Supplementary Tables.Xlsx

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Tables.Xlsx Supplementary table S4 – Comparison of the ScHaa1- and CgHaa1- dependent regulatory networks. The dataset of C. glabrata genes herein found to be regulated by CgHaa1 under acetic acid stress was compared with the dataset of genes described to be regulated by ScHaa1, based on the information available at the YEASTRACT database. Identification of orthologues was performed using the Yeastmine algorithm available at the Candida Genome database website after which a manual curation of the data based on BLASTP was performed. The promoter region of S. cerevisiae or C. glabrata genes was searched for the described ScHaa1 binding site (5’-(G/C)(A/C)GG(G/C)-3’, designated Haa1-responsive element – HRE; Mira et al., 2011) using the DNA pattern matching algorithms embedded in the RSA tools website. Cells highlighted in grey correspond to the S. cerevisiae genes found to be regulated by ScHaa1 specifically under acetic acid stress, based on the dataset of Mira et al., (2010). Acetic acid-responsive genes regulated by ScHaa1 only C. glabrata S. cerevisiae S. cerevisiae ORF Function promoter harbors promoter harbors orthologue an HRE motif an HRE motif Ortholog(s) have actin binding, cytoskeletal regulatory protein binding, enzyme activator CAGL0A00891g YLR319C No No activity Ortholog(s) have role in double-strand break repair, meiotic sister chromatid segregation, CAGL0A00913g recombinational repair, replication fork processing and Cul8-RING ubiquitin ligase complex, YLR320W No No nucleus localization CAGL0A01001g No Description Available YLR326W Yes No Ortholog(s) have nicotinamide-nucleotide adenylyltransferase activity, role in NAD biosynthetic CAGL0A01023g YLR328W Yes Yes process and cytosol, nucleus localization Ortholog(s) have proton-transporting ATP synthase activity, rotational mechanism activity, role CAGL0A01111g in ATP synthesis coupled proton transport and mitochondrial proton-transporting ATP synthase, YPL271W Yes Yes central stalk localization Ortholog(s) have pre-mRNA 5'-splice site binding, structural constituent of ribosome activity, CAGL0A01540g role in negative regulation of mRNA splicing, via spliceosome, rRNA processing and cytosol YGL030W No No localization 598 CAGL0A01760g Ortholog(s) have role in mitochondrial translation and mitochondrion localization YDR341C No No Ortholog(s) have role in negative regulation of ubiquitin-protein transferase activity, replicative CAGL0A02024g YOL025W No No cell aging and mitochondrion localization CAGL0A02365g Ortholog(s) have role in cellular response to oxidative stress and cytosol, nucleus localization YDR346C No No Ortholog(s) have 5'-3' exonuclease activity, role in deadenylation-dependent decapping of CAGL0A02860g YDR370C No No nuclear-transcribed mRNA and cytoplasm localization CAGL0A03168g 60S acidic ribosomal protein YDR382W No No Ortholog(s) have IMP cyclohydrolase activity, phosphoribosylaminoimidazolecarboxamide CAGL0A03366g formyltransferase activity, role in 'de novo' IMP biosynthetic process and cytosol, plasma YLR028C Yes No membrane localization Ortholog(s) have role in maturation of 5.8S rRNA from tricistronic rRNA transcript (SSU- CAGL0A03652g rRNA, 5.8S rRNA, LSU-rRNA), maturation of LSU-rRNA from tricistronic rRNA transcript YBR142W No No (SSU-rRNA, 5.8S rRNA, LSU-rRNA) and nucleolus localization CAGL0A04081g Predicted GPI-linked cell wall protein YLR194C No Yes Ortholog(s) have role in mitochondrion inheritance and cellular bud neck, incipient cellular bud CAGL0A04169g YLR190W No Yes site, mitochondrial outer membrane localization CAGL0A04213g Has domain(s) with predicted nucleic acid binding, nucleotide binding activity YBL051C No No Ortholog(s) have thioredoxin peroxidase activity and role in cell redox homeostasis, cellular CAGL0A04433g response to oxidative stress, response to cadmium ion, sporocarp