transforming von Neumann to heterogeneity ARM Cortex A53 ARM Cortex A53 64KB L2 Cache ARM Cortex A53 ARM Cortex A53 Security 4x32KB I-Chache 4x32KB D-Chache AES SCU DMA Trust Zone 1MB L2 Cache GIC MMU V/T Monitring Real-Time Processing Unit DMA ARM Cortex R5 ARM Cortex R5 128KB TCM GIC 2x32KB I-Chache 2x32KB I-Chache MMU Find critical part of Compile the program Execute on a fast specialized program component & specilized SW/HW processing engine (PE) 16 Approximate computing • Relax the abstraction of near-perfect accuracy in general-purpose computing • Allow errors to happen in the computation Run faster Power efficient • This sounds a bit crazy but a large body of important applications having some amount of errors in the computation, entirely acceptable! Computer vision, multimedia, stream applications Large-scale machine learning Bioinformatics Mining big data Speech and AI 17 Approximate computing (cont.) Embracing error: 18 Approximate computing (cont.) Embracing error: 0% 100% 2% 60% Errors Energy Errors Energy 20% 45% 70% 20% Errors Energy Errors Energy 19 Approximate computing (cont.) Transforming von Neumann to Neural Networks Speed: ~4×↑, Energy: ~10×↓, Quality: 5%↓) [Esmaeilzadeh, and Burger, MICRO 2012] 20 Approximate computing (cont.) Zynq/HSA-like HW/SW SoC platform Programmable Logic Application Processing Unit ARM Cortex A53 ARM Cortex A53 ARM Cortex A53 ARM Cortex A53 4x32KB I-Chache 4x32KB D-Chache SCU DMA 1MB L2 Cache GIC MMU Neuromorphic Application 21 Why Deep Learning (Neuromorphic)? # of papers Neuromorphic computing scales well # of citations increasing complexity of problems. Intel: Nervana and Movidius Google: Tensor Nvidia: Jetson TX1 and TX2 specialized for DNN Microsoft: BrainWave Qualcomm: Zeroth Processors, extending with NVM IBM: TrueNorth Biological and silicon neurons have much better power and Auviz/Xilinx: CNN accelarator space efficiencies than digital computers [MIT & Intel] 22 Computing Platform Potential applications: Bionix Programmable Logic Application Processing Unit GPU ARM Mali ARM Cortex A53 ARM Cortex A53 64KB L2 Cache ARM Cortex A53 ARM Cortex A53 Security 4x32KB I-Chache 4x32KB D-Chache AES SCU DMA Trust Zone 1MB L2 Cache GIC MMU V/T Monitring Real-Time Processing Unit DMA ARM Cortex R5 ARM Cortex R5 128KB TCM GIC Autonomous 2x32KB I-Chache 2x32KB I-Chache MMU UAV/vehicle/robot WSN/IoT/Wearables Wearable System DSP + Memory Preprocessing Mainprocessing Postprocessing ADC Communication ADC (Filtering & (Feature extraction & (Compression & ADC (TX/RX) Segmentation) Classification) Encryption) 23 24 Autonomous vehicles & Technology Used • Vision Camera: – Cameras are the only sensor technology that can capture texture, color and contrast information and the high level of detail captured by cameras allow them to be the leading technology for classification. • make camera sensors indispensable for autonomous systems. – The camera sensor technology play a very large role in autonomous vehicle. Camera will becomes domnant U.S. collision avoidance sensors market, by technology, 2014 - 2025 (USD Million) Some examples of camera in the Advanced driver- assistance systems (ADAS) application: • Adaptive Cruise Control (ACC) • Automatic High Beam Control (AHBC) • Traffic Sign Recognition (TSR) • Lane Keep Systems (LKS) 25 * Real-time data will grow at 1.5 times the rate of Heterogeneous Era overall data creation Heterogenous embedded platform: • We need high-performance embedded computing machines to deal with huge amount of heterogeneous sensor inputs while executing multiple algorithms for autonomy! • Examples: Perception: • (parallel) Heterogenenous Computing – 3-D imaging with multiple lasers (LIDAR). – Edge-Detection Algorithm • Deep Learning – Motion-Detection algorithm – Tracking algorithm 26 Heterogeneous Era (cont.) - HW&SW Integration - Based on legacy code - Map the legacy code to heterogeneous architgectures Code generation Find a critical Compile the program Execute on the HW logic from modeling program component & generate HW logics 27 