Semiconductors Group IV Elements and III-V Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Semiconductors Group IV Elements and III-V Compounds Data in Science and Technology Editor in Chief: R. Poerschke Semiconductors Group IV Elements and III-V Compounds Editor: O. Madelung Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona ISBN-13: 978-3-540-53150-0 e-ISBN-13: 978-3-642-45681-7 001: 10.1007/978-3-642-45681-7 Library of Congress Cataloging-in-Publication Data Semiconductors: group IV elements and II I-V compounds I editor, o. Madelung. p. cm. -- (Data in science and technology) Includes bibliographical references. ISBN 978-3-54().53150.o (Springer-Verlag Berlin Heidelberg New York : acid-free paper) I. Semiconductors--Handbooks, manuals, etc. I. Madelung, O. (Otfried) II. Series QC611.45.S46 1991 537.6'22--dc20 90-26078 CIP This work is subject to copyright All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, broadcasting, repro­ duction on microfilms or other ways, and storage in data banks_ Duplication of this publication or parts thereofis only permitted under the provisions of the German Copyright LawofSeptember9, 1965,in its current version, and a copyright fee must always be paid. Violations fall under the prosecution act ofthe German Copyright Law_ © Springer-Verlag Berlin Heidelberg 1991 The use of registered names, trademarks, etc_ in this publication does not imply, even in the absence ofa specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Thomson Press, Ltd_, New Delhi, India 216313040-543210 - Printed on acid-free paper Preface The frequent use of well known critical data handbooks like Beilstein, Gmelin and Landolt­ Bornstein is impeded by the fact that merely larger libraries - often far away from the scientist's working place - can afford such precious collections. To satisfy an urgent need of many scientists for having at their working place a comprehensive, high quality, but cheap collection of at least the basic data oftheirfield of interest the series "Data in Science and Technology"is started now. This first volume presents the most important data on two groups of semiconductors, the elements of the IVth group of the periodic system and the III-V compounds. All data were compiled from information on about 2500 pages in various volumes of the New Series of Landolt-Bornstein. For each critically chosen data set and each figure the original literature is cited. In addition, tables of content refer to the handbooks the data were drawn from. Thus the presentation of data in this volume is of the same high quality standard as in the original evaluated data collections. We hope to meet the needs of the physical community with the volumes of the series "Data in Science and Technology", forming bridges between the laboratory and additional information sources in the libraries. Berlin/Marburg, February 1991 The Editors Table of contents A Introduction 1 General remarks. 1 2 Physical quantities tabulated in this volume . 2 B Physical data 1 Elements of the IVth group and IV- IV compounds 1.1 Diamond (C). 5 1.2 Silicon (Si) . 11 1.3 Germanium (Ge) . 28 1.4 Grey tin (a-Sn). 42 1.5 Silicon carbide (SiC) . 47 1.6 Silicon germanium alloys (Six Gel_x) . 5"1 2 I II-V compollnds 2.1 Boron nitride (BN) . 60 2.2 Boron phosphide (BP). 65 2.3 Boron arsenide (BAs) . 68 2.4 Aluminium nitride (AIN) . 69 2.5 Aluminium phosphide (AlP). 72 2.6 Aluminium arsenide (AlAs) . 75 2.7 Aluminium antimonide (AISb) . 80 2.8 Gallium nitride (GaN). 86 2.9 Gallium phosphide (GaP). 91 2.10 Gallium arsenide (GaAs) . 101 2.11 Gallium antimonide (GaSb) . 114 2.12 Indium nitride (InN). 122 2.13 Indium phosphide (InP). 124 2.14 Indium arsenide (InAs) . 133 2.15 Indium antimonide (InSb) . 141 2.16 Ternary and quaternary alloys between III-V compounds. 150 Appendix: Contents of the volumes of the New Series ofLandolt-B6rnstein dealing with group IV and III-V semiconductors. 160 .