development involved in YBL064C Yes No sexual reproduction CAGL0A04675g Ortholog(s) have protein tag activity YBL078C No Yes Ortholog(s) have protein anchor activity, role in vacuole inheritance and Myo2p-Vac17p-Vac8p CAGL0B00308g YCL063W No No transport complex, fungal-type vacuole membrane localization Has domain(s) with predicted ATP binding, phosphotransferase activity, alcohol group as CAGL0B00726g YCL040W No No acceptor activity and role in carbohydrate metabolic process CAGL0B01100g Phosphatidylethanolamine-binding protein YLR178C Yes Yes Ortholog(s) have chromatin binding activity, role in cellular response to DNA damage stimulus CAGL0B01188g YLR183C No No and Rpd3L-Expanded complex, mitochondrion localization CAGL0B01203g Ortholog(s) have cytosolic large ribosomal subunit localization YDR500C Yes No Ortholog(s) have RNA polymerase II C-terminal domain phosphoserine binding, RNA CAGL0B01375g polymerase II core binding, RNA polymerase II transcription factor binding transcription factor YOL145C Yes No activity, triplex DNA binding activity Ortholog(s) have histone deacetylase activity, transcription coactivator activity, transcription CAGL0B01441g YNL330C Yes No corepressor activity Ortholog(s) have role in cellular copper ion homeostasis, endosomal transport, invasive growth CAGL0B01683g YLR083C No No in response to glucose limitation, pseudohyphal growth, vacuolar transport Ortholog(s) have structural constituent of ribosome activity and mitochondrial large ribosomal CAGL0B01815g YDR116C No No subunit, nucleolus localization Ortholog(s) have tRNA (guanine-N2-)-methyltransferase activity, role in tRNA N2-guanine CAGL0B01881g YDR120C Yes No methylation and mitochondrion, nuclear inner membrane localization Has domain(s) with predicted ATP binding, protein kinase activity, protein tyrosine kinase CAGL0B01925g activity, transferase activity, transferring phosphorus-containing groups activity and role in YDR122W No Yes protein phosphorylation CAGL0B02563g Expressed protein of unknown function YML128C Yes Yes Ortholog(s) have phosphoprotein phosphatase activity, role in endoplasmic reticulum unfolded CAGL0B02761g protein response, protein dephosphorylation, traversing start control point of mitotic cell cycle YLR361C No No and endoplasmic reticulum localization CAGL0K04279g Protein of unknown function YGR049W No No CAGL0B03091g Protein of unknown function YGR041W No Yes Ortholog(s) have role in ethanol metabolic process and mitochondrial inner membrane CAGL0B03465g YLR251W No No localization CAGL0B03575g Ortholog(s) have histone acetyltransferase activity, histone binding activity YEL056W No No CAGL0B04301g Ortholog(s) have cytosol localization YBR028C No No Putative Zn(2)-Cys(6) binuclear cluster transcription factor, involved in transcriptional CAGL0C01199g YLR228C Yes No regulation of ergosterol biosynthesis and uptake Ortholog(s) have guanyl-nucleotide exchange factor activity, translation initiation factor activity CAGL0C01221g YDR211W Yes No and role in regulation of translational initiation Ortholog(s) have cytochrome-c oxidase activity, nitrite reductase (NO-forming) activity, role in CAGL0C01325g mitochondrial electron transport, cytochrome c to oxygen and mitochondrial respiratory chain YNL052W Yes Yes complex IV localization CAGL0C01435g Ortholog(s) have role in ribosome biogenesis and mitochondrion localization YPL183W-A No No CAGL0C01441g Ortholog(s) have role in endocytic recycling and cytosol, endosome, nucleus localization YPL183C No No CAGL0C01485g Ortholog(s) have methylated histone binding, transcription factor binding activity YPL182C No - Ortholog(s) have nascent polypeptide-associated complex binding activity, role in protein CAGL0C01793g targeting to mitochondrion, ribosome localization and integral component of mitochondrial YBR230C No No outer membrane localization Ortholog(s) have glutamate-tRNA ligase activity, mRNA binding activity, role in