Heterogeneous Era (cont.) - HW&SW Integration - Based on legacy code - Generting and optimizing deep neural nerwork Code generation Find a critical Compile the program Execute on the smart and from modeling program component , generate & train a NN faster logic 28 Heterogeneous Era (cont.) DeepMaker: Deep Learning Accelerator on Commercial Programmable Devices Frontend Layer Backend Layer DNN Builder Instrumented Source code via multi-objective optimization CPU binary Hardware Training Sets (accuracy, energy, etc.) Multi-core CPU Library constraints GPU Code generator Mapping DNN_send (a); c = filter (a); DNN_rec (&c); FPGA System Hand-optimized constraints HW&SW Templates Heterogeneous System Deep Neural Network Accelerators (DeNNA): (c) Core Micro-Architecture FPGA Device Bufferi Input data Communication and Memory Interface Scheduler Input from Corei+1 Output to Streaming Streaming Streaming Corei-1 scratchpad 0 scratchpad 1 scratchpad m ALU DNN weights Accumulator Ctrl Unit Cluster00 Cluster01 Cluster0m FIFO Core0 Corei output 0 0 Cluster10 Cluster11 Cluster1m Core Unit Buffer ) Activation Activation sigmoid ( Pooling 1 - ) Normalization 1 - n x ( n f Lookup Core Buffer Clustern0 Clustern1 Clusternm Weight buffer Cluster10 (b) Cluster Micro-Architecture (a) DeNNA Architecture DeepMaker • Mohammad will continue with some of the latest results • How we generate optimal models for deep networks • Some results for image processing with industrial dataset 29 DeepMaker Framework Mohammad Loni, Masoud Daneshtalab {mohammad.loni, masoud.daneshtalab}@mdh.se School of Innovation, Design and Engineering Mälardalen University, Sweden 12 Dec. 2018, Västerås Agenda ● Convolutional Neural Networks (CNNs) ● Processing Challenges of CNNs ● DeepMaker Framework ● Classification/Implementation Results ● Conclusion ● References 2 CNN ● CNN is composed of multiple layers running in sequence, where input data is fed to the first layer and output is
Recommended publications
  • GPU Developments 2018
    GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR.
    [Show full text]
  • Mali-400 MP: a Scalable GPU for Mobile Devices
    Mali-400 MP: A Scalable GPU for Mobile Devices Tom Olson Director, Graphics Research, ARM Outline . ARM and Mobile Graphics . Design Constraints for Mobile GPUs . Mali Architecture Overview . Multicore Scaling in Mali-400 MP . Results 2 About ARM . World’s leading supplier of semiconductor IP . Processor Architectures and Implementations . Related IP: buses, caches, debug & trace, physical IP . Software tools and infrastructure . Business Model . License fees . Per-chip royalties . Graphics at ARM . Acquired Falanx in 2006 . ARM Mali is now the world’s most widely licensed GPU family 3 Challenges for Mobile GPUs . Size . Power . Memory Bandwidth 4 More Challenges . Graphics is going into “anything that has a screen” . Mobile . Navigation . Set Top Box/DTV . Automotive . Video telephony . Cameras . Printers . Huge range of form factors, screen sizes, power budgets, and performance requirements . In some applications, a huge difference between peak and average performance requirements 5 Solution: Scalability . Address a wide variety of performance points and applications with a single IP and a single software stack. Need static scalability to adapt to different peak requirements in different platforms / markets . Need dynamic scalability to reduce power when peak performance isn’t needed 6 Options for Scalability . Fine-grained: Multiple pipes, wide SIMD, etc . Proven approach, efficient and effective . But, adding pipes / lanes is invasive . Hard for IP licensees to do on their own . And, hard to partition to provide dynamic scalability . Coarse-grained: Multicore . Easy for licensees to select desired performance . Putting cores on separate power islands allows dynamic scaling 7 Mali 400-MP Top Level Architecture Asynch Mali-400 MP Top-Level APB Geometry Pixel Processor Pixel Processor Pixel Processor Pixel Processor Processor #1 #2 #3 #4 CLKs MaliMMUs RESETs IRQs IDLEs MaliL2 AXI .
