Integration of Boron Arsenide Cooling Substrates Into Gallium Nitride Devices

Total Page:16

File Type:pdf, Size:1020Kb

Integration of Boron Arsenide Cooling Substrates Into Gallium Nitride Devices ARTICLES https://doi.org/10.1038/s41928-021-00595-9 Integration of boron arsenide cooling substrates into gallium nitride devices Joon Sang Kang1,3, Man Li1,3, Huan Wu1,3, Huuduy Nguyen1,3, Toshihiro Aoki2 and Yongjie Hu 1 ✉ Thermal management is critical in modern electronic systems. Efforts to improve heat dissipation have led to the exploration of novel semiconductor materials with high thermal conductivity, including boron arsenide (BAs) and boron phosphide (BP). However, the integration of such materials into devices and the measurement of their interface energy transport remain unex- plored. Here, we show that BAs and BP cooling substrates can be heterogeneously integrated with metals, a wide-bandgap semiconductor (gallium nitride, GaN) and high-electron-mobility transistor devices. GaN-on-BAs structures exhibit a high ther- mal boundary conductance of 250 MW m−2 K−1, and comparison of device-level hot-spot temperatures with length-dependent scaling (from 100 μm to 100 nm) shows that the power cooling performance of BAs exceeds that of reported diamond devices. Furthermore, operating AlGaN/GaN high-electron-mobility transistors with BAs cooling substrates exhibit substantially lower hot-spot temperatures than diamond and silicon carbide at the same transistor power density, illustrating their potential for use in the thermal management of radiofrequency electronics. We attribute the high thermal management performance of BAs and BP to their unique phonon band structures and interface matching. n most electronic systems, large amounts of waste heat are dis- been reported in boron phosphide (BP, ref. 7) and 1,300 W m−1 K−1 in sipated from hot spots to heat sinks across a series of device lay- boron arsenide (BAs, refs. 8,11). BAs has a thermal conductivity over ers and interfaces that have a thermal resistance. A large thermal three times that of industrial HTC standards such as copper and sil- I −1 −1 resistance—and hence rising hot-spot temperatures—can degrade icon carbide (SiC)—both around 400 W m K —and twice that of device operation, so thermal management is an important techno- cubic boron nitride. Furthermore, the mechanical and thermophys- logical challenge in the semiconductor industry1–3. Recent research ical properties of BAs have been measured to be highly compatible on improving heat dissipation has focused on replacing common with power semiconductors11, as desired for device integration. The substrates (such as silicon carbide, silicon and sapphire) with heterogeneous integration and characterization of BAs and BP with high-thermal-conductivity (HTC) materials to reduce the overall other material layers is critical to achieving their future implemen- thermal resistance4–11. A key challenge for high-performance ther- tation in devices for thermal management applications, but these mal management is to achieve the combination of HTC with a low remain unexplored. thermal boundary resistance (TBR—the resistance of an interface to In this Article, we report the interface characterization and inte- thermal flow) near electronics junctions3. gration of BAs and BP with other metal and semiconductor materi- Diamond is currently the leading research prototype HTC mate- als. We examine the heat dissipation performance and mechanisms at rial for high-performance power electronics cooling. It has been these interfaces via material characterizations, spectroscopy measure- studied with wide-bandgap semiconductors and shown reduced ments and atomistic phonon transport theory simulations. Because hot-spot temperatures in gallium nitride (GaN)–diamond devices of their unique phonon band structures, BAs and BP show a combi- compared with traditional radiofrequency (RF) systems. However, nation of high HTC and low TBR. Here, we develop GaN-on-BAs GaN–diamond interfaces have poor TBR, which compromises structures using metamorphic heteroepitaxy and measure a thermal the application potential of diamond for thermal management3. boundary conductance of 250 MW m−2 K−1. In the following, we Conventional HTC materials have also been limited by their ther- highlight the potential of BAs as an alternative cooling substrate to mal properties and other intrinsic issues. For example, diamond and diamond and other state-of-the-art HTC materials by using experi- cubic boron nitride are challenging for applications because of their mental data from GaN–BAs structures with a variable-width heat high-temperature