An Annotated Checklist Slime Molds (Myxomycetes = Myxogastrea) of Western Kazakhstan

Total Page:16

File Type:pdf, Size:1020Kb

An Annotated Checklist Slime Molds (Myxomycetes = Myxogastrea) of Western Kazakhstan doi:10.29203/ka.2020.493 Karstenia, Volume 58 (2020), Issue 2, pages 168-189 CHECKLIST www.karstenia.fi An annotated checklist slime molds (Myxomycetes = Myxogastrea) of western Kazakhstan Inna Zemlyanskaya1, Yuri Novozhilov2, Martin Schnittler3 Abstract 1 Volgograd State Medical University, Pavshikh Bortsov Winter-cold arid regions of western Kazakhstan Square 1, Volgograd 400131, Russia were surveyed for myxomycetes for a period of 20 2 Laboratory of Systematics and Geography of Fungi, years. A total of 3228 records belonging to 111 spe- Komarov Botanical Institute of the Russian Academy cies from 31 genera and 10 families are provided in of Sciences, Prof. Popov Str. 2, St. Petersburg 197376, an annotated checklist. The checklist contains data Russia on the localities, habitats, substrates, methods of 3 General Botany and Plant Systematics, Institute of collection and voucher numbers of specimens de- Botany and Landscape Ecology, University Greifswald, Soldmannstr. 15, Greifswald 17487, Germany posited in the mycological herbarium (LE) of the V.L. Komarov Botanical Institute of the Russian * Corresponding author: Academy of Sciences. Additionally the bibliographic [email protected] references of the myxomycete species findings in the study area are given. Due to the very arid climate of Keywords: Amoebozoa, arid regions, biodiversity, the region, 2911 specimens (ca. 90%) were obtained steppe, desert, slime molds, species inventory, from 1653 moist chamber cultures prepared with Myxogastria, Kazakhstan samples taken from bark of living plants, litter and the weathered dung of herbivorous animals. Only Article info: 317 specimens of myxomycetes were collected di- Received: 4 August 2020 rectly in the field, mostly in woody artificial plan- Accepted: 11 September 2020 tations. The lowest species diversity was observed Published online: 13 October 2020 Corresponding Editor: Nikki Heherson A. Dagamac in habitats with halophytic vegetation, where on Assistant Editor: Oleg Schchepin average only 1–2 species were recorded per moist chamber culture. Only Perichaena depressa and P. 169 liceoides were common under such conditions. The vozhilov & Golubeva 1986; Novozhilov & Schnittler highest diversity of myxomycetes was observed in 2008) and the Tarim Basin with the adjacent moun- the intrazonal woody communities of the steppe tains of the eastern Tian-Shan in China (Schnittler zone, which are usually associated with river valleys et al. 2013) to explore the diversity of myxomycetes and artificial woody plantations. In these habitats in the winter-cold steppes and deserts of Eurasia. lignicolous species occurred: Amaurochaete atra, Here we present the results of a survey targeting one Arcyria obvelata, Cribraria cancellata, Lamproderma of the largest geographical regions of the Republic of scintillans, Lycogala epidendrum, Metatrichia vespar- Kazakhstan, Western Kazakhstan. ia, Oligonema flavidum, Stemonitis axifera, S. fusca, The first information on myxomycetes of West- S. herbatica, S.pallida, Symphytocarpus confluens, ern Kazakhstan is provided in the early monograph and Trichia contorta. However, the apparently most of A.A. Yachevskiy (1907), which indicates only one common species of myxomycetes in the studied species - Mucilago crustacea Wigg. Later, three spe- area are associated with litter or bark: Badhamia fo- cies: Badhamia utricularis (Bull.) Berk., Fuligo septica liicola, B. spinispora, Didymium anellus, D. difforme, (L.) F.H. Wigg., and Lycogala flavofuscum (Ehrenb.) D. trachysporum, Echinostelium colliculosum, Fuligo Rostaf. were registered in the woody communities cinerea, Licea denudescens, L. nannengae, L. para- (Vasyagina et al. 1977). The first systematic survey in sitica, Macbrideola oblonga, Pericaena depressa, P. this region was carried out in 1995 by M. Schnittler, corticalis, P. liceoides, P. vermicularis, Physarum ci- within an expedition led by