Applications and Optimization of Cryopreservation Technologies to Cellular Therapeutics

Total Page:16

File Type:pdf, Size:1020Kb

Load more

CELL & GENE THERAPY INSIGHTS LATEST ADVANCES IN ADDRESSING BIOPRESERVATION CHALLENGES EXPERT INSIGHT Applications and optimization of cryopreservation technologies to cellular therapeutics Barry Fuller, Jordi Gonzalez-Molina, Eloy Erro, Joana De Mendonca, Sheri Chalmers, Maooz Awan, Aurore Poirier, Clare Selden Delivery of cell therapies often requires the ability to hold products in readiness whilst logistical, regulatory and potency considerations are dealt with and recorded. This requires reversibly stopping biological time, a process which is often achieved by cryopreservation. However, cryo- preservation itself poses many biological and biophysical challenges to liv- ing cells that need to be understood in order to apply the low temperature technologies to their best advantage. This review sets out the history of applied cryopreservation, our current understanding of the various pro- cesses involved in storage at cryogenic temperatures, and challenges for robust and reliable uses of cryopreservation within the cell therapy arena. Submitted for Review: 24 April 2017 u Published: 6 Jun 2017 The explosion of interest in cell ther- such consideration is product stor- to meet these demands. This brief apies over recent years has necessarily age (cryobanking), which is often review will discuss the salient top- focused attention on the processes required to sustain cell therapy de- ics within this field and include the that will enable product delivery in livery to the end user facilities at the history of cryopreservation, what we reliable, regulatory-compliant and required time, providing a quality currently understand about the bio- robust ways. These considerations assured product with required safe- physical and biological processes that sometimes introduce new challeng- ty and potency characteristics [1,2]. allow successful cell recoveries after es that may not have been import- Cryopreservation in its various forms storage, and additional challenges ant in the original laboratory studies is one of the main facilitatory tech- for scale up and regulatory oversight on that particular cell therapy. One nologies for cell therapies to be able when the technology is applied. www.insights.bio 359 CELL & GENE THERAPY INSIGHTS HISTORY OF the same era, such as Maximov [4] CRYOPRESERVATION provided evidence that in plants ca- The widely accepted term to de- pable of overwintering in northern scribe preservation of living cells, Russia, the tissues went through a capable of biological reanimation, seasonal hardening process, which is cryopreservation. In reality, cell was accompanied by accumulation biopreservation can be achieved of solutes such as sugars. Chambers across a range of reduced tempera- and Hale [5] at the turn of the 20th tures, which enhance survival by Century provided additional evi- reducing biological activities, but dence from light microscope stud- with limitations dependent upon ies that there was an osmotic effect the chosen modality. The common of freezing directly on the plant conception of cryopreservation is cells that was accompanied by lysis storage of living cells at the deep on thawing. Over the subsequent cryogenic temperatures provided by 50 years, others continued to ex- liquid nitrogen or the associated va- plore the biophysical principles pour phase (ranging from -196o to and biological effects of the water– approximately -170oC). ice phase transition; for example The challenge for biology of Luyet [6] made many pertinent ob- course is the phase change of wa- servations on ice crystal structures, ter that occurs at the rather in- changes in these brought about by conveniently high temperature alterations in the kinetics of cool- (for biopreservation purposes) just ing or the presence of solutes in below 0oC. There have been many the aqueous medium, and the ef- studies over the past few hundred fects on living cells. This collected years on the biological effects of knowledge base undoubtedly influ- freezing, and the allied phenome- enced Polge [7] and his colleagues non of freeze tolerance in overwin- in their studies in 1949 on freezing tering species (most often in the of reproductive cells (notably fowl plant kingdom). The growing un- spermatozoa to enhance animal derstanding of freezing effects fol- breeding in the period post the Sec- lowed the development of micro- ond World War) which resulted in scopes capable of directly observing the first clear evidence of recovery the freezing process; for example of functional cells after deliberate Molisch [3] described the freezing deep cryogenic exposure (in their process in plant tissues, which im- case to -79oC using solid carbon mediately highlighted one of the dioxide – liquid nitrogen was not central