and high-pressure synthesis requirements, slow source to determine and investigate hot-spot temperatures of GaN growth rate, high cost, degraded quality and difficulty integrating transistors as a function of length scaling (from 100 μm to 100 nm) in with semiconductors. Graphite is highly anisotropic and mechani- both diffusive and ballistic transport regimes. We also develop device cally soft due to having weak cross-plane van der Waals bonding. integration and provide experimental measurements of operational Nanomaterials such as graphene and nanotubes can be good con- AlGaN/GaN high-electron-mobility transistors (HEMTs), verifying ductors for individual materials, but, when integrated at practical the superior cooling performance of BAs and showing its substan- sizes, their thermal conductivity degrades due to ambient interac- tially lower hot-spot temperature (~60 K) than diamond (~110 K) tions and disorder scattering. and SiC (~140 K) at the same transistor power density. Recently, new compound semiconductors7–11 have been devel- oped experimentally based on ab initio theory12–20 and exhibit high Thermal management using BAs and BP cooling substrates thermal conductivity beyond that of most common heat conductors. TBR is limited by the scattering of energy carriers from both sides In particular, an isotropic thermal conductivity of 500 W m−1 K−1 has of the interface4,21,22 and has been shown to exist at all heterogeneous 1School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA. 2Irvine Materials Research Institute, Irvine, CA, USA. 3These authors contributed equally: Joon Sang Kang, Man Li, Huan Wu, Huuduy Nguyen. ✉e-mail: [email protected] 416 NatURE ELECTRONICS | VOL 4 | JUNE 2021 | 416–423 | www.nature.com/natureelectronics NATURE ELECTRONICS ARTICLES a b BAs Diamond 1,000 Electronic chip BP ) Q –1 BN Temperature T Au Al GaN TBR = ∆ K Q –1 Ni Si Heat spreader 100 Pd (W m Pt Heat flux Ge Thermal conductivity GaAs Ti Distance 10 100 1,000 Debye temperature (K) Fig. 1 | Electronics thermal management using integrated HTC materials as a cooling substrate to improve heat dissipation. a, Schematic illustrating heat dissipation and thermal boundary resistance (TBR) at the interfaces in microchip packaging. TBR = ΔT/Q, where ΔT and Q are the temperature drop and heat flux across the interface, respectively. b, Room-temperature thermal conductivities and Debye temperatures of representative metals, semiconductors and HTC materials. interfaces, regardless of atomic perfection. Despite improvements palladium, platinum and titanium films were deposited on top in material quality, such as surface roughness and defects4,23, the of BAs and BP thin films by electron-beam evaporation to form ultimate limit of TBR for semiconductor device interfaces is usu- a clean metal–HTC interface, as verified by cross-sectional scan- ally dominated by the mismatch of atomistic vibrations (the modes ning electron microscopy (SEM; Fig. 2b). Our measurements of of which are defined as phonons21) across the interface (Fig. 1a). the temperature-dependent thermal boundary conductance (G, Under the classical Debye approximation, the vibrational properties the reciprocal value of TBR) are shown in Fig. 2d,e. In general, of materials are approximated by linear phonon dispersion, and the metal interfaces with BAs and BP are measured to have high ther- maximum temperature of the highest phonon frequency is defined mal conductance. The value of G varies for each metal but has a 24 as the Debye temperature (ΘD) . A simple metric to qualitatively similar trend for BAs and BP. For example, gold and titanium have evaluate the overlap between phonon spectra of two materials is the lowest and highest G values, respectively. The measured ther- 22 to compare their ΘD values (ref. ), where a smaller difference in mal boundary conductance values (at room temperature) between ΘD across the interface will be expected to result in a smaller TBR. BAs and gold, platinum, aluminium, palladium, nickel and titanium −2 −1 Figure 1b compares ΘD values for typical semiconductors, metals are 85, 133, 250, 290, 309 and 310 MW m K , respectively. These and HTC materials. values are slightly higher than those obtained with BP, as expected Most semiconductors (such as silicon, germanium, GaAs and from the difference in ΘD. From 300 K to 600 K, no substantial tem- GaN) and metals have ΘD values below 700 K, while prototype HTC perature dependence is observed for G, indicating that complete materials such as diamond and cubic BN have much higher values phonon excitation and a saturated phonon population are involved of ΘD (over 2,000 K) due to their