I.N. Safronova, focus- nereum, and Ph. pseudonotabile. Among substrate ing on the Mangyshlak Peninsula (Schnittler & No- types, species diversity and richness decrease from vozhilov 2000; Schnittler 2001), these authors identi- wood over ground litter to bark, and dung of her- fied 513 myxomycete collections with 27 species, all bivorous animals. Shannon diversity and species obtained in moist chamber cultures. richness reached maximum values in the intrazonal Subsequently, several field trips (2004-2007) in and artificial woody communities, whereas treeless Kazakhstan were conducted by the authors of this sagebrush desert and dry steppe communities and, paper, resulting in additional myxomycetes spe- halophytic vegetation had the most depauperate yet cies collected over many years with the support of most specific myxomycete assemblages. Assemblag- the grant “Planetary Biodiversity Inventions: Glob- es associated with these vegetation types displayed al Biodiversity of Eumycetozoans” (NSF grant No. a high level of similarity to those of myxomycete 0316284, Co-principal Investigator Prof. S.L. Ste- assemblages from other arid regions of Kazakh- phenson) and several grants of the Russian Foun- stan and Central Asia. In contrast, assemblages of dation of Basic Research (Novozhilov et al. 2003, the artificial woody plantations in the study region 2006; Novozhilov, Schnittler & Zemlyanskaya 2005a, displayed a high level of similarity to those of boreal 2005b, 2005c; Zemlyanskaya, Adamonyte & Krivom- forest regions of Siberia for which data exist, but dif- az 2005; Novozhilov & Zemlyanskaya 2020). fered from the assemblages documented from tree- less desert and steppe regions of Eurasia. Materials and methods Introduction Study area This paper continues a series of surveys throughout Western Kazakhstan is an economic and geograph- arid regions of Eurasia, reaching from the Caspian ical region of the Republic of Kazakhstan and bor- Lowland (Novozhilov et al. 2006) and western Ka- ders in the north with the Russian Federation, and zakhstan (Schnittler & Novozhilov 2000) over inner in the south with the republics of Uzbekistan and mountain basins of the Russian Altay (Novozhilov Turkmenistan. It occupies 736 129 km ² (Nursultan, et al. 2009; Novozhilov et al. 2010) to Mongolia (No- 2008) and centered on the East European Plain (Fig. 1) 170 Fig. 1. Schematic map of the study area, numbers and circles indicate the 76 sampled localities. Map sources: Google Earth (modified). from the eastern outskirts of the Volga Delta in the larger trees are absent. The largest rivers of western west, to the Turan Lowland in the southeast, from Kazakhstan, the Ural and Emba, drain into the Cas- the southern spurs of the Urals and Obshchy Syrt in pian Sea basin. Their water is rich in minerals, and the north, to the Ustyurt Plateau and the coast of the this often applies to the ground water in the region, Caspian Sea in the south, including the Mangyshlak predominant is a mineralization of the sodium chlo- Peninsula (Chibilev et al. 2018). In contrast to the ride-magnesium type (Golub & Yuritsyna 2013). uniform sagebrush desert of the Ustyurt Plateau, the The vegetation of Western Kazakhstan can be desert of the Mangyschlak Peninsula is characterised attributed to the Aral-Caspian (Turan) province by a more rugged relief, basically formed by a Plateau of the Iran-Turan region (Ogureeva 2018). There furrowed by numerous deep depressions and can- are three main steppe subzones within Western yons. Stony badlands dominate, harbouring a scanty Kazakhstan from north to south: the northern vegetation of small shrubs and annual plants. With steppe, the middle steppe and the southern steppe, the exception of some trees around artificial wells, as well as two desert subzones: the northern and 171 middle deserts (Chibilev et al.2018). Within Western aphylla L., Alhagi pseudalhagi (M. Bieb.) Desv. ex Kazakhstan, steppes are found in the northern part Shap., Atriplex cana C.A. Mey., Pyankovia brachiata of the Caspian lowland and on the Poduralskoe Pla- Akhani & Roalson, Salsola arbusculiformis Drobow, teau; while deserts