glutamyl- CAGL0C01947g tRNA aminoacylation and cytosol, methionyl glutamyl tRNA synthetase complex, YGL245W No No mitochondrion, nucleus localization CAGL0C02607g Ortholog(s) have ATP binding, phosphatidylinositol binding activity YLR396C No No Ortholog(s) have cytochrome-c oxidase activity, role in mitochondrial electron transport, CAGL0C02623g cytochrome c to oxygen and mitochondrial respiratory chain complex IV, plasma membrane YLR395C No No localization Putative acyl-CoA:sterol acyltransferase involved in sterol esterification; gene is upregulated in CAGL0C02981g YCR048W No No azole-resistant strain CAGL0C03597g Putative actin-binding protein YCR088W No No Ortholog(s) have alditol:NADP+ 1-oxidoreductase activity, role in D-xylose catabolic process, CAGL0C04543g arabinose catabolic process, cellular response to oxidative stress and cytosol, nucleus YJR096W No Yes localization CAGL0C04741g Cytosolic copper-zinc superoxide dismutase YJR104C No Yes CAGL0C05093g Ortholog(s) have dipeptidyl-peptidase activity and cytoplasm, nucleus localization YOL057W No No CAGL0C05291g Ortholog(s) have cytosol localization YOL066C No No Ortholog(s) have peptide alpha-N-acetyltransferase activity, role in N-terminal protein amino CAGL0C05313g YDL040C No No acid acetylation and NatA complex, cytosolic ribosome, mitochondrion localization Ortholog(s) have sequence-specific DNA binding RNA polymerase II transcription factor CAGL0C05335g YOL067C No No activity, transcription regulatory region DNA binding activity Histone deacetylase; ortholog of S. cerevisiae SIR2; sensor of niacin limitation; regulates gene CAGL0C05357g YOL068C No No expression under niacin-limiting conditions Ortholog(s) have GTPase activator activity, role in regulation of vacuole fusion, non-autophagic, CAGL0C05489g YDL234C No Yes vesicle-mediated
Recommended publications
  • MIAMI UNIVERSITY the Graduate School Certificate for Approving The
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Matthew F. Rouhier Candidate for the Degree: Doctor of Philosophy ___________________________________________________________ Director (Dr. Ann Hagerman) ___________________________________________________________ Reader (Dr.Chris Makaroff) ___________________________________________________________ Reader (Dr.Gary Lorigan) __________________________________________________________ Reader (Dr. Richard Taylor) _________________________________________________________ Graduate School Representative (Dr. Paul James) ! ABSTRACT CHARACTERIZATION OF YDR036C FROM Saccharomyces cerevisiae by Matthew F. Rouhier Beta-hydroxyisobutyryl-CoA (HIBYL-CoA) hydrolases are found ubiquitously in eukaryotes where they function in the catabolism of valine. A homologous enzyme (YDR036C) is also present in yeast where valine catabolism is distinctly different and does not require a HIBYL-CoA hydrolase. Like the other eukaryotic hydrolases, the yeast hydrolase is a member of the crotonase super-family which catalyzes various reactions using CoA thioester substrates. Crotonases typically function in fatty acid degradation which is peroxisomal in yeast while YDR036C is found strictly in mitochondria. Like other HIBYL-CoA hydrolases the yeast enzyme demonstrated activity toward beta-hydroxyacyl-CoAs, but unlike the other HIBYL-CoA hydrolases the yeast activity is greatest with beta-hydroxypropionyl-CoA (3-HP-CoA). Further characterization of the active site has determined that the preference of the hydrolases for 3-HP- CoA or HIBYL-CoA is dependent upon the residue at position 177. The glutamate at position 121 is responsible for the coordination with the beta-hydroxyl group and replacement with valine renders the enzyme non-specific for a hydroxyl group. Another unique feature to yeast hydrolases is the presence of a C-terminal tail of 80 amino acids, which when removed renders the enzyme inactive, suggesting that it may play a role in substrate binding.
