Glossary of Terms for Framing: Anti-Reflective Glass a Type of Coated Glass That Greatly Reduces Reflection Without Distorting the Art Behind It
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mountain Pine Beetle-Attacked Lodgepole Pine for Pulp and Papermaking
Operational extractives management from- mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Working Paper 2007-15 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5 (250) 363-0600 • cfs.nrcan.gc.ca/regions/pfc Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts Operational extractives management from mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Initiative W orking Paper 2007œ15 Paprican 3800 W esbrook Mall Vancouver, B.C. V6S 2L9 Mountain Pine Beetle Initiative PO # 8.43 Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 W est Burnside Road Victoria, British Columbia V8Z 1M5 Canada 2007 ≤ Her Majesty the Queen in Right of Canada 2007 Printed in Canada Library and Archives Canada Cataloguing in Publication Allen, Larry Operational extractives m anagem ent from m ountain pine beetle-attached lodgepole pine from pulp and paperm aking / Larry Allen and Vic Uloth. (Mountain Pine Beetle Initiative working paper 2007-15) "Mountain Pine Beetle Initiative, Canadian Forest Service". "MPBI Project # 8.43". "Paprican". Includes bibliographical references: p. Includes abstract in French. ISBN 978-0-662-46480-8 Cat. no.: Fo143-3/2007-15E 1. Pulping--British Colum bia--Quality control. 2. Pulping--Alberta--Quality control. 3. Paper m ills-- Econom ic aspects--British Colum bia. 4. Pulp m ills--Econom ic aspects--Alberta. 5. Lodgepole pine--Diseases and pests–Econom ic aspects. 6. Mountain pine beetle--Econom ic aspects. -
Corrugated Board Structure: a Review M.C
ISSN: 2395-3594 IJAET International Journal of Application of Engineering and Technology Vol-2 No.-3 Corrugated Board Structure: A Review M.C. Kaushal1, V.K.Sirohiya2 and R.K.Rathore3 1 2 Assistant Prof. Mechanical Engineering Department, Gwalior Institute of Information Technology,Gwalior, Assistant Prof. Mechanical Engineering 3 Departments, Gwalior Engineering College, Gwalior, M. Tech students Maharanapratap College of Technology, Gwalior, [email protected] [email protected] [email protected] ABSTRACT Corrugated board is widely used in the packing industry. The main advantages are lightness, recyclability and low cost. This makes the material the best choice to produce containers devoted to the shipping of goods. Furthermore examples of structure design based on corrugated boards can be found in different fields. Structural analysis of paperboard components is a crucial topic in the design of containers. It is required to investigate their strength properties because they have to protect the goods contained from lateral crushing and compression loads due to stacking. However in this paper complete and detailed information are presented. Keywords: - corrugated boards, recyclability, compression loads. Smaller flutes offer printability advantages as well as I. INTRODUCTION structural advantages for retail packaging. Corrugated board is essentially a paper sandwich consisting of corrugated medium layered between inside II. HISTORY and outside linerboard. On the production side, corrugated In 1856 the first known corrugated material was patented is a sub-category of the paperboard industry, which is a for sweatband lining in top hats. During the following four sub-category of the paper industry, which is a sub-category decades other forms of corrugated material were used as of the forest products industry. -
Paper Machine System Diagram
TMEIC Corporation Paper Machine System Diagram Paper Machine One-Line Press Section Head Box Forming Section Calender Dryer Size Reel Sections Press Driven roll Mechanical Components of Paper Associated Drive Control Concepts Regenerative Machine Drives Head Box / Fan Pump Fan pump drive control is typical for No The Paper stock at this point in the process is industrial pump loads. Variable 99% water and 1% fiber. The Fan Pump torque is required, increased speed forces the Paper stock through a set of means increased flow. nozzles in the head box onto the “wire” mesh. The fan pump speed is a major factor in the basis weight (caliper) and formation of the sheet of paper. Forming Section Forming section drives have a high No A typical flat former is a continuous rotating friction load due to the suction wire (today this is plastic) mesh that removes (normal forces) of the water through water from the paper by sucking it out of the wire mesh. This results in a high suspension. Multi-layer paper machines and normal running load, but a low paper board machines include additional acceleration load. forming sections (one forming section for each layer of paper). Press Section Press section drives also have a high No Rolls are nipped (pressed) together to load due to the strong forces in the nip squeeze the water out of the sheet of paper. between the rolls deforming the felts Multiple rolls are used with a felt (blanket) and roll. This results in a high normal supporting the sheet and accepting the water running load, but a low acceleration from the sheet. -
Build a Plane That Cuts Smooth and Crisp Raised Panels With, Against Or Across the Grain – the Magic Is in the Spring and Skew