    [Show full text]
  • 45-Year CPU Evolution: One Law and Two Equations
    45-year CPU evolution: one law and two equations Daniel Etiemble LRI-CNRS University Paris Sud Orsay, France [email protected] Abstract— Moore’s law and two equations allow to explain the a) IC is the instruction count. main trends of CPU evolution since MOS technologies have been b) CPI is the clock cycles per instruction and IPC = 1/CPI is the used to implement microprocessors. Instruction count per clock cycle. c) Tc is the clock cycle time and F=1/Tc is the clock frequency. Keywords—Moore’s law, execution time, CM0S power dissipation. The Power dissipation of CMOS circuits is the second I. INTRODUCTION equation (2). CMOS power dissipation is decomposed into static and dynamic powers. For dynamic power, Vdd is the power A new era started when MOS technologies were used to supply, F is the clock frequency, ΣCi is the sum of gate and build microprocessors. After pMOS (Intel 4004 in 1971) and interconnection capacitances and α is the average percentage of nMOS (Intel 8080 in 1974), CMOS became quickly the leading switching capacitances: α is the activity factor of the overall technology, used by Intel since 1985 with 80386 CPU. circuit MOS technologies obey an empirical law, stated in 1965 and 2 Pd = Pdstatic + α x ΣCi x Vdd x F (2) known as Moore’s law: the number of transistors integrated on a chip doubles every N months. Fig. 1 presents the evolution for II. CONSEQUENCES OF MOORE LAW DRAM memories, processors (MPU) and three types of read- only memories [1]. The growth rate decreases with years, from A.
    [Show full text]
  • Intel Desktop Board DG41MJ Product Guide
    Intel® Desktop Board DG41MJ Product Guide Order Number: E59138-001 Revision History Revision Revision History Date -001 First release of the Intel® Desktop Board DG41MJ Product Guide February 2009 If an FCC declaration of conformity marking is present on the board, the following statement applies: FCC Declaration of Conformity This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. For questions related to the EMC performance of this product, contact: Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124 1-800-628-8686 This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna. • Increase the separation between the equipment and the receiver. • Connect the equipment to an outlet on a circuit other than the one to which the receiver is connected.