    [Show full text]
  • 要約) Doctoral Dissertation Antibiotics Shapes Population-Level Diversity In
    ) Doctoral Dissertation Antibiotics shapes population-level diversity in the human gut microbiome ( ) Nishijima Suguru Acknowledgments I would like to express my sincere gratitude to my supervisor, Prof. Masahira Hattori, whose expertise, knowledge and continuous encouragement throughout my research. My sincere thanks also go to Assoc. Prof. Kenshiro Oshima (The University of Tokyo), Dr. Wataru Suda and Dr. Seok-Won Kim for their motivation, immense support and encouragement throughout my work. I am also grateful to all my collaborators, Prof. Hidetoshi Morita (Okayama University) for his fecal sample collection, DNA isolation and sincere encouragement, Prof. Kenya Honda and Dr. Koji Atarashi (Keio University) for mice experiments, Assoc. Prof. Masahiro Umezaki (the University of Tokyo) for support for dietary data analysis, Dr. Todd D. Taylor (RIKEN) for support for writing manuscript and Dr. Yuu Hirose (Toyohashi University of technology) for DNA sequencing. I also would like to thank all past and present members of our laboratory, Erica Iioka, Misa Takagi, Emi Omori, Hiromi Kuroyamagi, Naoko Yamashita, Keiko Komiya, Rina Kurokawa, Chie Shindo, Yukiko Takayama and Yasue Hattori for their great technical support and kind assistance. i Antibiotics shapes population-level diversity in the human gut microbiome () Abstract The human gut microbiome has profound influences on the host’s physiology through its interference with various intestinal functions. The development of next-generation sequencing (NGS) technologies enabled us to comprehensively explore ecological and functional features of the gut microbiomes. Recent studies using the NGS-based metagenomic approaches have suggested high ecological diversity of the microbiome across countries. However, little is known about the structure and feature of the Japanese gut microbiome, and the factor that shapes the population-level diversity in the human gut microbiome.
    [Show full text]
  • Mycobacterium Haemophilum Sp. Nov., a New Pathogen of Humanst
    0020-7713/78/0028-0067$02.0/0 INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1978, p. 67-75 Vol. 28, No. 1 Copyright 0 1978 International Association of Microbiological Societies Printed in U.S. A. Mycobacterium haemophilum sp. nov., a New Pathogen of Humanst DAVID SOMPOLINSKY,’v2 ANNIE LAGZIEL,’ DAVID NAVEH,3 AND TULI YANKILEVITZ3 Department of Microbwlogy, Asaf Harofe Government Hospital, Zerifin‘; Rapaport Laboratories, Bar-Ilan University, Ramat-Gan2;and Department of Internal Medicine “A,”Meir Hospital, Kfar Saba,3 Israel A patient under immunosuppressive treatment of Hodgkin’s disease developed generalized skin granulomata and subcutaneous abscesses. Several aspirated