problems with ice forma- readily available at that time). The tion – the fact that ice, derived as key to their success was the expo- the phase change of pure water, re- sure of the sperm to glycerol ahead sulted in exposure of the cells to a of the cooling process, which Polge residual hypertonic environment as later acknowledged was partly by solutes (originally dissolved in the good fortune, but nevertheless (and aqueous environment) are excluded with the benefit of hindsight), com- from the ice crystal lattice. In simple bined all of those previous studies terms, the cells experienced a lethal into one successful outcome. That osmotic stress that could be detect- success also fuelled a global effort ed at the structural level very quick- to better understand and maxi- ly after thawing. Other scientists of mize the opportunities provided in 360 DOI: 10.18609/cgti.2017.038 expert INSIGHT biology and medicine for extend- results in the often observed slight ed biopreservation, culminating in change in density of ice over liquid the definition of the term ‘cryobi- water. The stabilisation of the net- ology’ to encompass the necessary work also results in the well-known collaboration between biologists, release of energy detectable as the engineers and physicists to better latent heat of ice formation. The understand the processes, and the ice crystal lattice cannot maintain establishment of the International previously accommodated solutes, Society for Cryobiology in 1963. which become excluded into the residual liquid volume surrounding the growing ice interface, which in turn depresses the freezing point of CURRENT UNDERSTANDING the residual water so that cells are OF CRYOPRESERVATION exposed to progressively higher sol- utes in a progressively smaller liquid The water–ice phase water space. Thus ‘freezing’ is not an transition instantaneous event in most practi- As is universally accepted, liquid cal applications, even though it may water is the essential component for appear so to the naked eye. almost all biological processes [8], Residual mobile water, all-be- and its removal during the forma- it as a tiny fraction of the origi- tion of ice poses extreme challeng- nal water volume, can be detected es. There have been many excellent down to surprisingly low tempera- reviews on this topic, but a decade tures [11], contributing to the pro- ago Mazur [9] and Muldrew and gressive osmotic stress experienced colleagues [10] provided excellent by the cells. Multiple biological discussions on the topic with spe- targets for this type of injury have cific relevance to cryobiology. These been discussed, including destabil- are beyond the remit of the current isation of cell membranes, change discussion, but as a brief summary, in the intracellular milieu includ- water exists in the liquid state in a ing pH, chemical and structural random but self-associating matrix changes to organelles and to pro- (on an extremely brief timescale) teins; it is fair to say that we still through interactions of hydrogen do not fully understand all the bi- bonding, which for biology enables ological consequences [9,10]. What solvation of essential ions and sol- is clear is that in almost all cases, utes, and structural stability of many cell membranes and intracellular macromolecules. During cooling, macromolecules to some degree energy within the system is removed hinder the kinetics of the forma- and water molecule self-association tion of ice crystals, such that ice leads to longer-lived intermolecular preferentially initiates and grows connections that result in ice nuclei. in the aqueous external solution In this process, central water mole- (i.e., the supporting culture medi- cules hydrogen bond with four sur- um in cell therapies), providing the rounding others that at the point of osmotic driving force for water to freezing repeat indefinitely through- leave the intracellular environment out the aqueous milieu to yield hex- and effectively shrinking the cells, agonal ice with which we are all fa- which can be observed in real-time miliar. The open lattice nature also by cryomicroscopy [12]. Cell & Gene Therapy Insights - ISSN: 2059-7800 361 CELL & GENE THERAPY INSIGHTS Cryoprotectants: solutes However, it should be noted that in that enhance survival both these (and subsequent cases), during freezing the CPA solutes need to be applied in concentrations far higher than Given this understanding of events for other solutes normally present during freezing, we can begin to in the cell media solutions, which in understand the relevance of glycerol itself introduces complex biological in Polge’s original successful experi- challenges. ments [7], and the observations that The identification of these over-wintering species frequently freeze-protecting solutes led
Recommended publications
  • Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles

    Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles

    pharmaceutics Article Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles Timothy M. Amis, Jwala Renukuntla, Pradeep Kumar Bolla and Bradley A. Clark * Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA; [email protected] (T.M.A.); [email protected] (J.R.); [email protected] (P.K.B.) * Correspondence: [email protected]; Tel.: +1-336-841-9665 Received: 18 August 2020; Accepted: 16 September 2020; Published: 19 September 2020 Abstract: Cryoprotectants are often required in lyophilization to reduce or eliminate agglomeration of solute or suspended materials. The aim of this study was to select a cryoprotecting agent and optimize its concentration in a solid lipid nanoparticle formulation. Progesterone-loaded stearic acid solid lipid nanoparticles (SA-P SLNs) were prepared by hot homogenization with high speed mixing and sonication. The stearic acid content was 4.6% w/w and progesterone was 0.46% w/w of the initial formulation. Multiple surfactants were evaluated, and a lecithin and sodium taurocholate system was chosen. Three concentrations of surfactant were then evaluated, and a concentration of 2% w/w was chosen based on particle size, polydispersity, and zeta potential. Agglomeration of SA-P SLNs after lyophilization was observed as measured by increased particle size. Dextran, glycine, mannitol, polyvinylpyrrolidone (PVP), sorbitol, and trehalose were evaluated as cryoprotectants by both an initial freeze–thaw analysis and after lyophilization. Once selected as the cryoprotectant, trehalose was evaluated at 5%, 10%, 15%, and 20% for optimal concentration, with 20% trehalose being finally selected as the level of choice.
  • Cryoprotectant Production Capacity of the Freeze-Tolerant Wood Frog, Rana Sylvatica

    Cryoprotectant Production Capacity of the Freeze-Tolerant Wood Frog, Rana Sylvatica

    71 Cryoprotectant production capacity of the freeze-tolerant wood frog, Rana sylvatica JoN P. Cosr,cNzo AND Rlcnano E. LsE, Jn. Department of Zoology, Miami University, Oxford, OH 45056, U.S.A. ReceivedJune 8. 1992 AcceptedAugust 17, 1992 CosmNzo, J. P., and LBp, R. E., Jn. 1993. Cryoprotectantproduction capacityof the freeze-tolerantwood frog, Rana sylvatica.Can. J. Zool. 7I: 7l-75. Freezingsurvival of the wood frog (Rana sylvatica)is enhancedby the synthesisof the cryoprotectantglucose, via liver glycogenolysis.Because the quantityof glucosemobilized during freezingbears significantly on the limit of freezetolerance, we investigated the relationship between the quantity of liver glycogen and the capacity for cryoprotectant synthesis. We successfullyaugmented natural levels of liver glycogenby injecting cold-conditionedwood frogs with glucose.Groups of 8 frogs having mean liver glycogenconcentrations of 554 + 57 (SE), 940 + 57, and 1264 + 66 pmollg catabolized98.7, 83.4, and 52.8%, respectively,of their glycogenreserves during 24 h of freezingto -2.5'C. Glucoseconcentrations con- comitantly increased,reaching 2l + 3, 102 + 23, and 119 + 14 pmollg, respectively,in the liver, and 15 * 3,42 + 5, and 6l * 5 pcmol/ml-, respectively, in the blood. Becausethe capacity for cryoprotectant synthesisdepends on the amount of liver glycogen,the greatestrisk of freezinginjury likely occursduring spring,when glycogenreserves are minimal. Non- glucoseosmolites were important in the wood frog's cryoprotectantsystem, especially in frogs having low glycogenlevels. Presumably the natural variation in cryoprotectant synthesis capacity among individuals and populations of R. sylvatica chiefly reflectsdifferences in glycogenreserves; however, environmental,physiological, and geneticfactors likely are also involved. CosmNzo, J. P., et LEs, R. E., Jn.
  • Sperm Cryopreservation: a Review on Current Molecular Cryobiology and Advanced Approaches

    Sperm Cryopreservation: a Review on Current Molecular Cryobiology and Advanced Approaches