large phonon group velocity. It is in the interface transport. The thermal boundary conductances therefore expected, and studies have confirmed, that there is a large of BAs and BP with metals are typically over 4× and 2.5× higher, TBR for diamond and BN interfaces after integration with typical respectively, than those of a metal–diamond interface30, verifying semiconductors, which substantially compromises their applica- their high heat dissipation efficiency. tion potential for thermal management, despite their high thermal conductivities. For example, the interface between diamond and Ab initio calculations and MD simulations of interface GaN has a mismatch in ΘD of over 1,500 K, resulting in a TBR of energy transport 2 −1 25–27 ~30 m K GW (refs. ). By comparison, BAs and BP have much To understand the experimental results, we performed atomistic lower ΘD values (for example, BAs has a ΘD of ~700 K), suggesting calculations to understand the phonon spectral contributions to they may show improved TBR upon integration.
Recommended publications
  • Gallium Nitride (Gan) Technology Overview
    EEPC_Chapt_1_P14_SB 12.3.11 The following chapter is from the First Edition of "GaN Transistors for Efficient Power Conversion" Purchase Second Edition CHAPTER 1: Gallium Nitride (GaN) Technology Overview Silicon Power MOSFETs from 1976-2010 For over three decades power management efficiency and cost showed steady improvement as innovations in power in power MOSFET (metal oxide silicon field effect transistor) structures, technology, and circuit topologies paced the growing need for electrical power in our daily lives. In the new millennium, however, the rate of improvement slowed as the silicon power MOSFET asymptotically approached its theoretical bounds. Power MOSFETs first started appearing in 1976 as alternatives to bipolar transistors. These majority carrier devices were faster, more rugged, and had higher current gain than their minor- ity-carrier counterparts. As a result, switching power conversion became a commercial reality. AC-DC switching power supplies for early desktop computers were among the earliest volume consumers of power MOSFETs, followed by variable speed motor drives, fluorescent lights, DC-DC converters, and thousands of other applications that populate our daily lives. One of the earliest power MOSFETs was the IRF100 from International Rectifier Corporation, introduced in November 1978. It boasted a 100 V drain-source breakdown voltage and a 0.1 Ω on-resistance; the benchmark of the era. With a die size over 40 mm2, and with a $34 price tag, this product was not destined to broadly replace the venerable bipolar transistor immediately. Many generations of power MOSFETs have been developed by several manufacturers over the years. Benchmarks were set, and fell, every year or so for 30 plus years.
    [Show full text]
  • Isamu Akasaki(Professor at Meijo University
    Nanotechnology and Materials (FY2016 update) Meeting the challenge of "impossible" technology Succeeded in the practical implementation of blue light-emitting diode! Research in the unattainable territory that won the Nobel Prize The 2014 Nobel Physics Prize was presented to blue LED. The development of blue LED resulted in the three researchers, Professor Isamu Akasaki, Professor commercialization of much brighter and energy-saving Hiroshi Amano and Professor Shuji Nakamura for the white light, thus contributing to energy conservation invention of an efficient blue light-emitting diode (LED). in the world and an improvement of people's lives in Red LEDs and yellow-green LEDs were developed in the areas without sufficient electricity. In addition to their 1960s; however, practical implementation of blue LEDs use as light sources, blue LEDs are now being widely was so difficult that it was even said that "it would be applied in various fields such as information technology, impossible to realize blue LEDs by the end of the 20th transportation, medicine and agriculture. Additionally, century." Amid such a circumstance, Professor Akasaki, the technology to put gallium nitride into practical Professor Amano and Professor Nakamura worked on implementation developed by the three researchers is the high-quality single crystallization and the p-type expected to find various applications in the future, such doping of gallium nitride (GaN), both of which had been as an application in power devices that serve as electric given up by researchers around the world. Their efforts power converters in electric vehicles and smart grids, from the 1980s to the 1990s finally led to their success next-generation power distribution grids,.