Fixed-width PanelBY WILLARD Raiser ANDERSON Build a plane that cuts smooth and crisp raised panels with, against or across the grain – the magic is in the spring and skew. anel-raising planes are used Mass., from 1790 to 1823 (Smith may to shape the raised panels in have apprenticed with Joseph Fuller doors, paneling and lids. The who was one of the most prolific of the profile has a fillet that defines early planemakers), and another similar Pthe field of the panel, a sloped bevel example that has no maker’s mark. to act as a frame for the field and a flat Both are single-iron planes with tongue that fits into the groove of the almost identical dimensions, profiles door or lid frame. and handles. They differ only in the I’ve studied panel-raising planes spring angles (the tilt of the plane off made circa the late 18th and early 19th vertical) and skew of the iron (which centuries, including one made by Aaron creates a slicing cut across the grain to Smith, who was active in Rehoboth, reduce tear-out). The bed angle of the Smith plane is 46º, and the iron is skewed at 32º. Combined, these improve the quality of cut without changing the tool’s cutting angle – which is what happens if you skew Gauges & guides. It’s best to make each of these gauges before you start your plane build. In the long run, they save you time and keep you on track. Shaping tools. The tools required to build this plane are few, but a couple of them – the firmer chisel and floats – are modified to fit this design. -
Making Paper from Trees
Making Paper from Trees Forest Service U.S. Department of Agriculture FS-2 MAKING PAPER FROM TREES Paper has been a key factor in the progress of civilization, especially during the past 100 years. Paper is indispensable in our daily life for many purposes. It conveys a fantastic variety and volume of messages and information of all kinds via its use in printing and writing-personal and business letters, newspapers, pamphlets, posters, magazines, mail order catalogs, telephone directories, comic books, school books, novels, etc. It is difficult to imagine the modern world without paper. Paper is used to wrap packages. It is also used to make containers for shipping goods ranging from food and drugs to clothing and machinery. We use it as wrappers or containers for milk, ice cream, bread, butter, meat, fruits, cereals, vegetables, potato chips, and candy; to carry our food and department store purchases home in; for paper towels, cellophane, paper handkerchiefs and sanitary tissues; for our notebooks, coloring books, blotting paper, memo pads, holiday greeting and other “special occasion’’ cards, playing cards, library index cards; for the toy hats, crepe paper decorations, paper napkins, paper cups, plates, spoons, and forks for our parties. Paper is used in building our homes and schools-in the form of roofing paper, and as paperboard- heavy, compressed product made from wood pulp-which is used for walls and partitions, and in such products as furniture. Paper is also used in linerboard, “cardboard,” and similar containers. Wood pulp is the principal fibrous raw material from which paper is made, and over half of the wood cut in this country winds up in some form of paper products. -
Make Your Own Paper Students Investigate the Papermaking Process by Trying It Themselves
Make Your Own Paper Students investigate the papermaking process by trying it themselves. Students are Activity thrilled to find that they can make paper and that their product is practical, as well as beautiful. See the PLT website, www.plt.org, to watch a video of the paper-making 51 process used in this activity. Levels OBJECTIVE ASSESSMENT OPPORTUNITIES Grades 1-8 Subjects n Students will describe the steps of the paper- n Ask younger students to write the directions Science, Social Studies, making process and identify the elements and for making paper on the piece of recycled paper Language Arts, Visual Arts outputs of the process. that they made. n Concepts Have students use concept mapping, graphics software, or write a script for a n By reducing waste and recy- video that explains the papermaking process. cling materials, individuals and societies can extend the value and utility of resources and can promote environ- mental quality. (2.7) The process begins when trees, grown BACKGROUND Skills especially for papermaking, are harvested Observing, Organizing and transported to a paper mill. At the Information, Comparing and Paper is a simple material. It is essentially mill, large machines strip away bark and Contrasting a mat held together by a fiber’s rough- shred the logs into millions of chips the ness, and can be made from almost any size of breakfast cereal. The wood chips fibrous material such as cotton, hemp, travel on conveyors to gigantic “pulp Higher Order Thinking, Paired/ flax, wood or recycled paper. And yet, this Cooperative Learning, Realia/ cookers,” where chemicals and steam are Hands-on Learning simple product has a tremendous effect added. -
Pulp & Paper News