    1 RBMO VOLUME 00 ISSUE 0 2018 REVIEW Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches BIOGRAPHY Abdolhossein Shahverdi is Professor of Embryology and scientific director of the Sperm Biology Group at the Royan Institute in Tehran. His main research interests are fertility preservation, reproductive epigenetic and germ cell biology. With over 20 years’ experience in reproductive biology, he has published more than 120 international scientific papers. Maryam Hezavehei1,2, Mohsen Sharafi3,*, Homa Mohseni Kouchesfahani2, Ralf Henkel4, Ashok Agarwal5, Vahid Esmaeili1, Abdolhossein Shahverdi1,* KEY MESSAGE Understanding the new aspects of sperm cryobiology, such as epigenetic and proteomic modulation, as well as novel techniques, is essential for clinical applications and the improvement of ART protocols. Long-term follow-up studies on the resultant offspring obtained from cryopreserved spermatozoa is recommended for future studies. ABSTRACT The cryopreservation of spermatozoa was introduced in the 1960s as a route to fertility preservation. Despite the extensive progress that has been made in this field, the biological and biochemical mechanisms involved in cryopreservation have not been thoroughly elucidated to date. Various factors during the freezing process, including sudden temperature changes, ice formation and osmotic stress, have been proposed as reasons for poor sperm quality post-thaw. Little is known regarding the new aspects of sperm cryobiology, such as epigenetic and proteomic modulation of sperm and trans-generational effects of sperm freezing. This article reviews recent reports on molecular and cellular modifications of spermatozoa during cryopreservation in order to collate the existing understanding in this field. The aim is to discuss current freezing techniques and novel strategies that have been developed for sperm protection against cryo-damage, as well as evaluating the probable effects of sperm freezing on offspring health.
  • Effects of Sample Treatments on Genome Recovery Via Single-Cell Genomics

    Effects of Sample Treatments on Genome Recovery Via Single-Cell Genomics

    The ISME Journal (2014) 8, 2546–2549 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej SHORT COMMUNICATION Effects of sample treatments on genome recovery via single-cell genomics Scott Clingenpeel1, Patrick Schwientek1, Philip Hugenholtz2 and Tanja Woyke1 1DOE Joint Genome Institute, Walnut Creek, CA, USA and 2Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia Single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms. Methods of handling samples before single-cell genomic amplification may affect the quality of the genomes obtained. Using three bacterial strains we show that, compared to cryopreservation, lower-quality single-cell genomes are recovered when the sample is preserved in ethanol or if the sample undergoes fluorescence in situ hybridization, while sample preservation in paraformaldehyde renders it completely unsuitable for sequencing. The ISME Journal (2014) 8, 2546–2549; doi:10.1038/ismej.2014.92; published online 13 June 2014 Relatively little is known about the functioning of genomes from single cells. Three methods of sample complex microbial communities, largely due to the preservation were tested: cryopreservation with difficulty in culturing most microbes (Rappe and 20% glycerol as a cryoprotectant, preservation in Giovannoni, 2003). Although metagenomics can 70% ethanol, and preservation in 4% paraformalde- provide information on the genetic capabilities of hyde. Because paraformaldehyde treatment causes the entire community, it is difficult to connect crosslinks between nucleic acids and proteins, we predicted gene functions to specific organisms using tested cells exposed to 4% paraformaldehyde with metagenomics (Morales and Holben, 2011).
  • Physical and Chemical Changes in Stabilized Mince from Pacific Whiting During Frozen Storage

    Physical and Chemical Changes in Stabilized Mince from Pacific Whiting During Frozen Storage

    AN ABSTRACT OF THE THESIS OF Edda Magnusdottir for the degree of Master of Science in Food Science & Technology presented on April 28, 1995. Title: Physical and Chemical Changes in Stabilized Mince from Pacific Whiting During Frozen Storage. Abstract approved: - L Michael T. Morrissey Cryoprotection in stabilized mince from Pacific whiting (Merluccius productus) was investigated by monitoring changes in physical and chemical properties during 32 weeks of frozen storage. The effects of 4 different cryoprotectants were evaluated by torsion test, color analysis, extractability of salt soluble proteins, and formation of dimethylamine (DMA) and 2-thiobarbituric acid (TBA). The quality of the stabilized mince was significantly higher than the control (mince without cryoprotectants) when compared by shear strain, salt soluble proteins, and DMA. The results show that the functionality of the proteins in the mince can be protected by using cryoprotectants with Polydextrose® being the most effective of the 4 tested. The effect of food-grade protease inhibitors on the gel-forming characteristics of Pacific whiting mince was also investigated. Four levels (1, 2, 3, and 4%) of different protease inhibitors (beef plasma protein, whey protein concentrate, egg white liquid, and egg white powder) were added to the stabilized mince before heating and effects on texture and color were evaluated. Shear strain was significantly increased by increasing the level of inhibitors. Beef plasma protein was most effective and presented significantly higher strain than the other inhibitors tested. Due to higher concentration of proteolytic enzymes in the mince, an increased amount of protease inhibitors is needed compared to surimi to prevent proteolysis during heating.
  • Cryopreservation Page 3