    [Show full text]
  • Fundamentals of Gallium Nitride Power Transistors EFFICIENT POWER CONVERSION
    APPLICATION NOTE: AN002 GaN Power Transistors Fundamentals of Gallium Nitride Power Transistors EFFICIENT POWER CONVERSION Stephen L. Colino and Robert A. Beach, Ph.D. The basic requirements for power semiconductors are efficiency, reliability, just below the AlGaN that is highly conductive. controllability, and cost effectiveness. High frequency capability adds further This abundance of electrons is known as a two value in size and transient response in regulators, and fidelity in class D amplifiers. dimensional electron gas (2DEG). Without efficiency and reliability, a new device structure would have no chance of Further processing forms a depletion region under economic viability. There have been many new structures and materials considered; the gate. To enhance the transistor, a positive some have been economic successes, others have seen limited or niche acceptance. voltage is applied to the gate in the same manner Breakthroughs by EPC in processing gallium nitride have produced enhancement as turning on an n-channel, enhancement mode mode devices with high conductivity and hyper fast switching, with a silicon-like cost power MOSFET. A cross section of this structure is depicted in figure 1. This structure is repeated structure and fundamental operating mechanism. many times to form a power device. The end result is a fundamentally simple, elegant, cost effective solution for power switching. This device behaves Operation similarly to silicon MOSFETs with some exceptions EPC’s enhancement mode gallium nitride (eGaN®) Structure that will be explained in the following sections. transistors behave very similarly to silicon power A device’s cost effectiveness starts with leveraging To obtain a higher voltage device, the distance MOSFETs.
    [Show full text]
  • High-Quality, Low-Cost Bulk Gallium Nitride Substrates
    ADVANCED MANUFACTURING OFFICE High-Quality, Low- Cost Bulk Gallium Nitride Substrates Electrochemical Solution Growth: A Scalable Semiconductor Manufacturing Process The ever-growing demand in the past decade for more energy efficient solid-state lighting and electrical power conversion is leading to a higher demand for wide bandgap semiconductor-based devices, such as gallium nitride (GaN), over traditional silicon (Si)-based devices. High cost and limited availability, how- ever, have hindered the adoption of GaN substrates to date. When utilizing GaN, current LED and power electronic device applications employ GaN epitaxially grown on top of non-GaN substrates. The lattice mismatch between the epitaxial GaN layer and the non-native substrate surface leads to con- siderable stress and high defect densities, ultimately compromising device yield and Conceptual diagram of the ESG reactor. Photo courtesy of Sandia National Laboratories performance. While bulk growth of GaN can combat these issues, current growth methods for bulk GaN have not fostered widespread adoption to date due to lim- This project will help develop ESG into a viable GaN bulk growth process that is well ited scalability, low material quality, high suited for scalability to large-area wafer manufacturing. Bulk GaN is important to bol- operating temperatures and pressures, stering U.S. competitiveness in high-efficiency power electronics and solid-state lighting. and slow growth rates. A fundamentally different manufacturing route for bulk Benefits for Our Industry and Our Nation growth of GaN not driven by thermal pro- Scaling the ESG growth method to large area GaN crystals could reduce the production cesses is needed to provide an adequate cost of bulk GaN wafers by up to a factor of 10.