pus samples yielded acid-fast rods with the following properties: temperature opti- mum, about 30°C with no growth at 37°C; slow growth (2 to 4 weeks); nonchrom- ogenic; hemoglobin or hemin requirement for growth; catalase negative; pyrazin- amidase and nicotinamidase positive; and urease negative. The guanine-plus- cytosine content of the deoxyribonucleic acid was calculated from the melting temperature to be 66.0 mol%. It is concluded that these isolates belong to a new species, for which the name Mycobacterium haemophilum is proposed. The type strain of this species is strain 1 (= ATCC 29548). The new species is related to M. marinum and M. ulcerans. Granulomatous skin diseases of humans CASE HISTORY caused by mycobacteria other than Mycobacte- After World War 11, a 27-year-old woman was di- rium tuberculosis and M. leprae are well known. agnosed as having tuberculosis. She received treat- The two organisms most often involved etiolog- ment until 1951. In February 1969, at the age of 51, ically are M.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Interplay Between Uridylation and Deadenylation During Mrna Degradation in Arabidopsis Thaliana
    $FNQRZOHGJPHQWV &ŝƌƐƚ͕/ǁŽƵůĚůŝŬĞƚŽƚŚĂŶŬaƚĢƉĄŶŬĂsĂŸĄēŽǀĄ ͕ŶĚƌĞĂƐtĂĐŚƚĞƌĂŶĚ&ĂďŝĞŶŶĞDĂƵdžŝŽŶĨŽƌŚĂǀŝŶŐ ĂĐĐĞƉƚĞĚƚŽĞǀĂůƵĂƚĞŵLJǁŽƌŬ͘DĞƌĐŝĠŐĂůĞŵĞŶƚ ĂƵ>ĂďdžEĞƚZEĚ͛ĂǀŽŝƌĨŝŶĂŶĐĠŵĂƚŚğƐĞ͘ :͛ĂŝŵĞƌĂŝƐƌĞŵĞƌĐŝĞƌŵŽŶĚŝƌĞĐƚĞƵƌĚĞƚŚğƐĞ ͕ŽŵŝŶŝƋƵĞ'ĂŐůŝĂƌĚŝ;ͨ'ĂŐͩͿ͕ ĚĞŵ͛ĂǀŽŝƌĂĐĐƵĞŝůůŝ ĂƵƐĞŝŶĚĞƐŽŶĠƋƵŝƉĞĞƚĚĞŵ͛ĂǀŽŝƌƐŽƵƚĞŶƵ ƚŽƵƚĂƵůŽŶŐĚĞŵĂƚŚğƐĞ͘:ĞƚĞƌĞŵĞƌĐŝĞƉŽƵƌƚŽŶ ĞdžƉĞƌƚŝƐĞ͕ƚ ĞƐƉƌĠĐŝĞƵdžĐŽŶƐĞŝůƐĞƚůĞƐ;ůŽŶŐƵĞƐ͙ ͿĚŝƐĐƵƐƐŝŽŶƐƐĐŝĞŶƚŝĨŝƋƵĞƐƋƵŝŵ͛ŽŶƚďĞĂƵĐŽƵƉ ĂƉƉŽƌƚĠĞƚĂŝĚĠăĚĠǀĞůŽƉƉĞƌŵŽŶĞƐƉƌŝƚĐƌŝƚŝƋƵĞĞƚƐĐŝĞŶƚŝĨŝƋƵĞ͘ hŶŐƌĂŶĚŵĞƌĐŝă,ĠůğŶĞƵďĞƌƉŽƵƌƐĂŐĞŶƚŝůůĞƐƐĞĞƚƐĂƉĂƚŝĞŶĐĞĚƵƌĂŶƚĐĞƐϰĂŶŶĠĞƐ͘DĞƌĐŝƉŽƵƌ ƚŽŶ ƐŽƵƚŝĞŶ ŵŽƌĂů Ğƚ ŝŶƚĞůůĞĐƚƵĞů͕ ƚƵ ĂƐ ƚŽƵũŽƵƌƐ ĠƚĠ ůă ƉŽƵƌ ƌĠƉŽŶĚƌĞ ă ŵĞƐ ŝŶŶŽŵďƌĂďůĞƐ ƋƵĞƐƚŝŽŶƐĞƚƚƵĂƐƚŽƵũŽƵƌƐƐƵŵ͛ĞŶĐŽƵƌĂŐĞƌƋƵĂŶĚĕĂŶ͛ĂůůĂŝƚƉĂƐƚƌŽƉ͘ ƚŵĞƌĐŝĂƵƐƐŝƉŽƵƌƚĂ ƉĂƚŝĞŶĐĞ Ğƚ ƚ ĞƐ ďŽŶƐ ĐŽŶƐĞŝůƐ ůŽƌƐ ĚĞ ů͛ĠĐƌŝƚƵƌĞ ĚĞ ĐĞƚƚĞ ƚŚğƐĞ͘ dƵ ĞƐ ƵŶĞ ƉĞƌƐŽŶŶĞ Ğƚ ƵŶĞ ƐĐŝĞŶƚŝĨŝƋƵĞ ƌĞŵĂƌƋƵĂďůĞ͕ ũĞ ƐƵŝƐ ĐŽŶĨŝĂŶƚĞ ƋƵĞ ƚƵ ŝƌĂƐ ůŽŝŶ ĚĂŶƐ ƚĂ ǀŝĞ ƉĞƌƐŽŶŶĞůůĞ Ğƚ ƉƌŽĨĞƐƐŝŽŶŶĞůůĞ͊ ŝŶ ďĞƐŽŶĚĞƌĞƌ ĂŶŬ Őŝůƚ ,ĞŝŬĞ Ĩƺƌ ŝŚƌĞ ĞƚƌĞƵƵŶŐ ƵŶĚ ŝŚƌĞ ŐƵƚĞŶ ZĂƚƐĐŚůćŐĞ͘ /ĐŚ ĚĂŶŬĞ Ěŝƌ ĂƵĨƌŝĐŚƚŝŐĨƺƌĚĞŝŶĞŶŬŽŶƐƚƌƵŬƚŝǀĞŶĞŝƚƌĂŐƵŶĚĚĞŝŶĞƵŶĞƌŵƺĚůŝĐŚĞhŶƚĞƌƐƚƺƚnjƵŶŐ͕ĚŝĞŵŝƌďĞŝĚĞƌ hŵƐĞƚnjƵŶŐĚŝĞƐĞƐDĂŶƵƐŬƌŝƉƚƐƐĞŚƌŐĞŚŽůĨĞŶŚĂďĞŶ͘,ćƚƚĞƐƚĚƵŵŝĐŚĚĂŵĂůƐŶŝĐŚƚĂůƐWƌĂŬƚŝŬĂŶƚŝŶ ŐĞŶŽŵŵĞŶ͕ǁćƌĞŝĐŚǁŽŚůũĞƚnjƚŶŝĐŚƚŚŝĞƌ͘ƵďŝƐƚĞŝŶĞƐĞŚƌĂƵĨŵĞƌŬƐĂŵĞƵŶĚŚŝůĨƐďĞƌĞŝƚĞWĞƌƐŽŶ͕ ĚŝĞŝĐŚƐĞŚƌƐĐŚćƚnjĞƵŶĚŶŝĐŚƚƐŽƐĐŚŶĞůůǀĞƌŐĞƐƐĞŶǁĞƌĚĞ͘ DĞƌĐŝăDĂƌůğŶĞĞƚ,ĠůğŶĞĚ͛ĂǀŽŝƌĠƚĠ ůă͊sŽƵƐġƚĞƐĚĞƐĂŵŝĞƐƉƌĠĐŝĞƵƐĞƐƋƵĞũĞŶĞƐƵŝƐƉĂƐƉƌġƚĞ ăŽƵďůŝĞƌ͊DĞƌĐŝDĂƌůğŶĞƉŽƵƌƚŽŶŐƌĂŝŶĚĞĨŽůŝĞ͕ƚĂďŽŶŶĞŚƵŵĞƵƌĞƚƚŽŶŚŽŶŶġƚĞƚĠ͕ĞƚƉŽƵƌƚŽƵƐ ĐĞƐ ŵŽŵĞŶƚƐ ƉĂƐƐĠƐ ĂƵ ůĂďŽ Ğƚ ƐƵƌƚŽƵƚ ĞŶ ĚĞŚŽƌƐ ĚƵ ůĂďŽ ĂǀĞĐ ,ĠůğŶĞ ͊ DĞƌĐŝ ,ĠůğŶĞ͕ ũĞ
    [Show full text]
  • K319-100 Gluconokinase Activity Assay Kit (Colorimetric)