    Cryopreservation Page 3

    2nd quarter 2010 • Volume 31:2 funding Your Cryopreservation page 3 Death of Robert Prehoda Page 7 Member Profile: Mark Plus page 8 Non-existence ISSN 1054-4305 is Hard to Do page 14 $9.95 Improve Your Odds of a Good Cryopreservation You have your cryonics funding and contracts in place but have you considered other steps you can take to prevent problems down the road? Keep Alcor up-to-date about personal and medical changes. Update your Alcor paperwork to reflect your current wishes. Execute a cryonics-friendly Living Will and Durable Power of Attorney for Health Care. Wear your bracelet and talk to your friends and family about your desire to be cryopreserved. Ask your relatives to sign Affidavits stating that they will not interfere with your cryopreservation. Attend local cryonics meetings or start a local group yourself. Contribute to Alcor’s operations and research. Contact Alcor (1-877-462-5267) and let us know how we can assist you. Alcor Life Extension Foundation is on Connect with Alcor members and supporters on our official Facebook page: http://www.facebook.com/alcor.life.extension.foundation Become a fan and encourage interested friends, family members, and colleagues to support us too. 2ND QUARTER 2010 • VOLUME 31:2 2nd quarter 2010 • Volume 31:2 Contents COVER STORY: PAGE 3 funding Your Cryopreservation Without bequests and page 3 donations Alcor’s revenue falls 11 Book Review: The short of covering its operating Rational Optimist: How expenses. This means that Prosperity Evolves Alcor should further cut costs Former Alcor President or increase revenue.
  • Kinetic Vitrification of Spermatozoa of Vertebrates: What Can We Learn from Nature?

    Kinetic Vitrification of Spermatozoa of Vertebrates: What Can We Learn from Nature?

    1 Kinetic Vitrification of Spermatozoa of Vertebrates: What Can We Learn from Nature? I.I. Katkov** et al.* CELLTRONIX and Sanford-Burnham Institute for Medical Research, San Diego, California, USA Dedicated to the memory of Father Basile J. Luyet (1897-1974) 1. Introduction This as well as two other related Chapters, by Isachenko et al. and Moskovtsev et al., open this Book neither accidentally nor by the Editor’s preferences to his friends and collaborators; the reasons, in fact, lie quite deeper: Why sperm? Cryobiology had actually started from freezing sperm. We will skip all those very early anecdotes but should mention the Spallanzani attempt to freeze frog semen in the 18th century [Spallanzani, 1780]. Cryobiology as a science started with revolutionizing work of Father Luyet and other scientists of the late 1930’s and 1940’s, who we can collectively call “the pioneers of the cryobiological frontiers” (see the following sub-Chapter). There were several reasons why sperm was chosen, which included easiness in obtaining the samples, clear evidence of viability (moving – not moving, though later it was figured that everything was not so easy in this sophisticated living “cruise missile”), and importance for the farming industry with the emergence of systematic selective breeding (especially in cattle) with a powerful tool – artificial insemination (AI). AI started with the revolutionary work of W. Heape, I.I. Ivanov and other scientists at the dawn of the 20th century and was further developed by V.K. Milovanov in the 1930’s as a viable breeding technology (see [Foote, * V.F. Bolyukh2, O.A.
  • A Review and Application of Cryoprotectant: the Science of Cryonics