occupy the southern part of the Krascheninnikovia ceratoides (L.) Gueldenst., accom- Caspian lowland, the Ustyurt plateau and the Man- panied by grasses like Stipa capillata L., S. sareptana gyshlak Peninsula (Volkova et al. 2003, Safronova A.K. Becker, and Festuca rupicola Heuff. et al. 1999a, b; Safronova 2005a, b, 2008, 2010a, b). CASPIAN LOWLAND: LOC. 5: 7.8 km north- The region is characterized by an extremely conti- west of the village Zelenoye, Aksaj river valley, nental, arid climate with long, cold and dry winters sagebrush white cool desert and grasses commu- (-20–-30 °C) alternating with short but hot summers nities, 48°10´31˝N, 51°27´28˝E. LOC. 7: Dzhany- where temperatures can raise up to 42–46 ° C, during bek research station of the Institute of Forestry of which 70–90 % of all precipitation falls as rather the Russian Academy of Sciences, ˝Steppe reser- brief thunderstorms. The study area receives only vation˝, 49°23´53˝N, 46°47´52˝E. LOC. 8: 6.4 km 160 mm (in the south) to 320 mm annual precipita- south of the village Krasnogorskoye, 49°35´33˝N, tion (in the north). The humidification coefficient 50°39´02˝E. LOC. 12: small depression over clayish increases from 0.1–0.2 in the south to 0.3 in the ground, temporarily with fresh water, dominated north (Golub & Yuritsyna 2013). by Artemisia abrotanum L., 47°47’30”N, 47°14’01”E. The prevailing type of soil in the studied are is LOC. 13: S-exp. upper slope of the Great Bogdo Mt., a sandy, weakly alkaline Burozem (light brown soil) 48°08’20”N, 47°20’40”E. LOC. 14: stony badlands with a low content of organic matter. At the same with half-desert shrubs and many perennial plants, time, salty soils occupy a significant proportion weakly salt- influenced limestone, 48°08’20”N, of the region. Thus, salinity, grazing pressure and 47°20’40”E. LOC. 15: Azgir Mt., 47°49´43˝N, edaphic moisture are the most important factors 47°55´18˝E. LOC. 16: Azgir Mt., 47°49´43˝N, determining the vegetation, which often changes 47°55´13˝E. LOC. 22: 80 km north of the town over short distances (Chibilev et al. 2018). Atyrau, Kurajly channel, 47°52´56˝N, 52°08´31˝E.
Recommended publications
  • Biodiversity of Plasmodial Slime Moulds (Myxogastria): Measurement and Interpretation
    Protistology 1 (4), 161–178 (2000) Protistology August, 2000 Biodiversity of plasmodial slime moulds (Myxogastria): measurement and interpretation Yuri K. Novozhilova, Martin Schnittlerb, InnaV. Zemlianskaiac and Konstantin A. Fefelovd a V.L.Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, b Fairmont State College, Fairmont, West Virginia, U.S.A., c Volgograd Medical Academy, Department of Pharmacology and Botany, Volgograd, Russia, d Ural State University, Department of Botany, Yekaterinburg, Russia Summary For myxomycetes the understanding of their diversity and of their ecological function remains underdeveloped. Various problems in recording myxomycetes and analysis of their diversity are discussed by the examples taken from tundra, boreal, and arid areas of Russia and Kazakhstan. Recent advances in inventory of some regions of these areas are summarised. A rapid technique of moist chamber cultures can be used to obtain quantitative estimates of myxomycete species diversity and species abundance. Substrate sampling and species isolation by the moist chamber technique are indispensable for myxomycete inventory, measurement of species richness, and species abundance. General principles for the analysis of myxomycete diversity are discussed. Key words: slime moulds, Mycetozoa, Myxomycetes, biodiversity, ecology, distribu- tion, habitats Introduction decay (Madelin, 1984). The life cycle of myxomycetes includes two trophic stages: uninucleate myxoflagellates General patterns of community structure of terrestrial or amoebae, and a multi-nucleate plasmodium (Fig. 1). macro-organisms (plants, animals, and macrofungi) are The entire plasmodium turns almost all into fruit bodies, well known. Some mathematics methods are used for their called sporocarps (sporangia, aethalia, pseudoaethalia, or studying, from which the most popular are the quantita- plasmodiocarps).