    [Show full text]
  • GMAI: a GPU Memory Allocation Inspection Tool for Understanding and Exploiting the Internals of GPU Resource Allocation in Critical Systems
    The final publication is available at ACM via http://dx.doi.org/ 10.1145/3391896 GMAI: A GPU Memory Allocation Inspection Tool for Understanding and Exploiting the Internals of GPU Resource Allocation in Critical Systems ALEJANDRO J. CALDERÓN, Universitat Politècnica de Catalunya & Ikerlan Technology Research Centre LEONIDAS KOSMIDIS, Barcelona Supercomputing Center (BSC) CARLOS F. NICOLÁS, Ikerlan Technology Research Centre FRANCISCO J. CAZORLA, Barcelona Supercomputing Center (BSC) PEIO ONAINDIA, Ikerlan Technology Research Centre Critical real-time systems require strict resource provisioning in terms of memory and timing. The constant need for higher performance in these systems has led industry to recently include GPUs. However, GPU software ecosystems are by their nature closed source, forcing system engineers to consider them as black boxes, complicating resource provisioning. In this work we reverse engineer the internal operations of the GPU system software to increase the understanding of their observed behaviour and how resources are internally managed. We present our methodology which is incorporated in GMAI (GPU Memory Allocation Inspector), a tool which allows system engineers to accurately determine the exact amount of resources required by their critical systems, avoiding underprovisioning. We first apply our methodology on a wide range of GPU hardware from different vendors showing itsgeneralityin obtaining the properties of the GPU memory allocators. Next, we demonstrate the benefits of such knowledge in resource provisioning of two case studies from the automotive domain, where the actual memory consumption is up to 5.6× more than the memory requested by the application. ACM Reference Format: Alejandro J. Calderón, Leonidas Kosmidis, Carlos F. Nicolás, Francisco J.
    [Show full text]
  • Comparing the Power and Performance of Intel's SCC to State
    Comparing the Power and Performance of Intel’s SCC to State-of-the-Art CPUs and GPUs Ehsan Totoni, Babak Behzad, Swapnil Ghike, Josep Torrellas Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA E-mail: ftotoni2, bbehza2, ghike2, [email protected] Abstract—Power dissipation and energy consumption are be- A key architectural challenge now is how to support in- coming increasingly important architectural design constraints in creasing parallelism and scale performance, while being power different types of computers, from embedded systems to large- and energy efficient. There are multiple options on the table, scale supercomputers. To continue the scaling of performance, it is essential that we build parallel processor chips that make the namely “heavy-weight” multi-cores (such as general purpose best use of exponentially increasing numbers of transistors within processors), “light-weight” many-cores (such as Intel’s Single- the power and energy budgets. Intel SCC is an appealing option Chip Cloud Computer (SCC) [1]), low-power processors (such for future many-core architectures. In this paper, we use various as embedded processors), and SIMD-like highly-parallel archi- scalable applications to quantitatively compare and analyze tectures (such as General-Purpose Graphics Processing Units the performance, power consumption and energy efficiency of different cutting-edge platforms that differ in architectural build. (GPGPUs)). These platforms include the Intel Single-Chip Cloud Computer The Intel SCC [1] is a research chip made by Intel Labs (SCC) many-core, the Intel Core i7 general-purpose multi-core, to explore future many-core architectures. It has 48 Pentium the Intel Atom low-power processor, and the Nvidia ION2 (P54C) cores in 24 tiles of two cores each.
    [Show full text]
  • Technology & Energy
    This Unit: Technology & Energy • Technology basis • Fabrication (manufacturing) & cost • Transistors & wires CIS 501: Computer Architecture • Implications of transistor scaling (Moore’s Law) • Energy & power Unit 3: Technology & Energy Slides'developed'by'Milo'Mar0n'&'Amir'Roth'at'the'University'of'Pennsylvania'' with'sources'that'included'University'of'Wisconsin'slides' by'Mark'Hill,'Guri'Sohi,'Jim'Smith,'and'David'Wood' CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy 1 CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy 2 Readings Review: Simple Datapath • MA:FSPTCM • Section 1.1 (technology) + 4 • Section 9.1 (power & energy) Register Data Insn File PC s1 s2 d Mem • Paper Mem • G. Moore, “Cramming More Components onto Integrated Circuits” • How are instruction executed? • Fetch instruction (Program counter into instruction memory) • Read registers • Calculate values (adds, subtracts, address generation, etc.) • Access memory (optional) • Calculate next program counter (PC) • Repeat • Clock period = longest delay through datapath CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy 3 CIS 501: Comp. Arch. | Prof. Milo Martin | Technology & Energy 4 Recall: Processor Performance • Programs consist of simple operations (instructions) • Add two numbers, fetch data value from memory, etc. • Program runtime = “seconds per program” = (instructions/program) * (cycles/instruction) * (seconds/cycle) • Instructions per program: “dynamic instruction count” • Runtime count of instructions executed by the program • Determined by program, compiler, instruction set architecture (ISA) • Cycles per instruction: “CPI” (typical range: 2 to 0.5) • On average, how many cycles does an instruction take to execute? • Determined by program, compiler, ISA, micro-architecture Technology & Fabrication • Seconds per cycle: clock period, length of each cycle • Inverse metric: cycles per second (Hertz) or cycles per ns (Ghz) • Determined by micro-architecture, technology parameters • This unit: transistors & semiconductor technology CIS 501: Comp.