    A Review and Application of Cryoprotectant: the Science of Cryonics

    PharmaTutor PRINT ISSN: 2394-6679 | E-ISSN: 2347-7881 12 A Review and Application of Cryoprotectant: The Science of Cryonics Ankit J. Joshi Department of Pharmaceutics & Pharmaceutical Technology, S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat. [email protected] ABSTRACT The preservation of cells, tissues and organs by cryopreservation is promising technology now days and Low temperature technology has progressed in the field of tissue engineering, food preservation, fertility preservation, making disease resistant breeds since the early years to occupy a central role in this technology. Cryopreservation is important technology in every field like in organ cryopreservation, food cryopreservation, human cryopreservation, seeds cryopreservation, protein cryopreservation and pharmaceuticals. Cryobiologists will be required to collaborate with new physical and molecular sciences to meet this challenge. How cryoprotectants work is a mystery to most people. In fact, how they work was even a mystery to science until just a few decades ago. This article will explain in basic terms how cryoprotectants protect cells from damage caused by ice crystals, and with some of the advances. Key Words: Cryopreservation, Cryoprotectants, vitrification, Penetrating & non-penetrating cryoprotectant. INTRODUCTION A cryoprotectant is a substance used to protect Types of cryopreservation [1-4] biological tissue from freezing damage (i.e. that due (1) Isochoric cryopreservation to ice formation). Cryopreservation is a process Isochoric (constant volume) cryopreservation is where cells or tissues are preserved by cooling to low referred for biological material at low temperature. sub-zero temperatures, such as 77 K or -196°C (the In isochoric cryopreservation, the solution boiling point of liquid nitrogen).
  • Preparing Samples for Pacbio Whole Genome Sequencing for De Novo

    Preparing Samples for Pacbio Whole Genome Sequencing for De Novo

    Technical Note Sample Prep Technical Note Sample Prep Preparing Samples for PacBio® Whole Genome Sequencing for de novo Assembly: Collection and Storage Introduction Single Molecule, Real-Time (SMRT®) Sequencing uses the natural process of DNA replication to sequence long fragments of native DNA. As such, starting with high-quality, high molecular weight (HMW) genomic DNA (gDNA) will result in better sequencing performance across difficult to sequence regions of the genome. To obtain the highest quality, long DNA it is important to start with sample types compatible with HMW DNA extraction methods. This technical note is intended to give general guidance on sample collection, preparation, and storage across a range of commonly encountered sample types used for SMRT Sequencing whole genome projects. It is important to note that all samples and projects are unique and may not be comprehensively addressed in this document. Topics Covered • Sample and storage recommendations for: - Vertebrates - mammals, birds, fish, amphibians, reptiles - Invertebrates - marine, terrestrial - Arthropods - insects, crustaceans - Fungi - microorganisms, mushrooms, algae* - Plants - broad leaf plants, grasses *Algae is included with fungi due to similar growth and storage conditions • Additional considerations for planning HMW DNA isolation Sample and Storage Recommendations Vertebrates When sampling from vertebrates it is recommended to use a single individual. Sample Type Sample Storage Cell-dense tissue Fresh (within ~24 hours of collection and kept at 4°C) or flash frozen with liquid nitrogen 1 (brain, kidney, and stored at -80°C. muscle, etc.) Whole blood (if Collected in tube with anticoagulant such as EDTA, blood sample will be viable at 4°C for 24-72 hours 2 red blood cells are after collection.
  • Optimization of Sperm Cryopreservation Protocol for Peregrine Falcon (Falco Peregrinus)

    Optimization of Sperm Cryopreservation Protocol for Peregrine Falcon (Falco Peregrinus)

    animals Article Optimization of Sperm Cryopreservation Protocol for Peregrine Falcon (Falco peregrinus) Beatriz Cardoso 1, Irene Sánchez-Ajofrín 1,* , Cristina Castaño 2, Olga García-Álvarez 1 , Milagros Cristina Esteso 2, Alejandro Maroto-Morales 1, María Iniesta-Cuerda 1 , José Julián Garde 1 , Julián Santiago-Moreno 2 and Ana Josefa Soler 1 1 SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, 02071 Albacete, Spain; [email protected] (B.C.); [email protected] (O.G.-Á.); [email protected] (A.M.-M.); [email protected] (M.I.-C.); [email protected] (J.J.G.); [email protected] (A.J.S.) 2 Department of Animal Reproduction, INIA, 28040 Madrid, Spain; [email protected] (C.C.); [email protected] (M.C.E.); [email protected] (J.S.-M.) * Correspondence: [email protected] Received: 25 March 2020; Accepted: 14 April 2020; Published: 16 April 2020 Simple Summary: The process of semen cryopreservation can have multiple advantages in an ex situ conservation program. However, there is a necessity to adapt the protocol to the specificity of each species. With that in mind, we aimed to optimize the sperm freezing/thawing process and study the effect of different cryoprotectants in the peregrine falcon. Abstract: Sperm cryopreservation is a complex process that needs to be adapted to wild and domestic avian species to ensure proper efficiency. Because of its accessibility, the peregrine falcon may be used as a good model for studying other raptor species. To find the most optimal cryopreservation protocol for peregrine falcon ejaculates, sperm parameters such as motility, viability, DNA fragmentation, acrosome integrity, and mitochondrial activity were analyzed under different conditions by varying the freezing method (slow freezing in straws vs.
  • Understanding the Benefits and Limitations of Magnetic Nanoparticle Heating for Improved Applications in Cancer Hyperthermia and Biomaterial Cryopreservation

