Advanced Crystal Growth Techniques with Iii-V Boron Compound
Total Page:16
File Type:pdf, Size:1020Kb
ADVANCED CRYSTAL GROWTH TECHNIQUES WITH III-V BORON COMPOUND SEMICONDUCTORS by CLINTON E. WHITELEY B.S., Benedictine Collage, 2005 M.S., Kansas State University, 2008 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Chemical Engineering College of Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 2011 ABSTRACT Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron and arsenic in a sealed quartz ampoule. B12As2 crystals of 8-10 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 hours and slowly cooled (3°C/hr). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), Raman spectroscopy, and defect selective etching confirmed that the crystals had the expected rhombohedral structure and a low density of defects (5x107 cm-2). The concentrations of residual impurities (nickel, carbon, etc) were found to be relatively high (1019 cm-3 for carbon) as measured by secondary ion mass spectrometry (SIMS) and elemental analysis by energy dispersive x-ray spectroscopy (EDS). The boron arsenide crystals were found to have favorable electrical properties (µ = 24.5 cm2 / Vs), but no interaction between a prototype detector and an alpha particle bombardment was observed. Thus, the flux growth method is viable for growing large B12As2 crystals, but the impurity concentrations remain a problem. ADVANCED CRYSTAL GROWTH TECHNIQUES WITH III-V BORON COMPOUND SEMICONDUCTORS by CLINTON E. WHITELEY B.S., Benedictine Collage , 2005 M.S., Kansas State University, 2008 A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Chemical Engineering College of Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 2011 Approved by: Major Professor Dr. James H. Edgar ABSTRACT Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron and arsenic in a sealed quartz ampoule. B12As2 crystals of 8-10 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 hours and slowly cooled (3°C/hr). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), Raman spectroscopy, and defect selective etching confirmed that the crystals had the expected rhombohedral structure and a low density of defects (5x107 cm-2). The concentrations of residual impurities (nickel, carbon, etc) were found to be relatively high (1019 cm-3 for carbon) as measured by secondary ion mass spectrometry (SIMS) and elemental analysis by energy dispersive x-ray spectroscopy (EDS). The boron arsenide crystals were found to have favorable electrical properties (µ = 24.5 cm2 / Vs), but no interaction between a prototype detector and an alpha particle bombardment was observed. Thus, the flux growth method is viable for growing large B12As2 crystals, but the impurity concentrations remain a problem. Copyright CLINTON E. WHITELEY 2011 Table of Contents List of Figures................................................................................................................................ ix List of Tables ...............................................................................................................................xiii Acknowledgements...................................................................................................................... xiv Dedication..................................................................................................................................... xv CHAPTER 1 - BORON AND THE 10B ISOTOPE........................................................................ 1 Boron Rich Solids: B12 Icosahedra and B12As2 .......................................................................... 2 Icosahedral Boron Bonding and Structure.............................................................................. 2 Boron Compounds and Properties .......................................................................................... 3 Crystal Growth Methods for B12As2 ........................................................................................... 6 Chemical Vapor Deposition (CVD)........................................................................................ 6 The Flux Growth Method ....................................................................................................... 7 B12As2 Semiconductor Applications........................................................................................... 9 Radiation Detectors................................................................................................................. 9 Beta Voltaic Devices............................................................................................................. 14 CHAPTER 2 - ANALYSIS TECHNIQUES ................................................................................ 18 Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS).... 18 X-ray Photoelectron Spectroscopy (XPS) ................................................................................ 19 Secondary Ion Mass Spectrometry (SIMS) .............................................................................. 20 X-ray Diffraction (XRD) and the Coefficient of Thermal Expansion...................................... 21 X-ray Diffraction Topography (XRT) ...................................................................................... 22 Raman Spectroscopy................................................................................................................. 24 Van der Pauw and the Hall Effect ............................................................................................ 24 CHAPTER 3 - COEFFICIENT OF THERMAL EXPANSION BETWEEN 25°C AND 850°C 29 Abstract..................................................................................................................................... 29 Introduction............................................................................................................................... 30 Experimental Methods.............................................................................................................. 33 Results and Discussion ............................................................................................................. 34 Conclusions............................................................................................................................... 37 vi Acknowledgements................................................................................................................... 37 References................................................................................................................................. 39 CHAPTER 4 - Crystal Growth of B12As2..................................................................................... 40 Abstract..................................................................................................................................... 40 Introduction............................................................................................................................... 41 Experimental Methods.............................................................................................................. 43 Results and Discussion ............................................................................................................. 45 Conclusions............................................................................................................................... 50 References................................................................................................................................. 52 CHAPTER 5 - DEFECT SELECTIVE ETCHING...................................................................... 54 Abstract..................................................................................................................................... 54 Introduction............................................................................................................................... 55 Experimental Procedure............................................................................................................ 56 Results and Discussion ............................................................................................................. 58 Conclusions............................................................................................................................... 62 References................................................................................................................................. 63 CHAPTER 6 - CRYSTAL FACET ORIENTATION.................................................................. 65 Abstract..................................................................................................................................... 65