Pulp & Paper 21 Perspectives in Liquid Process Analytics News INGOLD Leading Process Analytics Streamline Your Processes with the New iSense Software Intelligent Sensor Management (ISM®) technology is helping pulp and paper mills the world over to increase process reliability, reduce sensor lifecycle costs, and simplify sensor handling. With the new iSense software for ISM sensors, realizing the benefits of digital sensor technology is easier than ever. Significant benefits lytical equipment the more efficient will Analytical measurements are going digi- be your processes. tal. The advantages offered by the latest, cutting-edge in-line sensors and transmit- iSense, the accompanying software for ters, such as greater process quality and ISM, streamlines all your sensor activities. yield, reduced sensor maintenance, and It provides highly valuable features such simplified sensor handling, are hard to as sensor calibration away from the pro- ignore. cess, electronic documentation, instant evaluation of a sensorʼs “health”, and ISM, METTLER TOLEDOʼs digital sensor predictive information on when mainte- technology, has transformed the way ana- nance will be required. The latest version lytical sensors are handled and main- of iSense enables seamless management tained from first installation to end of life. of ISM sensors and delivers exceptional ISM offers a level of performance and usability. convenience that is not available with other systems. It is easier with iSense Spending hours learning new software is Convenience is the key a costly use of operator time, so we have Whether in production or in the lab, the made iSense extremely intuitive to greater the convenience provided by ana- operate. For a new sensor, just connect the Blue- tooth® communicator supplied with the software. -
Foam Extruded PVC and Polystyrene Framing Stock from the United Kingdom
Foam Extruded PVC and Polystyrene Framing Stock from the United Kingdom Investigation No. 731-TA-738 (Preliminary) Publication 2930 October 1995 U.S. International Trade Commission Washington. DC 20436 U.S. International Trade Commission COMMISSIONERS Peter S. Watson, Chairman Janet A. Nuzum, Vice Chairman David B. Rohr Don E. Newquist Carol T. Crawford Lynn M. Bragg Robert A. Rogowsky Director of Operations Staff assigned: Debra Baker, Investigator Stephen Wanser, Commodity-Industry Analyst William Deese, Economist Jerry Tepper, Accountant/Auditor Robin Turner, Attorney George Deyman, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 : . ~_:: . ·-.' ~ .. > .. ·:. : . ·, . - .. - .. -~ . U.S. International Trade Commission Washington, DC 20436 Foam Extruded PVC and Polystyrene Framing Stock from the United Kingdom Publication 2930 October 1995 . .. · ·.. '!· - . - .. ._··· .... ~. .· :... :. - CONTENTS Page Determination . ·. 1 Views of the Commission . 3 Additional views of Chairman Watson concerning a reasonable indication of material injury . 21 Views of Commissioner Carol T. Crawford . 27 Views of Commissioner Bragg regarding a reasonable indication of material injury by reason of allegedly LTFV imports ........ ·. 37 Part l: Introduction . 1-1 Background . 1-1 Alleged sales at LTFV . ~-1 Industry participants . 1-2 The product . 1-2 Description and uses . 1-2 Production processes . 1-3 Interchangeability . 1-3 Channels of distribution . 1-5 Part Il: Conditions of competition in the U.S. market . Il-1 Distinctive industry characteristics and market segmentation . Il-1 Demand for foam extruded PVC and polystyrene framing stock . Il-4 Substitutability issues . Il-5 Substitute products . Il-5 Factors affecting purchasing decisions . Il-5 Comparison of domestic products and subject imports . -
Paper History
Volume 14, Year 2010, Issue 1 PAPER HISTORY Journal of the International Association of Paper Historians Zeitschrift der Internationalen Arbeitsgemeinschaft der Papierhistoriker Revue de l’Association Internationale des Historiens du Papier ISSN 0250-8338 www.paperhistory.org PAPER HISTORY, Volume 14, Year 2010, Issue 1 International Association of Paper Historians Contents / Inhalt / Contenu Internationale Arbeitsgemeinschaft der Papierhistoriker Letter from the President May 2010 3 Lettre de la présidente de l’IPH – may 2010 3 Association Internationale des Historiens du Papier Brief der IPH-Präsidentin, Mai 2010 4 Important plan for the reco-very of several papermills on the Amalfi Coast 5 Pulp and Paper on Stamps 8 Le congrès à Angoulême 16 IPH Assemblée générale, Angoulême (France), 9 octobre, 2010 17 Information from delegates 20 General information 23 Orbituaries 24 Guidelines for authors 26 Editor Anna-Grethe Rischel Complete your paper historical library now! Denmark Ergänzen Sie jetzt Ihre papierhistorische Co-editors IPH-Delegates Bibliothek! Maria Del Carmen Hidalgo Brinquis Completez aujourd’hui votre bibliothèque de Spain l’Histoire du papier! 27 Dr. Claire Bustarret France Prof. Dr. Alan Crocker United Kingdom Dr. Józef Dąbrowski Poland Jos De Gelas Belgium Deadline for contributions each year 15. March and 15. September Elaine Koretsky USA Paola Munafò Italy President Anna-Grethe Rischel Dr. Henk J. Porck Präsident Stenhøjgaardsvej 57 The Netherlands President DK - 3460 Birkerød Prof. Dr. Gottfried Schweizer Denmark Austria tel + 45 45 816803 [email protected] Prof. Dr. Tomas Stohr Venezuela Secretary Dr. Sabine Schachtner Göran Wohlfahrt Sekretariat LVR-Industriemuseum Sweden Secrétaire Papiermühle Alte Dombach Lay-out Karen Borchersen D- 51465 Bergisch Gladbach The School of Conservation Germany Esplanaden 34 tel + 49 2202 936880 DK – 1263 Copenhagen K [email protected] Denmark [email protected] Treasurer Alphonse Radermecker Printer Prinfo Paritas Printcenter Kassier Hochstr. -