    [Show full text]
  • What Substrate Cultures Can Reveal: Myxomycetes and Myxomycete-Like Organisms from the Sultanate of Oman
    Mycosphere 6 (3): 356–384(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/3/11 What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman Schnittler M1, Novozhilov YK2, Shadwick JDL3, Spiegel FW3, García-Carvajal E4, König P1 1Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University Greifswald, Soldmannstr. 15, D-17487 Greifswald, Germany 2V.L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov St. 2, 197376 St. Petersburg, Russia 3University of Arkansas, Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA 4Royal Botanic Garden (CSIC), Plaza de Murillo, 2, Madrid, E-28014, Spain Schnittler M, Novozhilov YK, Shadwick JDL, Spiegel FW, García-Carvajal E, König P 2015 – What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman. Mycosphere 6(3), 356–384, doi 10.5943/mycosphere/6/3/11 Abstract A total of 299 substrate samples collected throughout the Sultanate of Oman were analyzed for myxomycetes and myxomycete-like organisms (MMLO) with a combined approach, preparing one moist chamber culture and one agar culture for each sample. We recovered 8 forms of Myxobacteria, 2 sorocarpic amoebae (Acrasids), 19 known and 6 unknown taxa of protostelioid amoebae (Protostelids), and 50 species of Myxomycetes. Moist chambers and agar cultures completed each other. No method alone can detect the whole diversity of myxomycetes as the most species-rich group of MMLO. A significant overlap between the two methods was observed only for Myxobacteria and some myxomycetes with small sporocarps.
    [Show full text]
  • MMA MASTERLIST - Sorted by Taxonomy
    MMA MASTERLIST - Sorted by Taxonomy Sunday, December 10, 2017 Page 1 of 86 Amoebozoa Mycetomycota Protosteliomycetes Protosteliales Ceratiomyxaceae Ceratiomyxa fruticulosa Ceratiomyxa fruticulosa var. fruticulosa Ceratiomyxa fruticulosa var. poroides Ceratiomyxa sp. Mycetozoa Myxogastrea Incertae Sedis in Myxogastrea Liceaceae Licea minima Stemonitidaceae Brefeldia maxima Comatricha pulchella Comatricha sp. Comatricha typhoides Stemonitis axifera Stemonitis fusca Stemonitis sp. Stemonitis splendens Chromista Oomycota Incertae Sedis in Oomycota Peronosporales Peronosporaceae Plasmopara viticola Pythiaceae Pythium deBaryanum Oomycetes Saprolegniales Saprolegniaceae Saprolegnia sp. Peronosporea Albuginales Albuginaceae Albugo candida Fungus Ascomycota Ascomycetes Boliniales Boliniaceae Camarops petersii Capnodiales Capnodiaceae Scorias spongiosa Diaporthales Gnomoniaceae Cryptodiaporthe corni Sydowiellaceae Stegophora ulmea Valsaceae Cryphonectria parasitica Valsella nigroannulata Elaphomycetales Elaphomycetaceae Elaphomyces granulatus Elaphomyces sp. Erysiphales Erysiphaceae Erysiphe aggregata Erysiphe cichoracearum Erysiphe polygoni Microsphaera extensa Phyllactinia guttata Podosphaera clandestina Uncinula adunca Uncinula necator Hysteriales Hysteriaceae Glonium stellatum Leotiales Bulgariaceae Crinula caliciiformis Crinula sp. Mycocaliciales Mycocaliciaceae Phaeocalicium polyporaeum Peltigerales Collemataceae Leptogium cyanescens Lobariaceae Sticta fimbriata Nephromataceae Nephroma helveticum Peltigeraceae Peltigera evansiana Peltigera
    [Show full text]
