1.2 Boron Arsenide: Structure, Properties and Applications
Total Page:16
File Type:pdf, Size:1020Kb
THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING INVESTIGATION OF METAL THIN-FILMS ON BORON ARSENIDE AND HEXAGONAL BORON NITRIDE RAJEH SALAH R. ALSAADI SPRING 2020 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Materials Science and Engineering with honors in Materials Science and Engineering Reviewed and approved* by the following: Suzanne E. Mohney Professor of Materials Science and Engineering and Electrical Engineering Thesis Supervisor Robert A. Kimel Associate Teaching Professor of Materials Science and Engineering Honors Adviser * Electronic approvals are on file. i ABSTRACT Boron arsenide (BAs) and hexagonal boron nitride (h-BN) are of great interest for the development of next-generation electronic and optoelectronic devices due to their potential for superior performance for heat management and as insulating two-dimensional layered materials, respectively. Studies of metal electrical contacts to BAs, or heterojunctions involving metals and h-BN, are scarce in the literature. A device with BAs as an active semiconducting layer would require electrical contacts, so reactivity at metal/BAs interfaces were assessed based on condensed phase equilibria for metal-B-As systems. A MATLAB program was utilized to calculate the ternary phase diagrams for BAs with Pt, Mo, Cr, Ti, Au and Ag at room temperature. Platinum, Mo, Cr and Ti demonstrate are predicted to have exhibit a thermodynamic drive to react with BAs, while Au and Ag are in thermodynamic equilibrium with BAs. Assessment of stability of thin metal films on h-BN involved collection of condensed phase equilibria for metal-B-N systems from the literature, which showed that the early transition metals Cr, V, Ti, Zr, and Al have a thermodynamic driving force to react, while later transition metals Fe, Co, Ni, Mn, Au, Ag, Cu and Cd are expected to be stable on h-BN. Additionally, a gold thin film was deposited at room temperature on h-BN via electron beam evaporation and was analyzed by x-ray diffraction (XRD). No reaction products were detected between Au and h- BN. The (111) plane of Au was detected in a Bragg-Brentano geometry, but no symmetric or asymmetric Au peaks were observed from preliminary phi-scans to confirm epitaxy. Since room- temperature epitaxy has been observed for many metals on MoS2 and WSe2, future work could study similarities or differences in the behavior of metals on h-BN. ii TABLE OF CONTENTS LIST OF FIGURES .................................................................................................... iii LIST OF TABLES ....................................................................................................... v ACKNOWLEDGEMENTS ......................................................................................... vi Chapter 1 Introduction ................................................................................................. 1 1.1 Motivation .................................................................................................................. 1 1.2 Boron Arsenide: Structure, Properties and Applications ........................................... 3 1.3 Hexagonal Boron Nitride: Structure, Properties and Applications ............................ 3 1.4 Metal Thin-Films ....................................................................................................... 5 1.4.1 Physics of Metal-Semiconductor Interfaces .................................................... 5 1.4.2 Epitaxy of Metal Thin-Films ........................................................................... 6 1.4.3 Phase Equilibria and Ternary Phase Diagrams ............................................... 7 1.5 Accreditation Board for Engineering and Technology (ABET) Considerations ....... 9 Chapter 2 Computational and Calculation Methods .................................................... 11 2.1 Ternary Phase Diagrams ............................................................................................ 11 2.1.1 Calculation Method ......................................................................................... 11 2.1.2 Thermodynamic Data Collection and Selection Criteria ................................. 14 2.1.3 MATLAB Code ............................................................................................... 15 Chapter 3 Boron Arsenide: Results and Discussions ................................................... 18 3.1 Condensed Phase Equilibria and Ternary Phase Diagrams........................................ 18 3.1.1 Literature Review of Thermodynamic Data for M-B-As Systems.................. 18 3.1.2 Calculated Ternary Phase Diagrams for M-B-As Systems ............................. 36 Chapter 4 Hexagonal Boron Nitride: Results and Discussions ................................... 39 4.1 Condensed Phase Equilibria and Ternary Phase Diagrams........................................ 39 4.2 Experimental Procedures ........................................................................................... 41 4.2.1 Deposition of Metal Thin-Films on Boron Nitride.......................................... 41 4.2.2 Characterization of Metal Contacts on Boron Nitride ..................................... 42 4.2.3 Safety Considerations ...................................................................................... 42 4.3 Epitaxy of Metal Thin-Films ...................................................................................... 43 Chapter 5 Conclusions ................................................................................................ 48 BIBLIOGRAPHY ........................................................................................................ 50 iii LIST OF FIGURES Figure 1.1 Hexagonal boron nitride (h-BN) crystal structure [7]. ........................................... 4 Figure 1.2 Energy band diagram of Ohmic contact [23]. ........................................................ 6 Figure 1.3 Energy band diagram of an n-type Schottky diode [23]. ........................................ 6 Figure 1.4 3-D ternary phase diagram [31]. ............................................................................. 9 Figure 1.5 Isothermal Plot [30]. ............................................................................................... 9 Figure 2.1 An example of a ternary phase diagram with all possible tie lines. ........................ 12 Figure 2.2 Final ternary phase diagram with only stable tie lines............................................ 14 Figure 2.3. A screen shot of the Excel sheet for B-As-Mo system. ......................................... 16 Figure 3.1 Pt-B binary phase diagram [50]. ............................................................................. 21 Figure 3.2 Pt-As binary phase diagram [52]. ........................................................................... 22 Figure 3.3 Mo-B binary phase diagram [57]. ........................................................................... 24 Figure 3.4 Gibbs free energy of formation of Mo-B [57]. ...................................................... 25 Figure 3.5 Mo-As binary phase diagram [60]. ......................................................................... 26 Figure 3.6 The Cr-B binary phase diagram [64]. ..................................................................... 28 Figure 3.7 Cr-As binary phase diagram [71]. .......................................................................... 30 Figure 3.8 The Ti-B binary phase diagram [72]. ..................................................................... 32 Figure 3.9 Au-B binary phase diagram [84]. ........................................................................... 33 Figure 3.10 Au-As binary phase diagram [86]. ....................................................................... 34 Figure 3.11 Ag-B binary phase diagram [87]. ......................................................................... 35 Figure 3.12 Ag-As binary phase diagram [88]. ....................................................................... 36 Figure 3.13 Calculated Pt-Ba-As ternary phase diagram. ........................................................ 37 Figure 3.14 Calculated Mo-Ba-As ternary phase diagram. ...................................................... 37 Figure 3.15 Calculated Ti-Ba-As ternary phase diagram. ........................................................ 37 Figure 3.16 Calculated Cr-Ba-As ternary phase diagram. ....................................................... 37 iv Figure 3.17 Calculated Au-Ba-As ternary phase diagram. ...................................................... 37 Figure 3.18 Calculated Ag-Ba-As ternary phase diagram. ...................................................... 37 Figure 4.1. Bragg-Brentano XRD measurement for the Au/h-BN/Al2O3 sample, which indicates the presence of Au(111) and Al2O3(0001) basal plane peaks. ......................................... 45 Figure 4.2. Asymmetric phi-scan at the Al2O3(024) peak, which shows no Au film peaks. ... 46 v LIST OF TABLES Table 2.1 Example reaction matrix for Gibbs energies of reaction in kJ/mol of atoms. .......... 13 Table 3.1 Gibbs free energy of formation of the B-As system. ............................................... 20 Table 3.2 Gibbs free energy of formation of Pt-B binary system. ........................................... 21 Table 3.3 Gibbs free energy of formation of Pt-As binary system. ........................................