Recommended publications
  • A Guide to Export Controls
    Foreign Affairs, Trade and Affaires étrangères, Commerce et Development Canada Développment Canada A Guide To CANADA’S EXPORT CONTROLS December 2012 Introduction The issuance of export permits is administered by the Export Controls Division (TIE) of Foreign Affairs, Trade and Development Canada (DFATD). TIE provides assistance to exporters in determining if export permits are required. It also publishes brochures and Notices to Exporters that are freely available on request and on our website www.exportcontrols.gc.ca. How to contact us: Export Controls Division (TIE) Foreign Affairs, Trade and Development Canada 111 Sussex Drive Ottawa, Ontario K1A 0G2 Telephone: (613) 996-2387 Facsimile: (613) 996-9933 Email: [email protected] For information on how to apply for an export permit and additional information on export controls please refer to our website. To enquire on the status of an export permit application: Recognized EXCOL users can check the status of an export permit application on-line. Non-recognized users can call (613) 996-2387 or email [email protected] and quote your export permit application identification (ref ID) number. Export Controls Division website: www.exportcontrols.gc.ca This Guide, at time of publication, encompasses the list of items enumerated on the Export Control List (ECL) that are controlled for export in accordance with Canadian foreign policy, including Canada’s participation in multilateral export control regimes and bilateral agreements. Unless otherwise specified, the export controls contained in this Guide apply to all destinations except the United States. Canada’s Export Control List can be found at the Department of Justice website at http://canada.justice.gc.ca/.
    [Show full text]
  • Physical Properties and Data of Optical Materials
    Physical Properties and Data of Optical Materials Moriaki Wakaki Keiei Kudo Takehisa Shibuya Laß) CRC Press ^^ J Taylor &. Francis Group '*-*"' Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business • Table of Contents A AI (Aluminum) 1 AlSb (Aluminium Antimonide) 10 ADP (Ammonium Dihydrogen Phosphate) 16 Sb (Antimony) 21 Arsenic Selenium Glass 26 As (33%) + S (30%) + Br (37%) (Arsenic-Sulfur-Bromine Glass) 28 As2Se3 (Arsenic Tri-Selenide) 30 As2S3 (Arsenic Tri-Sulfide Glass) 33 6 Ba (Barium) 39 BaF2 (Barium Fluoride) 42 BaTi03 (Barium Titanate) 47 Be (Beryllium) 50 BeO (Beryllium Oxide) 54 Bi(Bismuth) 56 B(Boron) 61 C Cd(Cadmium) 65 CdSe (Cadmium Selenide) 70 CdS (Cadmium Sulfide) 75 CdTe (Cadmium Telluride) 82 CaC03 (Calcite) 89 CaF2 (Calcium Fluoride) 96 CaW04 (Calcium Tungstate) 105 CsBr (Cesium Bromide) 108 Csl (Cesium Iodide) 113 Cr(Chromium) 118 Cu(Copper) 122 CuCl (Cuprous Chloride) 128 D Diamond 135 G Ga (Gallium) 139 GaSb (Gallium Antimonide) 142 GaAs (Gallium Arsenide) 149 GaP (Gallium Phosphide) 158 Ge (Germanium) 165 Ge + Se + Te (Germanium-Selenium-Tellurium Glass) 180 Glass 182 Au (Gold) 191 * I In (Indium) 199 InSb (Indium Antimonide) 202 InAs (Indium Arsenide) 212 InP (Indium Phosphide) 218 Ir (Iridium) 224 Fe(Iron) 228 L LaF3 (Lanthanum Fluoride) 233 PbF2 (Lead Fluoride) 236 PbSe (Lead Selenide) 237 PbS (Lead Sulfide) 243 PbTe (Lead Telluride) 251 LiF (Lithium Fluoride) 257 Lucite 266 M Mg (Magnesium) 269 MgF2 (Magnesium Fluoride) 275 Mg2Ge (Magnesium Germanide) 282 MgO (Magnesium
    [Show full text]
  • Modelling and Optimising Gaas/Al (X) Ga (1-X) As Multiple Quantum Well
    University of London Imperial College of Science, Technology and Medicine Department of Physics Modelling and Optimising GaAs/AlxGa1 xAs − Multiple Quantum Well Solar Cells James P. Connolly arXiv:1006.1053v1 [cond-mat.mes-hall] 5 Jun 2010 Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Science of the University of London and the Diploma of Imperial College, January 1997 2 Abstract The quantum well solar cell (QWSC) is a p - i - n solar cell with quantum wells in the intrinsic region. Previous work has shown that QWSCs have a greater open circuit voltage (Voc) than would be provided by a cell with the quantum well effective bandgap. This suggests that the fundamental efficiency limits of QWSCs are greater than those of single bandgap solar cells. The following work investigates QWSCs in the GaAs/AlxGa1−xAs materials system. The design and optimisation of a QWSC in this system requires studies of the voltage and current dependencies on the aluminium fraction. QWSCs with different aluminium fractions have been studied and show an increasing Voc with increasing barrier aluminium composition. The QE however decreases with increasing aluminium composition. We de- velop a model of the QE to test novel QWSC designs with a view to minimising this problem. This work concentrates on two design changes. The first deals with com- positionally graded structures in which the bandgap varies with position. This bandgap variation introduces an quasi electric field which can be used to increase minority carrier collection in the low efficiency p and n layers. This technique also increases the light flux reaching the highly efficient depletion regions.