    [Show full text]
  • Study on the Application of Gallium Nitride Transistors in Power Electronics Renan R
    Study on the Application of Gallium Nitride Transistors in Power Electronics Renan R. Duarte, Guilherme F. Ferreira, Marco A. Dalla Costa, Carlos H. Barriquello, J. MarcosSTUDY Alonso ON THE APPLICATION OF GALLIUM NITRIDE TRANSISTORS IN POWER ELECTRONICS Renan R. Duarte1, Guilherme F. Ferreira1, Marco A. Dalla Costa1, Carlos H. Barriquello1, J. Marcos Alonso2 1Universidade Federal de Santa Maria, Santa Maria - RS, Brazil 2Universidad de Oviedo, Gijón, Spain e-mail: {renan.duarte, guilhermefarias, marcodc, barriquello}@gedre.ufsm.br, [email protected] Abstract – Wide bandgap semiconductors have emerged components in the circuit [7]. However, it is necessary to as an attractive option for silicon (Si) replacement in minimize losses in the semiconductors, since these are one of the recent years. Among the new materials, gallium the major limiting factors in power converters [8]. nitride (GaN) has been considered as the most promising Many advances have been made in Si semiconductor candidate. This paper presents an overview of the manufacturing technology, allowing circuits to boost their GaN technology in power electronics. The review power density in a virtually linear trend, increasing about focuses on the main aspects of GaN transistors, such tenfold since they appeared in the market [9]. However, as Si as electrical, thermal and economical characteristics. A technology approaches its theoretical limits of performance, comparison between Si and GaN switching devices in a the need for a substitute of the same relevance becomes more family of synchronous buck converters designed for LED evident. The use of new wide bandgap semiconductors such lighting applications is also presented. This comparison as gallium nitride (GaN) is still rather modest.
    [Show full text]
  • Chemical Vapor Deposition of Heteroepitaxial Boron Phosphide Thin Films
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2013 Chemical Vapor Deposition of Heteroepitaxial Boron Phosphide Thin Films John Daniel Brasfield University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Semiconductor and Optical Materials Commons Recommended Citation Brasfield, John Daniel, "Chemical aporV Deposition of Heteroepitaxial Boron Phosphide Thin Films. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2558 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by John Daniel Brasfield entitled "Chemical Vapor Deposition of Heteroepitaxial Boron Phosphide Thin Films." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. Charles S. Feigerle, Major Professor We have read this dissertation and recommend its acceptance: Laurence Miller, Frank Vogt, Ziling Xue Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Chemical Vapor Deposition of Heteroepitaxial Boron Phosphide Thin Films A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville John Daniel Brasfield December 2013 Copyright © 2013 by John Daniel Brasfield All rights reserved.
    [Show full text]
  • Organometallic Pnictogen Chemistry
    Institut für Anorganische Chemie 2014 Fakultät für Chemie und Pharmazie | Sabine Reisinger aus Regensburg, geb. Scheuermayer am 15.07.1983 Studium: Chemie, Universität Regensburg Abschluss: Diplom Promotion: Prof. Dr. Manfred Scheer, Institut für Anorganische Chemie Sabine Reisinger Die vorliegende Arbeit enthält drei Kapitel zu unterschiedlichen Aspekten der metallorganischen Phosphor- und Arsen-Chemie. Zunächst werden Beiträge zur supramolekularen Chemie mit 5 Pn-Ligandkomplexen basierend auf [Cp*Fe(η -P5)] und 5 i [Cp*Fe(η - Pr3C3P2)] gezeigt, gefolgt von der Eisen-vermittelten Organometallic Pnictogen Aktivierung von P4, die zu einer selektiven C–P-Bindungsknüpfung führt, während das dritte Kapitel die Verwendung von Phosphor Chemistry – Three Aspects und Arsen als Donoratome in mehrkernigen Komplexen mit paramagnetischen Metallionen behandelt. Sabine Reisinger 2014 Alumniverein Chemie der Universität Regensburg E.V. [email protected] http://www.alumnichemie-uniregensburg.de Aspects Three – Chemistry Pnictogen Organometallic Fakultät für Chemie und Pharmazie ISBN 978-3-86845-118-4 Universität Regensburg Universitätsstraße 31 93053 Regensburg www.uni-regensburg.de 9 783868 451184 4 Sabine Reisinger Organometallic Pnictogen Chemistry – Three Aspects Organometallic Pnictogen Chemistry – Three Aspects Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Sabine Reisinger, geb. Scheuermayer Regensburg 2014 Die Arbeit wurde von Prof. Dr. Manfred Scheer angeleitet. Das Promotionsgesuch wurde am 20.06.2014 eingereicht. Das Kolloquium fand am 11.07.2014 statt. Prüfungsausschuss: Vorsitzender: Prof. Dr. Helmut Motschmann 1. Gutachter: Prof. Dr. Manfred Scheer 2. Gutachter: Prof. Dr. Henri Brunner weiterer Prüfer: Prof. Dr. Bernhard Dick Dissertationsreihe der Fakultät für Chemie und Pharmazie der Universität Regensburg, Band 4 Herausgegeben vom Alumniverein Chemie der Universität Regensburg e.V.