    FOR RESEARCH USE ONLY! Gluconokinase Activity Assay Kit (Colorimetric) 7/16 (Catalog # K319-100; 100 assays; Store at -20°C) I. Introduction: Gluconokinase (ATP:D-gluconate 6-phosphotransferase or Gluconate Kinase; EC:2.7.1.12) is a key enzyme for Gluconate degradation pathway. In E. coli and yeast, Gluconokinase can convert gluconate into 6-Phosphate-D-Gluconate in an ATP dependent manner. Through Hexose Monophosphate Shunt (HMS) pathway, 6-Phosphate-D-Gluconate generates ribose-6-phosphate, which is critical for nucleotides and nucleic acid synthesis. Little is known of the mechanism of gluconate metabolism in humans despite its widespread use in medicine and consumer products. BioVision’s Gluconokinase Assay kit provides a quick and easy way for monitoring Gluconokinase activity in a variety of samples. In this kit, Gluconokinase converts Gluconate into 6-Phosphate-D-Gluconate in an ATP dependent manner. 6-Phosphate-D-Gluconate and ADP in turn undergoe a series of reactions to form an intermediate, which reacts with the probe to form a colored product with strong absorbance (OD 450 nm). The assay is simple, sensitive, and high-throughput adaptable. Detection limit: < 0.1mU. Gluconokinase D-Gluconate + ATP 6-Phosphate-D-Gluconate + ADP Intermediate + Probe Color Product (OD 450 nm) II. Application: Measurement of Gluconokinase activity in various samples Mechanistic study of Pentose Phosphate Pathway III. Sample Type: Prokaryote such as: E.coli Animal tissues such as liver, kidney, etc. Adherent or suspension cells. IV. Kit Contents: Components K319-100 Cap Code Part Number Gluconokinase Assay Buffer 25 ml WM K319-100-1 Gluconokinase Substrate 1 Vial Blue K319-100-2 ATP 1 Vial Orange K319-100-3 Gluconokinase Converting Enzyme 1 Vial Purple K319-100-4 Gluconokinase Developer 1 Vial Green K319-100-5 Gluconokinase Probe 1 Vial Red K319-100-6 NADH Standard 1 Vial Yellow K319-100-7 Gluconokinase Positive Control 1 Vial Brown K319-100-8 V.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Open Matthew R Moreau Ph.D. Dissertation Finalfinal.Pdf
    The Pennsylvania State University The Graduate School Department of Veterinary and Biomedical Sciences Pathobiology Program PATHOGENOMICS AND SOURCE DYNAMICS OF SALMONELLA ENTERICA SEROVAR ENTERITIDIS A Dissertation in Pathobiology by Matthew Raymond Moreau 2015 Matthew R. Moreau Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 The Dissertation of Matthew R. Moreau was reviewed and approved* by the following: Subhashinie Kariyawasam Associate Professor, Veterinary and Biomedical Sciences Dissertation Adviser Co-Chair of Committee Bhushan M. Jayarao Professor, Veterinary and Biomedical Sciences Dissertation Adviser Co-Chair of Committee Mary J. Kennett Professor, Veterinary and Biomedical Sciences Vijay Kumar Assistant Professor, Department of