    [Show full text]
  • Determination of Band Structure of Gallium-Arsenide and Aluminium-Arsenide Using Density Functional Theory
    Computational Chemistry, 2016, 4, 73-82 Published Online July 2016 in SciRes. http://www.scirp.org/journal/cc http://dx.doi.org/10.4236/cc.2016.43007 Determination of Band Structure of Gallium-Arsenide and Aluminium-Arsenide Using Density Functional Theory J. A. Owolabi1, M. Y. Onimisi1, S. G. Abdu2, G. O. Olowomofe1 1Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria 2Department of Physics, Kaduna State University, Kaduna, Nigeria Received 18 April 2016; accepted 2 July 2016; published 5 July 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract This research paper is on Density Functional Theory (DFT) within Local Density Approximation. The calculation was performed using Fritz Haber Institute Ab-initio Molecular Simulations (FHI- AIMS) code based on numerical atomic-centered orbital basis sets. The electronic band struc- ture, total density of state (DOS) and band gap energy were calculated for Gallium-Arsenide and Aluminium-Arsenide in diamond structures. The result of minimum total energy and computa- tional time obtained from the experimental lattice constant 5.63 A for both Gallium Arsenide and Aluminium Arsenide is −114,915.7903 eV and 64.989 s, respectively. The electronic band structure analysis shows that Aluminium-Arsenide is an indirect band gap semiconductor while Gallium-Arsenide is a direct band gap semiconductor. The energy gap results obtained for GaAs is 0.37 eV and AlAs is 1.42 eV. The band gap in GaAs observed is very small when compared to AlAs.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Flexible Thermal Interface Based on Self-Assembled Boron Arsenide for High-Performance Thermal Management
    UCLA UCLA Previously Published Works Title Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Permalink https://escholarship.org/uc/item/4b77z423 Journal Nature communications, 12(1) ISSN 2041-1723 Authors Cui, Ying Qin, Zihao Wu, Huan et al. Publication Date 2021-02-24 DOI 10.1038/s41467-021-21531-7 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s41467-021-21531-7 OPEN Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management ✉ Ying Cui1, Zihao Qin1, Huan Wu1, Man Li1 & Yongjie Hu 1 Thermal management is the most critical technology challenge for modern electronics. Recent key materials innovation focuses on developing advanced thermal interface of elec- 1234567890():,; tronic packaging for achieving efficient heat dissipation. Here, for the first time we report a record-high performance thermal interface beyond the current state of the art, based on self- assembled manufacturing of cubic boron arsenide (s-BAs). The s-BAs exhibits highly desirable characteristics of high thermal conductivity up to 21 W/m·K and excellent elastic compliance similar to that of soft biological tissues down to 100 kPa through the rational design of BAs microcrystals in polymer composite. In addition, the s-BAs demonstrates high flexibility and preserves the high conductivity over at least 500 bending cycles, opening up new application opportunities for flexible thermal cooling. Moreover, we demonstrated device integration with power LEDs and measured a superior cooling performance of s-BAs beyond the current state of the art, by up to 45 °C reduction in the hot spot temperature.
    [Show full text]
  • Advanced Crystal Growth Techniques with Iii-V Boron Compound
    ADVANCED CRYSTAL GROWTH TECHNIQUES WITH III-V BORON COMPOUND SEMICONDUCTORS by CLINTON E. WHITELEY B.S., Benedictine Collage, 2005 M.S., Kansas State University, 2008 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Chemical Engineering College of Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 2011 ABSTRACT Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron and arsenic in a sealed quartz ampoule. B12As2 crystals of 8-10 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 hours and slowly cooled (3°C/hr). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), Raman spectroscopy, and defect selective etching confirmed that the crystals had the expected rhombohedral structure and a low density of defects (5x107 cm-2). The concentrations of residual impurities (nickel, carbon, etc) were found to be relatively high (1019 cm-3 for carbon) as measured by secondary ion mass spectrometry (SIMS) and elemental analysis by energy dispersive x-ray spectroscopy (EDS). The boron arsenide crystals were found to have favorable electrical properties (µ = 24.5 cm2 / Vs), but no interaction between a prototype detector and an alpha particle bombardment was observed. Thus, the flux growth method is viable for growing large B12As2 crystals, but the impurity concentrations remain a problem.