    Understanding the Benefits and Limitations of Magnetic Nanoparticle Heating for Improved Applications in Cancer Hyperthermia and Biomaterial Cryopreservation

    Understanding the Benefits and Limitations of Magnetic Nanoparticle Heating for Improved Applications in Cancer Hyperthermia and Biomaterial Cryopreservation A DISSERTATION SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Michael L. Etheridge IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advisor: John C. Bischof December 2013 © Michael L. Etheridge 2014 Acknowledgements This work would not have been possible without the support (both professional and personal) of a great number of people. First, I would like to thank my advisor, Professor John Bischof, for his guidance throughout this endeavor. I waded into the Ph.D. program because I wanted to be sure that I could find a project I cared about and an advisor that I respected and could learn from. I think I developed a lot during my time here in the Bioheat and Mass Transfer Lab, thanks in a large part to our candid (and sometimes “lively”) discussions. Although our approaches may have differed, I think it provided overall for a great process and I am very proud of my work here. One of the greatest opportunities (and challenges) of this project was the collaborative nature of this research. Specifically, I would like to thank Dr. Steven Girshick (Mechanical Engineering), Dr. Rhonda Franklin (Electrical and Computer Engineering), Dr. Michael Garwood (Center for Magnetic Resonance Research), Dr. Jack Hoopes (Dartmouth College), Dr. Christy Haynes (Chemistry), and Dr. Chris Hogan (Mechanical Engineering), for a wide variety of technical and general direction over the years. In addition, Katie Hurley, Dr. Jeunghwan Choi, Zhenpeng Qin, Chunlan Jiang, Dr.
  • Resurrection of the Body and Cryonics

    Resurrection of the Body and Cryonics

    religions Article Resurrection of the Body and Cryonics Calvin Mercer Religious Studies Program, East Carolina University, Greenville, NC 27858, USA; [email protected] Academic Editor: Noreen Herzfeld Received: 2 February 2017; Accepted: 14 May 2017; Published: 18 May 2017 Abstract: The Christian doctrine of resurrection of the body is employed to interpret the cryonics program of preserving legally dead people with the plan to restore them when future medicine can effectively address the cause of death. Cryonics is not accepted by mainstream science, and even if the vision is never realized, it is worth the effort to use it as a thought experiment to test the capability of the Christian theological system to address this issue in the unfolding new world of human enhancement. Drawing on the apostle Paul, whose view was based in the Jewish notion of psychosomatic unity, Christian resurrection includes emphases on physicality, radical transformation, and continuity of personal identity.Successful cryonics scenarios can include restoring a person to more or less the same life they had before or, more likely, utilize robotics, tissue regeneration, and other future advances in human enhancement technology to restore one to an enhanced state. Christian resurrection and the more likely cryonics scenario both entail physicality, radical transformation, and continuity of personal identity and, as such, can be understood to be technological expressions of Christian resurrection. Keywords: body; Christian theology; cryonics; dualism; immortality of the soul; personal identity; resurrection; superintelligence; uploading; whole brain emulation 1. Introduction Interest in the promising gene editing technique, known as clustered regularly interspaced short palindromic repeats (CRISPR), is just one indicator that we are recognizing, albeit slowly, the dawning of a human enhancement revolution.