Making Window Sashes
Project PHOTOGRAPHS BY MICHAEL T COLLINS Making window sashes FILLET Michael T Collins enjoys a window SCRIBED OVOLO CROSS OVOLO GLAZING SECTION of opportunity as he makes light of TENON REBATE sash window construction RAIL WEDGE PEG f all the tasks of the joiner, perhaps no other has exacted the STILE Omost skill and afforded the most income than that of the window sash maker. If you have never attempted to make a sash, I highly recommend it, if for no other reason than to test your layout, STILE precision and organisational skills. MUNTIN BAR / In this article I’ll show you how to make GLAZING BAR a small, simple four light sash. Parts of a window sash MORTICE & Diagram 1 shows the basic parts of a TENON window sash. General terms are: muntin bars, glazing bars (UK), muntin (US). ➤ WEDGE PEG RAIL STUB TENON Woodworking Crafts issue 49 37 Project Project produced on the sample, in my case A brief history of the sash the fillet is 9mm. The distance from the There are various planes that can be mortise gauge fence to the nearest pin used to make window sashes. The most should be the total width of the ovolo common are the English sash moulding profile determined from the sample. planes. Plane (b) shows a common This way the intersecting mortise and profile available at the end of the tenon will fall exactly where the fillet is 19th century. between the ovolo and glazing rebate. English methods required at least Now, from the face side, mark the two planes to produce the profile. -
April 2017, Vol
WOODWORKERS Northeastern Woodworkers Association NEWApril 2017, Vol. 26, NumberS 4 April Meeting Fundamentals of Bowl Turning – Rick Angus The purpose of Woodworkers Showcase Thursday, April 13, 2017 7:00 PM is to educate the general Shaker Heritage Society Meetinghouse public to the wonders of Albany-Shaker Road, Albany, NY woodworking in all of its many forms. By Dave Mobley Your woodworking projects Back in his high school days, Rick Angus was highly make this possible. interested in using the lathe, but the school’s only shop teacher didn’t know good turning technique. He had the students use NWA is the only show of its kind in the USA. We are a drawknife to rough out a cylinder to mount on the lathe, and also the biggest woodworking then use the turning tools as scrapers to make crude shapes from show in the USA. the wood. While he did complete a few projects in that shop class, Rick suspected there was a better way. Years later, through What the heck! We are the books and videos, Rick learned proper woodturning technique. BEST woodworking show Soon afterward, he joined NWA, where he found a support team in the USA! for his woodturning journey. In his demonstration, Rick will take us on a short tour of safe Now that I have bragged and efficient turning techniques and styles as applied to bowl about you all, let's get our entry forms filled out, our turning. He’ll focus on the fundamental bevel-supported cut projects ready to go, and using a deep gouge and use of a razor-edged scraper (essentially let's have a great time in a thick card/cabinet scraper on a long handle). -
Strength and Behaviour of Multi-Orientation Fillet Weld Connections
University of Alberta Department of Civil & Environmental Engineering Structural Engineering Report No. 255 STRENGTH AND BEHAVIOUR OF MULTI-ORIENTATION FILLET WELD CONNECTIONS by Logan J. Callele Gilbert Y. Grondin and Robert G. Driver March, 2005 Strength and Behaviour of Multi–Orientation Fillet Weld Connections by Logan J. Callele Gilbert Y. Grondin and Robert G. Driver Structural Engineering Report No. 255 Department of Civil and Environmental Engineering University of Alberta Edmonton, Alberta, Canada February 2005 ABSTRACT The fact that the difference in deformation ductility can be quite large for welds of different orientations could have a significant impact on the behaviour of connections that combine fillet welds of multiple orientations (MOFW connection). Because of the difference in deformation ductility, there is potential for MOFW connections to fail before the full capacity of all of the welds in the connection reach their full capacity. A test series on welded lapped splice connections containing a transverse weld in combination with either longitudinal or 45° welds was conducted to investigate the effect of weld ductility on MOFW connections. The MOFW connection’s capacity is dependent on whether or not the connection will undergo enough deformation in order to mobilize the full capacities of each of the weld segments. The MOFW tests conducted indicate a that a strength lower than the sum of the strengths of the individual weld segments is achieved. A method that incorporates fillet weld load deformation response and addresses the differences in ductilities is presented. This method yields a prediction of any MOFW connection’s capacity. A reliability analysis completed for this method indicates that it results in an acceptable safety index.