    [Show full text]
  • Boron Isotope Effect on the Thermal Conductivity of Boron Arsenide Single Crystals
    Boron isotope effect on the thermal conductivity of boron arsenide single crystals Haoran Sun1, Ke Chen2, Geethal Amila Gamage1, Hamidreza Ziyaee3, Fei Wang1, Yu Wang1,4, Viktor G. Hadjiev3, Fei Tian1†, Gang Chen2, and Zhifeng Ren1† 1 Department of Physics and Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas 77204, USA 2 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3 Department of Mechanical Engineering and Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas 77204, USA 4 Institute of Advanced Materials, Hubei Normal University, Huangshi, Hubei 435002, China †To whom correspondence should be addressed, email: [email protected], [email protected] Abstract Boron arsenide (BAs) with a zinc blende structure has recently been discovered to exhibit unusual and ultrahigh thermal conductivity (k), providing a new outlook for research on BAs and other high thermal conductivity materials. Technology for BAs crystal growth has been continuously improving, however, the influence of boron isotopes, pure or mixed, on the thermal conductivity in BAs is still not completely clear. Here we report detailed studies on the growth of single crystals of BAs with different isotopic ratios and demonstrate that the k of isotopically pure BAs is at least 10% higher than that of BAs grown from natural B. Raman spectroscopy characterization shows differences in scattering among various BAs samples. The presented results will be helpful in guiding further studies on the 1 influence of isotopes on optimizing k in BAs. 2 Introduction The heat produced in high power density electronic devices imposes a major limitation on the performance of these devices.
    [Show full text]
  • Cubic Boron Phosphide Epitaxy on Zirconium Diboride Balabalaji Padavala, H
    Cubic boron phosphide epitaxy on zirconium diboride Balabalaji Padavala, H. Al Atabi, Lina Tengdelius, Jun Lu, Hans Högberg and J. H. Edgar The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-144241 N.B.: When citing this work, cite the original publication. Padavala, B., Al Atabi, H., Tengdelius, L., Lu, J., Högberg, H., Edgar, J. H., (2018), Cubic boron phosphide epitaxy on zirconium diboride, Journal of Crystal Growth, 483, 115-120. https://doi.org/10.1016/j.jcrysgro.2017.11.014 Original publication available at: https://doi.org/10.1016/j.jcrysgro.2017.11.014 Copyright: Elsevier http://www.elsevier.com/ Cubic Boron Phosphide Epitaxy on Zirconium Diboride Balabalaji Padavala1, H. Al Atabi1, Lina Tengdelius2, Jun Lu2, Hans Högberg2 and J.H. Edgar1 Kansas State University, Department of Chemical Engineering, Durland Hall, Manhattan, KS 66506, USA Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden Abstract Cubic boron phosphide (BP) is one of the least studied III-V compound semiconductors, in part because it is difficult to prepare in high quality form. In this study, zirconium diboride (ZrB2) was studied as a potential substrate for BP epitaxial layers, because of its advantages of a low lattice constant mismatch and high thermal stability. Two types of substrates were considered: ZrB2(0001) epitaxial films on 4H- SiC(0001) and bulk ZrB2(0001) single crystals. The optimal temperature for epitaxy on these substrates was 1100 °C; higher and lower temperatures resulted in polycrystalline films.
    [Show full text]
  • 1.2 Boron Arsenide: Structure, Properties and Applications
    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING INVESTIGATION OF METAL THIN-FILMS ON BORON ARSENIDE AND HEXAGONAL BORON NITRIDE RAJEH SALAH R. ALSAADI SPRING 2020 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Materials Science and Engineering with honors in Materials Science and Engineering Reviewed and approved* by the following: Suzanne E. Mohney Professor of Materials Science and Engineering and Electrical Engineering Thesis Supervisor Robert A. Kimel Associate Teaching Professor of Materials Science and Engineering Honors Adviser * Electronic approvals are on file. i ABSTRACT Boron arsenide (BAs) and hexagonal boron nitride (h-BN) are of great interest for the development of next-generation electronic and optoelectronic devices due to their potential for superior performance for heat management and as insulating two-dimensional layered materials, respectively. Studies of metal electrical contacts to BAs, or heterojunctions involving metals and h-BN, are scarce in the literature. A device with BAs as an active semiconducting layer would require electrical contacts, so reactivity at metal/BAs interfaces were assessed based on condensed phase equilibria for metal-B-As systems. A MATLAB program was utilized to calculate the ternary phase diagrams for BAs with Pt, Mo, Cr, Ti, Au and Ag at room temperature. Platinum, Mo, Cr and Ti demonstrate are predicted to have exhibit a thermodynamic drive to react with BAs, while Au and Ag are in thermodynamic equilibrium with BAs. Assessment of stability of thin metal films on h-BN involved collection of condensed phase equilibria for metal-B-N systems from the literature, which showed that the early transition metals Cr, V, Ti, Zr, and Al have a thermodynamic driving force to react, while later transition metals Fe, Co, Ni, Mn, Au, Ag, Cu and Cd are expected to be stable on h-BN.