    [Show full text]
  • LOW LOSS ORIENTATION-PATTERNED GALLIUM ARSENIDE (Opgaas)
    LOW LOSS ORIENTATION-PATTERNED GALLIUM ARSENIDE (OPGaAs) WAVEGUIDES FOR NONLINEAR INFRARED FREQUENCY CONVERSION Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Electrical and Computer Engineering By Izaak Vincent Kemp Dayton, Ohio December 2012 LOW LOSS ORIENTATION-PATTERNED GALLIUM ARSENIDE (OPGaAs) WAVEGUIDES FOR NONLINEAR INFRARED FREQUENCY CONVERSION Name: Kemp, Izaak Vincent APPROVED BY: Dr. Andrew Sarangan Dr. Peter Powers Advisory Committee Chairman Committee Member Professor Professor Electrical and Computer Engineering Department of Physics Dr. Partha Banerjee Dr. Guru Subramanyam Committee Member Committee Member Professor Department Chair Electrical and Computer Engineering Electrical and Computer Engineering Dr. Rita Peterson Dr. Kenneth Schepler Committee Member Committee Member Adjunct Professor Adjunct Professor Electro-Optics Electro-Optics John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering &Wilke Distinguished Professor ii © Copyright by Izaak Vincent Kemp All rights reserved 2012 iii Distribution Statement A: Approved for public release, distribution is unlimited. This dissertation contains information regarding currently ongoing U.S. Department of Defense (DoD) research that has been approved for public release. Distribution of this dissertation is unlimited pursuant to DoD Directive 5230.24 subsection A4. Requests for further information may be referred to the author, Izaak V. Kemp AFRL/RYMWA. iv ABSTRACT LOW LOSS ORIENTATION-PATTERNED GALLIUM ARSENIDE (OPGaAs) WAVEGUIDES FOR NONLINEAR INFRARED FREQUENCY CONVERSION Name: Kemp, Izaak Vincent University of Dayton Advisor: Dr. Andrew Sarangan The mid-IR frequency band (λ = 2-5 μm) contains several atmospheric transmission windows making it a region of interest for a variety of medical, scientific, commercial, and military applications.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Download Article (PDF)
    Z. Kristallogr. 226 (2011) 435–446 / DOI 10.1524/zkri.2011.1363 435 # by Oldenbourg Wissenschaftsverlag, Mu¨nchen Structural chemistry of superconducting pnictides and pnictide oxides with layered structures Dirk JohrendtI, Hideo HosonoII, Rolf-Dieter HoffmannIII and Rainer Po¨ttgen*, III I Department Chemie und Biochemie, Ludwig-Maximilians-Universita¨t Mu¨nchen, Butenandtstraße 5–13 (Haus D), 81377 Mu¨nchen, Germany II Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan III Institut fu¨r Anorganische und Analytische Chemie, Universita¨t Mu¨nster, Corrensstraße 30, 48149 Mu¨nster, Germany Received October 29, 2010; accepted February 6, 2011 Pnictide / Pnictide oxide / Superconductivity / for hydride formation of CeRuSi ! CeRuSiH [6] and Intermetallics / Group-subgroup relation CeRuGe ! CeRuGeH [7]. The crystal chemical data of the huge number of ZrCuSiAs materials have recently Abstract. The basic structural chemistry of supercon- been reviewed [8]. ducting pnictides and pnictide oxides is reviewed. Crystal Although the basic crystallographic data of the many chemical details of selected compounds and group sub- ThCr2Si2 and ZrCuSiAs type compounds are known for group schemes are discussed with respect to phase transi- several years, especially for the ZrCuSiAs family, systema- tions upon charge-density formation, the ordering of va- tic property studies have been performed only recently. cancies, or the ordered displacements of oxygen atoms. These investigations mainly focused on p-type transparent Furthermore, the influences of doping and solid solutions semiconductors like LaCuSO (for a review see [9]) or the on the valence electron concentration are discussed in or- colored phosphide and arsenide oxides REZnPO [10] and der to highlight the structural and electronic flexibility of REZnAsO [11].