  • 茨城県産変形菌類目録 Myxomycetes Flora of Ibaraki Prefecture, Japan
    茨城県自然博物館研究報告 Bull. Ibaraki Nat. Mus.,( 21): 91-128(2018) 91 資 料 茨城県産変形菌類目録 宮本卓也*・鈴木 博**・萩原博光*** (2018 年 10 月 31 日受理) Myxomycetes Flora of Ibaraki Prefecture, Japan * ** *** Takuya MIYAMOTO , Hiroshi SUZUKI and Hiromitsu HAGIWARA (Accepted October 31, 2018) Abstract :HVWXGLHG0\[RP\FHWHVÀRUDRI,EDUDNL3UHIHFWXUHEDVHGRQKHUEDULXPVSHFLPHQVGHSRVLWHGLQ WKHERWKKHUEDULDRIWKH1DWLRQDO0XVHXPRI1DWXUHDQG6FLHQFH7VXNXEDDQGWKH,EDUDNL1DWXUH0XVHXP %DQGR7KHVHVSHFLPHQVZHUHLGHQWL¿HGDVWD[D VSHFLHVYDULHWLHVDQGIRUPV LQFOXGLQJRQHWD[RQQHZ WR-DSDQDQGWD[DQHZWR,EDUDNL3UHIHFWXUH7KHVFLHQWL¿FQDPHVDQGWKHFROOHFWLRQVLWHVRIWKHVH WD[DZHUHOLVWHGLQWKHSUHVHQWVWXG\7KLVQXPEHURIWKH0\[RP\FHWHVWD[DLVVHFRQGODUJHVWLQWKRVHRI -DSDQHVH3UHIHFWXUHV Key words: (FRORJ\,EDUDNL3UHIHFWXUH0\[RP\FHWHV7D[RQRP\ ある唯一の種類が茨城県産ではなく,千葉県産となる. はじめに このことから,Emoto(1977)の原色図譜が茨城県を 『大日本植物誌第 8 巻・変形菌類』(江本,)は, 産地として明記した最初の報告となる. 日本初の変形菌モノグラフである.そこでの産地の表 茨城県産変形菌の本格的な調査は,1979 年に茨城 示は , 普通種の場合には「日本各地」とあり,産地が 大学学生の入江淑恵によって行われ,未同定の 5 種類 限定される種類の場合には旧国名で記されている.旧 を含む 32 種類が報告されている(入江,1982).同じ 国名では,茨城県の北東部は「常陸」であり,南西部 く茨城大学学生の長岡勝典は,1981 年に調査を行っ は千葉県の北部と共に「下総」となる.江本() て 種類を確認し,Emoto(1977)および入江(1982) のモノグラフには「常陸」の産地表示はない.一方,「下 の記録と合わせて 70 種類が茨城県に産することを報 総」の産地表示があるのが,Diderma hemisphaericum 告した(長岡,1983).以後,茨城県産変形菌につい (%XOO.)Hornem である. その後,Emoto(1977) は, ての報告は皆無に等しく,Yamamoto(2000)による 茨城県産として,15 種類の変形菌を報告しているが, Licea parvicapitata Y. Yamam. の新種記載の発表に本県 この中には D. hemisphaericum は含まれていない.つ 産標本が引用されたほかは,いくつかの論文,学会記事, まり,江本()が記録した,茨城県産の可能性が 図鑑などに取り上げられているが(棚谷,1982; 日本変 * ミュージアムパーク茨城県自然博物館 〒 茨城県坂東市大崎 700(,EDUDNL1DWXUH0XVHXP2VDNL
    [Show full text]
  • The Mycetozoa of North America, Based Upon the Specimens in The
    THE MYCETOZOA OF NORTH AMERICA HAGELSTEIN, MYCETOZOA PLATE 1 WOODLAND SCENES IZ THE MYCETOZOA OF NORTH AMERICA BASED UPON THE SPECIMENS IN THE HERBARIUM OF THE NEW YORK BOTANICAL GARDEN BY ROBERT HAGELSTEIN HONORARY CURATOR OF MYXOMYCETES ILLUSTRATED MINEOLA, NEW YORK PUBLISHED BY THE AUTHOR 1944 COPYRIGHT, 1944, BY ROBERT HAGELSTEIN LANCASTER PRESS, INC., LANCASTER, PA. PRINTED IN U. S. A. To (^My CJriend JOSEPH HENRI RISPAUD CONTENTS PAGES Preface 1-2 The Mycetozoa (introduction to life history) .... 3-6 Glossary 7-8 Classification with families and genera 9-12 Descriptions of genera and species 13-271 Conclusion 273-274 Literature cited or consulted 275-289 Index to genera and species 291-299 Explanation of plates 301-306 PLATES Plate 1 (frontispiece) facing title page 2 (colored) facing page 62 3 (colored) facing page 160 4 (colored) facing page 172 5 (colored) facing page 218 Plates 6-16 (half-tone) at end ^^^56^^^ f^^ PREFACE In the Herbarium of the New York Botanical Garden are the large private collections of Mycetozoa made by the late J. B. Ellis, and the late Dr. W. C. Sturgis. These include many speci- mens collected by the earlier American students, Bilgram, Farlow, Fullmer, Harkness, Harvey, Langlois, Macbride, Morgan, Peck, Ravenel, Rex, Thaxter, Wingate, and others. There is much type and authentic material. There are also several thousand specimens received from later collectors, and found in many parts of the world. During the past twenty years my associates and I have collected and studied in the field more than ten thousand developments in eastern North America.