    [Show full text]
  • Intel® Desktop Board DG965RY Product Guide
    Intel® Desktop Board DG965RY Product Guide Order Number: D46818-003 Revision History Revision Revision History Date -001 First release of the Intel® Desktop Board DG965RY Product Guide June 2006 -002 Second release of the Intel® Desktop Board DG965RY Product Guide September 2006 -003 Added operating system support December 2006 If an FCC declaration of conformity marking is present on the board, the following statement applies: FCC Declaration of Conformity This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. For questions related to the EMC performance of this product, contact: Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124 1-800-628-8686 This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna.
    [Show full text]
  • Introduction to Cpu
    microprocessors and microcontrollers - sadri 1 INTRODUCTION TO CPU Mohammad Sadegh Sadri Session 2 Microprocessor Course Isfahan University of Technology Sep., Oct., 2010 microprocessors and microcontrollers - sadri 2 Agenda • Review of the first session • A tour of silicon world! • Basic definition of CPU • Von Neumann Architecture • Example: Basic ARM7 Architecture • A brief detailed explanation of ARM7 Architecture • Hardvard Architecture • Example: TMS320C25 DSP microprocessors and microcontrollers - sadri 3 Agenda (2) • History of CPUs • 4004 • TMS1000 • 8080 • Z80 • Am2901 • 8051 • PIC16 microprocessors and microcontrollers - sadri 4 Von Neumann Architecture • Same Memory • Program • Data • Single Bus microprocessors and microcontrollers - sadri 5 Sample : ARM7T CPU microprocessors and microcontrollers - sadri 6 Harvard Architecture • Separate memories for program and data microprocessors and microcontrollers - sadri 7 TMS320C25 DSP microprocessors and microcontrollers - sadri 8 Silicon Market Revenue Rank Rank Country of 2009/2008 Company (million Market share 2009 2008 origin changes $ USD) Intel 11 USA 32 410 -4.0% 14.1% Corporation Samsung 22 South Korea 17 496 +3.5% 7.6% Electronics Toshiba 33Semiconduc Japan 10 319 -6.9% 4.5% tors Texas 44 USA 9 617 -12.6% 4.2% Instruments STMicroelec 55 FranceItaly 8 510 -17.6% 3.7% tronics 68Qualcomm USA 6 409 -1.1% 2.8% 79Hynix South Korea 6 246 +3.7% 2.7% 812AMD USA 5 207 -4.6% 2.3% Renesas 96 Japan 5 153 -26.6% 2.2% Technology 10 7 Sony Japan 4 468 -35.7% 1.9% microprocessors and microcontrollers
    [Show full text]
  • Intel® Desktop Board DG41TX Product Guide
    Intel® Desktop Board DG41TX Product Guide Order Number: E88309-001 Revision History Revision Revision History Date ® -001 First release of the Intel Desktop Board DG41TX Product Guide February 2010 Disclaimer INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Intel Desktop Board DG41TX may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from Intel Corporation by going to the World Wide Web site at: http://intel.com/ or by calling 1-800-548-4725. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. * Other names and brands may be claimed as the property of others.