    [Show full text]
  • Guideline Ver6.2 Se Ria L No. CAS RN® Substance Group 1 Substance
    Guideline Ver6.2 Rank CAS RN® Substance Group 1 Substance Group 2 Substance Name 1=Prohibited No. Serial 2=Reduction 1 124-73-2 ozone depleting substances(Halons) Ethane, 1,2-dibromo-1,1,2,2-tetrafluoro- 1 2 25497-30-7 ozone depleting substances(Halons) Dibromotetrafluoroethane 1 3 27336-23-8 ozone depleting substances(Halons) Dibromotetrafluoroethane,compressed 1 4 353-59-3 ozone depleting substances(Halons) Methane, bromochlorodifluoro- 1 5 354-56-3 ozone depleting substances(Halons) Ethane, pentachlorofluoro- 1 6 75-61-6 ozone depleting substances(Halons) Methane, dibromodifluoro- 1 7 75-63-8 ozone depleting substances(Halons) Methane, bromotrifluoro- 1 8 110003-27-5 ozone depleting substances(HBFCs) 1,3-dibromo-1,1,2-trifluoropropane 1 9 111483-20-6 ozone depleting substances(HBFCs) 1-bromo-2,3-difluoropropane 1 10 124-72-1 ozone depleting substances(HBFCs) 2-bromo-1,1,1,2-tetrafluoroethane 1 11 148875-95-0 ozone depleting substances(HBFCs) C3H3FBr4 1 12 148875-98-3 ozone depleting substances(HBFCs) C3H2F2Br4 1 13 1511-62-2 ozone depleting substances(HBFCs) Methane, bromodifluoro- 1 14 172912-75-3 ozone depleting substances(HBFCs) HBFC-131 B3 Tribromofluoroethane 1 15 1800-81-3 ozone depleting substances(HBFCs) 1-bromo-1,2-difluoroethane 1 16 1868-53-7 ozone depleting substances(HBFCs) Dibromofluoromethane 1 17 1871-72-3 ozone depleting substances(HBFCs) FLUOROBROMOPROPANE 1 18 2252-78-0 ozone depleting substances(HBFCs) 1-Bromo-1,1,2,3,3,3-hexafluoropropane 1 19 2252-79-1 ozone depleting substances(HBFCs) 2-bromo-1,1,1,3,3,3-hexafluoropropane
    [Show full text]
  • Download (16Mb)
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/127768 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Dielectrics for Narrow Bandgap III-V Devices Oliver Vavasour School of Engineering University of Warwick Dissertation submitted for the degree of Doctor of Philosophy October 2018 Contents List of Figures vii List of Tables xiv List of Equations xvi Acknowledgements xvii Declaration xviii Abstract xx Nomenclature xxii 1 Introduction 1 1.1 Semiconductor Technology Applications . 1 1.1.1 Niches for Alternative Materials . 2 1.1.2 Use of Narrow Bandgap Materials . 2 1.2 III-V Semiconductor Materials . 2 1.2.1 Elemental and Compound Semiconductors . 2 1.2.2 Semiconductor Alloys . 3 1.3 Review of Narrow Bandgap Material Applications . 4 1.4 Thesis Outline . 5 2 Literature Review 7 2.1 Introduction . 7 2.1.1 Deposition Techniques . 8 2.1.2 Origin of Interface Trap States . 10 2.2 Dielectric Materials . 10 2.2.1 Silicon Dioxide . 11 2.2.2 Gadolinium/Gallium Oxide . 11 2.2.3 Aluminium Oxide . 11 2.2.4 Hafnium Oxide . 12 i Chapter 0 Section 0.0 2.2.5 Lanthanum Oxide .
    [Show full text]