    [Show full text]
  • Eukaryotic Microbiology Protistologists
    The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 57(2), 2010 pp. 189–196 r 2010 The Author(s) Journal compilation r 2010 by the International Society of Protistologists DOI: 10.1111/j.1550-7408.2009.00466.x Invalidation of Hyperamoeba by Transferring its Species to Other Genera of Myxogastria ANNA MARIA FIORE-DONNO,a AKIKO KAMONO,b EMA E. CHAO,a MANABU FUKUIb and THOMAS CAVALIER-SMITHa aZoology Department, University of Oxford, South Parks Road, OX1 3PS Oxford, United Kingdom, and bThe Institute of Low Temperature Science, Hokkaido University, Kita 19, Nishi 8, Kita-ku, Sapporo, Hokkaido 010-0819, Japan ABSTRACT. The genus Hyperamoeba Alexeieff, 1923 was established to accommodate an aerobic amoeba exhibiting three life stages— amoeba, flagellate, and cyst. As more species/strains were isolated, it became increasingly evident from small subunit (SSU) gene phylo- genies and ultrastructure that Hyperamoeba is polyphyletic and its species occupy different positions within the class Myxogastria. To pinpoint Hyperamoeba strains within other myxogastrid genera we aligned numerous myxogastrid sequences: whole small subunit ribo- somal (SSU or 18S rRNA) gene for 50 dark-spored (i.e. Stemonitida and Physarida) Myxogastria (including a new ‘‘Hyperamoeba’’/ Didymium sequence) and a 400-bp SSU fragment for 147 isolates assigned to 10 genera of the order Physarida. Phylogenetic analyses show unambiguously that the type species Hyperamoeba flagellata is a Physarum (Physarum flagellatum comb. nov.) as it nests among other Physarum species as robust sister to Physarum didermoides. Our trees also allow the following allocations: five Hyperamoeba strains to the genus Stemonitis; Hyperamoeba dachnaya, Pseudodidymium cryptomastigophorum, and three other Hyperamoeba strains to the genus Didymium; and two further Hyperamoeba strains to the family Physaridae.
    [Show full text]
  • An Updated Checklist of the Myxomycetes in the Maltese Islands – an Overview of an Ongoing Research
    Microbial Biosystems 5(2) (2020) 2020.1025 Original Article 10.21608/mb.2020.45597.1025 Contents lists available at Egyptian Knowledge Bank Microbial Biosystems Journal homepage: http://mb.journals.ekb.eg/ An updated checklist of the myxomycetes in the Maltese islands – An overview of an ongoing research Stephen Mifsud* EcoGozo Directorate, Ministry for Gozo, Victoria, Gozo, Malta.. ARTICLE INFO ABSTRACT Article history Myxomycetes are minuscule cryptogamic saprotrophs of decaying Received 18 October 2020 vegetative matter, but which also feed and therefore control soil bacteria, Received revised 4 December 2020 microfungi or fungal spores. Yet, their role is not much valued in Accepted 6 December 2020 conservation protocols, and they are not frequently included in red lists. Available online 8 December 2020 Their study in the Maltese Islands commenced only in the late 20th century © Mifsud, 2020 by Michael Briffa, where he published 74 records. This account amalgamates the previously published records, revised to their current Corresponding Editor: Mouchacca J taxonomy and classification, with new records collected in this research Balbool BA between 2014-2020. The resulting checklist of 96 myxomycetes occurring Abdel-Azeem AM in the Maltese Islands is here provided. The location, date and host of the first record of each species are given in this annotated checklist. The 22 new Keywords records are members of the genera Cribraria, Lycogala, Echinostelium, Slime moulds Perichaena, Trichia, Badhamia, Craterium, Fuligo, Physarum, Diderma, checklist Didymium and Mucilago. This ongoing study on the slime moulds of the Malta Maltese Islands aims to collect, photograph and identify as many specimens Central Mediterranean region as possible so a better represented and updated inventory is compiled.