    [Show full text]
  • The Bifrost GPU Architecture and the ARM Mali-G71 GPU
    The Bifrost GPU architecture and the ARM Mali-G71 GPU Jem Davies ARM Fellow and VP of Technology Hot Chips 28 Aug 2016 Introduction to ARM Soft IP . ARM licenses Soft IP cores (amongst other things) to our Silicon Partners . They then make chips and sell to OEMs, who sell consumer devices . “ARM doesn’t make chips”… . We provide all the RTL, integration testbenches, memories lists, reference floorplans, example synthesis scripts, sometimes models, sometimes FPGA images, sometimes with implementation advice, always with memory system requirements/recommendations . Consequently silicon area, power, frequencies, performance, benchmark scores can therefore vary quite a bit in real silicon… 2 © ARM2016 ARM Mali: The world’s #1 shipping GPU 750M 65 27 Mali-based new Mali GPUs shipped 140 Total licenses in in 2015 Total licenses licensees FY15 Mali is in: Mali graphics based IC shipments (units) 750m ~75% ~50% ~40% 550m of of of 400m DTVs… tablets… smartphones 150m <50m 2011 2012 2013 2014 2015 3 © ARM2016 ARM Mali graphics processor generations Mali-G71 BIFROST … GPU Unified shader cores, scalar ISA, clause execution, full coherency, Vulkan, OpenCL MIDGARD Mali-T600 GPU series Mali-T700 GPU series Mali-T800 GPU series Unified shader cores, SIMD ISA, OpenGL ES 3.x, OpenCL, Vulkan Presented at HotChips 2015 Mali-200 Mali-300 Mali-400 Mali-450 Mali-470 UTGARD GPU GPU GPU GPU GPU Separate shader cores, SIMD ISA, OpenGL ES 2.x 4 © ARM2016 Bifrost features . Leverages Mali’s scalable architecture . Scalable to 32 shader cores 20% Scalable to 32 Higher energy Shader cores . Major shader core redesign efficiency* .
    [Show full text]
  • AI Chips: What They Are and Why They Matter
    APRIL 2020 AI Chips: What They Are and Why They Matter An AI Chips Reference AUTHORS Saif M. Khan Alexander Mann Table of Contents Introduction and Summary 3 The Laws of Chip Innovation 7 Transistor Shrinkage: Moore’s Law 7 Efficiency and Speed Improvements 8 Increasing Transistor Density Unlocks Improved Designs for Efficiency and Speed 9 Transistor Design is Reaching Fundamental Size Limits 10 The Slowing of Moore’s Law and the Decline of General-Purpose Chips 10 The Economies of Scale of General-Purpose Chips 10 Costs are Increasing Faster than the Semiconductor Market 11 The Semiconductor Industry’s Growth Rate is Unlikely to Increase 14 Chip Improvements as Moore’s Law Slows 15 Transistor Improvements Continue, but are Slowing 16 Improved Transistor Density Enables Specialization 18 The AI Chip Zoo 19 AI Chip Types 20 AI Chip Benchmarks 22 The Value of State-of-the-Art AI Chips 23 The Efficiency of State-of-the-Art AI Chips Translates into Cost-Effectiveness 23 Compute-Intensive AI Algorithms are Bottlenecked by Chip Costs and Speed 26 U.S. and Chinese AI Chips and Implications for National Competitiveness 27 Appendix A: Basics of Semiconductors and Chips 31 Appendix B: How AI Chips Work 33 Parallel Computing 33 Low-Precision Computing 34 Memory Optimization 35 Domain-Specific Languages 36 Appendix C: AI Chip Benchmarking Studies 37 Appendix D: Chip Economics Model 39 Chip Transistor Density, Design Costs, and Energy Costs 40 Foundry, Assembly, Test and Packaging Costs 41 Acknowledgments 44 Center for Security and Emerging Technology | 2 Introduction and Summary Artificial intelligence will play an important role in national and international security in the years to come.
    [Show full text]