Transcriptomic analyses of gastrulation-stage C57BL/6J and C57BL/6NHsd mouse embryos with differential susceptibility to alcohol Karen E. Boschen1, Travis S. Ptacek2,3, Matthew E. Berginski4, Jeremy M. Simon2,3,5, Scott E. Parnell1,6,7* 1Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 2Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 3UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 4 Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 5 Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 6 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 7 Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA *Address correspondence to: Scott E. Parnell, Ph.D. Bowles Center for Alcohol Studies University of North Carolina 104 Manning Drive CB# 7178 Thurston Bowles Chapel Hill, NC 27599 Phone: 919-966-8195, Fax: 919-966-5679 Email:
[email protected], ORCID: 0000-0003-2038-6548 © 2021. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. Disease Models & Mechanisms • DMM Accepted manuscript SUMMARY STATEMENT RNA-seq in gastrulation-stage mouse embryos provides information about gene expression patterns during normal mouse development and evidence that pre-existing genetic variability mediates risk to prenatal alcohol-induced birth defects.