Nutritional Sciences Anthony Schmitt Associate Professor, Veterinary and Biomedical Sciences Head of the Pathobiology Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT Salmonella enterica serovar Enteritidis (SE) is one of the most frequent common causes of morbidity and mortality in humans due to consumption of contaminated eggs and egg products. The association between egg contamination and foodborne outbreaks of SE suggests egg derived SE might be more adept to cause human illness than SE from other sources. Therefore, there is a need to understand the molecular mechanisms underlying the ability of egg- derived SE to colonize the chicken intestinal and reproductive tracts and cause disease in the human host. To this end, the present study was carried out in three objectives. The first objective was to sequence two egg-derived SE isolates belonging to the PFGE type JEGX01.0004 to identify the genes that might be involved in SE colonization and/or pathogenesis.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Bul1, a New Protein That Binds to the Rsp5 Ubiquitin Ligase in Saccharomyces Cerevisiae
    MOLECULAR AND CELLULAR BIOLOGY, July 1996, p. 3255–3263 Vol. 16, No. 7 0270-7306/96/$04.0010 Copyright q 1996, American Society for Microbiology Bul1, a New Protein That Binds to the Rsp5 Ubiquitin Ligase in Saccharomyces cerevisiae HIDEKI YASHIRODA, TOMOKO OGUCHI, YUKO YASUDA, AKIO TOH-E, AND YOSHIKO KIKUCHI* Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan Received 23 October 1995/Returned for modification 27 November 1995/Accepted 26 March 1996 We characterized a temperature-sensitive mutant of Saccharomyces cerevisiae in which a mini-chromosome was unstable at a high temperature and cloned a new gene which encodes a basic and hydrophilic protein (110 kDa). The disruption of this gene caused the same temperature-sensitive growth as the original mutation. By using the two-hybrid system, we further isolated RSP5 (reverses Spt2 phenotype), which encodes a hect (homologous to E6-AP C terminus) domain, as a gene encoding a ubiquitin ligase. Thus, we named our gene BUL1 (for a protein that binds to the ubiquitin ligase). BUL1 seems to be involved in the ubiquitination pathway, since a high dose of UBI1, encoding a ubiquitin, partially suppressed the temperature sensitivity of the bul1 disruptant as well as that of a rsp5 mutant. Coexpression of RSP5 and BUL1 on a multicopy plasmid was toxic for mitotic growth of the wild-type cells. Pulse-chase experiments revealed that Bul1 in the wild-type cells remained stable, while the bands of Bul1 in the rsp5 cells were hardly detected. Since the steady-state levels of the protein were the same in the two strains as determined by immunoblotting analysis, Bul1 might be easily degraded during immunoprecipitation in the absence of intact Rsp5.