    [Show full text]
  • Myxomycetes in Arid Zones of Peru Part II: the Cactus Belt and Transition Zones
    Anales del Jardín Botánico de Madrid 76 (2): e083 https://doi.org/10.3989/ajbm.2520 ISSN-L: 0211-1322 Diversity of Myxomycetes in arid zones of Peru part II: the cactus belt and transition zones Carlos LADO 1,*, Diana WRIGLEY DE BASANTA 2, Arturo ESTRADA-TORRES 3, Steven L. STEPHENSON 4 & I. TREVIÑO 5 1,2 Real Jardín Botánico de Madrid CSIC, Plz. de Murillo no. 2, 28014 Madrid, Spain. 3 Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Av. Universidad no. 1, La Loma Xicohténcatl, 90,062 Tlaxcala, Mexico. 4 Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, United States of America. 5 Universidad Nacional de San Agustín de Arequipa, Av. Alcides Carrión s.n., Arequipa, Peru. * Corresponding author: [email protected], https://orcid.org/0000-0002-6135-2873 2 [email protected], https://orcid.org/0000-0002-7700-8399 3 [email protected], https://orcid.org/0000-0001-5691-7844 4 [email protected], https://orcid.org/0000-0002-9207-8037 5 [email protected], https://orcid.org/0000-0002-2406-7862 Abstract. The results obtained from a second survey for Myxomycetes Resumen. Se presentan los resultados de un segundo estudio sobre in the arid areas of Peru are reported. A total of 37 localities from the Myxomycetes de zonas áridas de Perú. Un total de 37 localidades del cactus belt (‘cardonal’), between 1500 and 3000 m a.s.l., were sampled cardonal, situadas entre 1500 y 3000 m s.n.m., fueron muestreadas over six years. This survey is based on 601 identifiable collections of durante seis años.
    [Show full text]
  • Distribution and Diversity of Myxomycetes in Tiantangzhai National Forest Park, China
    Distribution and diversity of myxomycetes in Tiantangzhai National Forest Park, China Min Li1,*, Gaowei Wang1,2,*, Yang Gao1,3, Mingzhu Dou1, Ziqi Wang1, Shuzhen Yan1 and Shuanglin Chen1 1 College of Life Sciences, Nanjing Normal University, Nanjing, China 2 Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China 3 Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, China * These authors contributed equally to this work. ABSTRACT Although myxomycetes are ubiquitous in terrestrial ecosystems, studies on their distribution and diversity in subtropical humid forests are still lacking. Field collections and moist chamber cultures were conducted from May to October within a two-year period in the Tiantangzhai National Forest Park of China. A total of 1,492 records representing 73 species belonging to 26 genera were obtained, of which 243 records/37 species were from field collections, and 1,249 records/52 species were from moist chamber cultures. Among the specimens obtained by culturing, 896 records/38 species and 353 records/37 species were obtained from living bark and ground litter, respectively. ANOVA showed that the sampling months had significant impacts on collection of myxomycetes from field and those that inhabit litter. An LEfSe analysis indicated that Arcyria was significantly abundant in August, while Stemonitis and Physarum were more abundant in July when collected from field. An RDA analysis showed that temperature was the main factor that affected the Submitted 20 April 2021 litter-inhabiting myxomycetes. The ANOVA indicated that forest type was the Accepted 4 August 2021 significant factor for bark-inhabiting myxomycetes.
