Download (16Mb)
Total Page:16
File Type:pdf, Size:1020Kb
A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/127768 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Dielectrics for Narrow Bandgap III-V Devices Oliver Vavasour School of Engineering University of Warwick Dissertation submitted for the degree of Doctor of Philosophy October 2018 Contents List of Figures vii List of Tables xiv List of Equations xvi Acknowledgements xvii Declaration xviii Abstract xx Nomenclature xxii 1 Introduction 1 1.1 Semiconductor Technology Applications . 1 1.1.1 Niches for Alternative Materials . 2 1.1.2 Use of Narrow Bandgap Materials . 2 1.2 III-V Semiconductor Materials . 2 1.2.1 Elemental and Compound Semiconductors . 2 1.2.2 Semiconductor Alloys . 3 1.3 Review of Narrow Bandgap Material Applications . 4 1.4 Thesis Outline . 5 2 Literature Review 7 2.1 Introduction . 7 2.1.1 Deposition Techniques . 8 2.1.2 Origin of Interface Trap States . 10 2.2 Dielectric Materials . 10 2.2.1 Silicon Dioxide . 11 2.2.2 Gadolinium/Gallium Oxide . 11 2.2.3 Aluminium Oxide . 11 2.2.4 Hafnium Oxide . 12 i Chapter 0 Section 0.0 2.2.5 Lanthanum Oxide . 14 2.2.6 Aluminium Nitride . 15 2.3 Trap Characteristics . 16 2.4 Pre-deposition Processing . 19 2.4.1 Wet Treatments . 19 2.4.2 Gas Treatments . 23 2.4.3 Plasma Treatments . 24 2.5 Post-deposition Processing . 29 2.6 Characterisation . 33 2.6.1 Methods . 33 2.6.2 Comparison . 34 2.7 Aluminium Indium Antimonide . 37 2.8 Conclusion . 39 3 Experimental Techniques 40 3.1 Introduction . 40 3.2 Process Technology Outline . 40 3.3 Material Growth . 42 3.3.1 Czochralski Growth . 42 3.3.2 Molecular Beam Epitaxy . 42 3.3.3 Alternative Techniques . 43 3.3.4 Doping . 45 3.4 Chemical Vapour Deposition (Dielectrics) . 45 3.4.1 Conventional Chemical Vapour Deposition . 45 3.4.2 Atomic Layer Deposition . 46 3.4.3 Choice of Precursors . 49 3.5 Physical Vapour Deposition (Metals) . 50 3.5.1 Evaporation . 50 3.5.2 Sputtering . 51 3.5.3 Choice of Metal . 51 3.6 Photolithography and Patterning . 52 3.6.1 Spin Deposition . 52 3.6.2 Photolithography Process . 52 3.6.3 Lift-off Patterning . 53 3.7 Wet Chemical Etching and Cleaning . 54 3.7.1 Acid Processes . 54 3.7.2 Alkali Processes . 54 3.7.3 Wet Chemical Cleaning . 55 ii Chapter 0 Section 0.0 3.7.4 Isotropy . 55 3.8 Annealing . 55 3.8.1 Annealing Modes . 55 3.8.2 Annealing Chemistry . 56 3.9 Electrical Characterisation . 56 3.9.1 Setup at University of Warwick . 57 3.9.2 Setup at University of Glasgow . 57 3.9.3 Measurement Correction . 58 3.10 Cryogenic and Vacuum Techniques . 58 3.10.1 Cryogenic System Architecture . 59 3.10.2 Heat Transfer . 59 3.10.3 Cryogenic Cooling . 60 3.10.4 Vacuum Techniques for Cryogenic Systems . 60 3.11 X-ray Photoelectron Spectroscopy . 62 3.11.1 XPS Fundamentals . 62 3.11.2 XPS Apparatus . 63 3.12 Transmission Electron Microscopy . 63 3.13 Atomic Force Microscopy . 64 3.14 Conclusion . 65 4 Theory of III-V MOS Capacitors 66 4.1 Introduction . 66 4.2 Ideal MOSCAP C-V Response . 66 4.2.1 Accumulation . 67 4.2.2 Depletion . 69 4.2.3 Inversion . 69 4.3 Effect of Trapped Charge on C-V Response and Data Extraction . 71 4.3.1 The High-Low Method . 72 4.3.2 The Terman Method . 76 4.4 Ideal Response of III-V MOSCAPs . 77 4.4.1 Band Structure of III-V Materials . 77 4.4.2 Modelling of III-V C-V Response . 78 4.5 Conductance Response and Analysis . 81 4.5.1 Conductance Modelling of Interface-trapped Charge Density . 83 4.5.2 Interface-trapped Charge Energy Level in Conductance Re- sponse Models . 84 4.6 Material Modelling . 85 4.6.1 Temperature Dependence of Material Parameters . 87 iii Chapter 0 Section 0.0 4.6.2 Ternary Alloys . 89 4.7 Conclusion . 89 5 Modelling and Analysis of InSb MOS Capacitors 91 5.1 Introduction . 91 5.2 Architecture of Modelling and Analysis Code . 91 5.2.1 Modelling Parameters and Optimisation . 94 5.2.2 Analysis and Key Figures of Merit . 95 5.3 Extraction of Key Data . 98 5.3.1 Dopant Concentration . 98 5.3.2 Oxide Capacitance . 99 5.4 Verification Against Literature Data . 100 5.4.1 C-V Curve for InGaAs . 101 5.4.2 Carrier Concentration for InSb . 101 5.5 Typical Features of Electrical Characterisation . 103 5.6 High-Field Narrow Bandgap Effects . 108 5.6.1 Zener Tunnelling . 109 5.6.2 Impact Ionisation . 112 5.6.3 Quantum Capacitance . 113 5.7 Conclusion . 116 6 Pre-Deposition Treatments 117 6.1 Introduction . 117 6.2 XPS of HCl-Cleaned Surfaces . 117 6.3 HCl-Cleaned MOS Capacitors . 123 6.4 Plasma-Cleaned MOS Capacitors . 130 6.4.1 Experimental Methodology . 130 6.4.2 Results and Discussion . 131 6.5 Conclusion and Further Work . 137 7 Post-deposition Annealing 140 7.1 Introduction . 140 7.2 Experimental Methodology . 140 7.3 Material Breakdown at High Temperature . 142 7.4 Hysteresis Response to Annealing . 144 7.5 Interface-Trapped Charge Response to Annealing . 147 7.6 Flatband Voltage Response to Annealing . 149 7.7 Conclusion and Further Work . 151 iv Chapter 0 Section 0.0 8 AlInSb Ternary Alloy 153 8.1 Introduction . 153 8.2 Strained AlInSb with Low Al Composition . 154 8.2.1 Diode Characterisation (Dopant Concentration) . 154 8.2.2 Atomic Force Microscopy Characterisation (Surface Defects) . 156 8.3 Relaxed AlInSb with High Al Composition . 157 8.4 AlInSb MOSCAP Devices . 158 8.4.1 Interface-trapped Charge in AlInSb Materials . 160 8.4.2 Flatband Voltage in AlInSb Materials . ..