    [Show full text]
  • Getting Ready for Indium Gallium Arsenide High-Mobility Channels
    88 Conference report: VLSI Symposium Getting ready for indium gallium arsenide high-mobility channels Mike Cooke reports on the VLSI Symposium, highlighting the development of compound semiconductor channels in field-effect transistors on silicon for CMOS. esearchers across the world are readying the layer overgrowth or aspect-ratio trapping (ART) — are implementation of indium gallium arsenide free in the vertical direction, and thickness and surface R(InGaAs) and other III-V compound semicon- smoothness are determined post-growth by lithography ductors as high-mobility channel materials in field- or chemical mechanical polishing (CMP). The CELO effect transistors (FETs) on silicon (Si) for mainstream process filters out defects by the abrupt change in complementary metal-oxide-semiconductor (CMOS) growth direction from vertical to lateral, as constrained electronics applications. The latest Symposia on VLSI by the cavity. The researchers believe their technique Technology and Circuits in Kyoto, Japan in June featured avoids the main problems of alternative methods of a number of presentations from leading companies and integrating InGaAs into CMOS in terms of limited wafer university research groups directed towards this end. size, high cost, roughness, or background doping. In addition, Intel is proposing gallium nitride (GaN) The cap of the cavity was removed to access the for mobile applications such as voltage regulators or InGaAs for device fabrication. Also the InGaAs material radio-frequency power amplifiers, which require low was removed from the seed region to electrically power consumption and low-voltage operation. Away isolate the resulting devices from the underlying from III-V semiconductors, much interest has been silicon substrate.
    [Show full text]
  • Synthesis and Characterization of Diamond and Boron Phosphide
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 1972 Synthesis and Characterization of Diamond and Boron Phosphide K. P. Ananthanarayanan University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Ananthanarayanan, K. P., "Synthesis and Characterization of Diamond and Boron Phosphide" (1972). Open Access Dissertations. Paper 690. https://digitalcommons.uri.edu/oa_diss/690 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. T-P 7'i7 3. S ])5 Aisc°' .:. 1 SYNTHESIS AND CHARACTERIZATION OF DIAMOND AND BORON PHOSPHIDE / BY K. P. ANANTHANARAYANAN A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING UNIVERSITY OF RHODE ISLAND 1972 DOCTOR OF PHILOSOPHY THESIS OF K. P. ANANTHANARAYANAN Approved: Thesis Committee: Dean of the Graduate School UNIVERSITY OF RHODE ISLAND 1972 ABSTRACT Semiconducting diamond has been synthesized from carbon-metal melts in a 600 ton tetrahedral anvil press at about 60 kbar and 1400°c. The experimental set up, pressure and temperature calibra- tions, and the growth region in the pressure-temperature regime are indicated. Micrographs of synthesized crystals are shown. The semiconducting properties of diamond, doped with boron, aluminum and titanium have been interpreted using the log R versus l/T curves. In boron-doped diamond ''high concentration" type im- purity conduction occurs and the activation energies vary from 0.15 eV to 0.30 eV.
    [Show full text]