    [Show full text]
  • Myxomycetes (Myxogastria) of Nampo Shoto (Bonin & Volcano Islands)
    Bull. Natl. Mus. Nat. Sci., Ser. B, 43(3), pp. 63–68, August 22, 2017 Myxomycetes (Myxogastria) of Nampo Shoto (Bonin & Volcano Islands) (3) Tsuyoshi Hosoya1,*, Kentaro Hosaka1 and Yukinori Yamamoto2 1 Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, Japan 2 1010–53 Ohtsu-ko, Kochi, Kochi 781–5102, Japan *E-mail: [email protected] (Received 18 April, 2017, accepted 28 June, 2017) Abstract In an exploration of Nampo Shoto (Southern Islands, consisting of the Ogasawara and Volcano islands) in June 2009, 22 myxomycete taxa were documented based on 44 specimens. Of these, Fuligo candida and Stemonitis pallida were newly documented. Key words : Kita-Iwojima Island, taxonomy. mately 200 km south of the Ogasawara Islands. Introduction Although Minami-Iwojima has been uninhabited To date, approximately 1000 taxa of myxomy- since recorded history, Kita-Iwojima was colo- cetes have been described worldwide, with some nized in 1899, but has been uninhabited since 400 taxa being recorded in Japan (Yamamoto, 1944 when the inhabitants were forced to evacu- 1998). The majority of the Japanese records are ate the island during the war. Because of their based on Japan’s main islands, whereas smaller geographical isolation and the relative lack of islands have not been well surveyed, with the human activity, the natural life on both islands exception some areas that have been surveyed has been receiving attention from researchers. with special attention (e.g., the islands of Yaku- However, because of severe geographical and shima and Iriomote). environmental conditions, approaching these Located in the mid-Pacific Ocean, the so- islands is generally extremely difficult.
    [Show full text]
  • The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists
    J. Eukaryot. Microbiol., 52(5), 2005 pp. 399–451 r 2005 by the International Society of Protistologists DOI: 10.1111/j.1550-7408.2005.00053.x The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists SINA M. ADL,a ALASTAIR G. B. SIMPSON,a MARK A. FARMER,b ROBERT A. ANDERSEN,c O. ROGER ANDERSON,d JOHN R. BARTA,e SAMUEL S. BOWSER,f GUY BRUGEROLLE,g ROBERT A. FENSOME,h SUZANNE FREDERICQ,i TIMOTHY Y. JAMES,j SERGEI KARPOV,k PAUL KUGRENS,1 JOHN KRUG,m CHRISTOPHER E. LANE,n LOUISE A. LEWIS,o JEAN LODGE,p DENIS H. LYNN,q DAVID G. MANN,r RICHARD M. MCCOURT,s LEONEL MENDOZA,t ØJVIND MOESTRUP,u SHARON E. MOZLEY-STANDRIDGE,v THOMAS A. NERAD,w CAROL A. SHEARER,x ALEXEY V. SMIRNOV,y FREDERICK W. SPIEGELz and MAX F. J. R. TAYLORaa aDepartment of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada, and bCenter for Ultrastructural Research, Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA, and cBigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575, USA, and dLamont-Dogherty Earth Observatory, Palisades, New York 10964, USA, and eDepartment of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada, and fWadsworth Center, New York State Department of Health, Albany, New York 12201, USA, and gBiologie des Protistes, Universite´ Blaise Pascal de Clermont-Ferrand, F63177 Aubiere cedex, France, and hNatural Resources Canada, Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography, PO Box 1006 Dartmouth, NS B2Y 4A2, Canada, and iDepartment of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA, and jDepartment of Biology, Duke University, Durham, North Carolina 27708-0338, USA, and kBiological Faculty, Herzen State Pedagogical University of Russia, St.
    [Show full text]
  • Adl S.M., Simpson A.G.B., Lane C.E., Lukeš J., Bass D., Bowser S.S
    The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. MITCHELL,l SHARON E. MOZLEY-STANRIDGE,p LAURA W. PARFREY,q JAN PAWLOWSKI,r SONJA RUECKERT,s LAURA SHADWICK,t CONRAD L. SCHOCH,u ALEXEY SMIRNOVv and FREDERICK W. SPIEGELt aDepartment of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada, and bDepartment of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and cDepartment of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA, and dBiology Center and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, Cˇeske´ Budeˇjovice, Czech Republic, and eZoology Department, Natural History Museum, London, SW7 5BD, United Kingdom, and fWadsworth Center, New York State Department of Health, Albany, New York, 12201, USA, and gDepartment of Biochemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and hDepartment of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and iDepartment
    [Show full text]