    [Show full text]
  • Calorie Restriction and the Exercise of Chromatin
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Calorie restriction and the exercise of chromatin Alejandro Vaquero1,4 and Danny Reinberg2,3 1Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), ICREA, and IDIBELL, L’Hospitalet de Llobregat, Barcelona 08907, Spain; 2Howard Hughes Medical Institute, Department of Biochemistry, New York University-Medical School, New York, New York 10016, USA Since the earliest stages of evolution, organisms have (Masoro2005).Inahallmarkstudyin1935,McCayetal. faced the challenge of sensing and adapting to environ- (1935) demonstrated that, compared with rats fed with mental changes for their survival under compromising a standard diet, rats fed under CR lived longer, weighed less, conditions such as food depletion or stress. Implicit in showed heart hypertrophy, and had smaller livers, which these responses are mechanisms developed during evolu- they explained at the time as an effect of growth retarda- tion that include the targeting of chromatin to allow or tion. Since then, considerable research efforts have revealed prevent expression of fundamental genes and to protect that, surprisingly, the effects of CR on life span are highly genome integrity. Among the different approaches to similar among diverse eukaryotes (e.g., yeast, insects, fish, study these mechanisms, the analysis of the response to and mammals) (Kennedy et al. 2007). Although we can only a moderate reduction of energy intake, also known as speculate on these findings, they suggest that the follow- calorie restriction (CR), has become one of the best sources ing general survival strategy has been conserved through- of information regarding the factors and pathways in- out eukaryotic evolution: In low-nutrient conditions, volved in metabolic adaptation from lower to higher metabolism is adjusted to enable more efficient use of eukaryotes.
    [Show full text]
  • Product Sheet Info
    Master Clone List for NR-19279 ® Vibrio cholerae Gateway Clone Set, Recombinant in Escherichia coli, Plates 1-46 Catalog No. NR-19279 Table 1: Vibrio cholerae Gateway® Clones, Plate 1 (NR-19679) Clone ID Well ORF Locus ID Symbol Product Accession Position Length Number 174071 A02 367 VC2271 ribD riboflavin-specific deaminase NP_231902.1 174346 A03 336 VC1877 lpxK tetraacyldisaccharide 4`-kinase NP_231511.1 174354 A04 342 VC0953 holA DNA polymerase III, delta subunit NP_230600.1 174115 A05 388 VC2085 sucC succinyl-CoA synthase, beta subunit NP_231717.1 174310 A06 506 VC2400 murC UDP-N-acetylmuramate--alanine ligase NP_232030.1 174523 A07 132 VC0644 rbfA ribosome-binding factor A NP_230293.2 174632 A08 322 VC0681 ribF riboflavin kinase-FMN adenylyltransferase NP_230330.1 174930 A09 433 VC0720 phoR histidine protein kinase PhoR NP_230369.1 174953 A10 206 VC1178 conserved hypothetical protein NP_230823.1 174976 A11 213 VC2358 hypothetical protein NP_231988.1 174898 A12 369 VC0154 trmA tRNA (uracil-5-)-methyltransferase NP_229811.1 174059 B01 73 VC2098 hypothetical protein NP_231730.1 174075 B02 82 VC0561 rpsP ribosomal protein S16 NP_230212.1 174087 B03 378 VC1843 cydB-1 cytochrome d ubiquinol oxidase, subunit II NP_231477.1 174099 B04 383 VC1798 eha eha protein NP_231433.1 174294 B05 494 VC0763 GTP-binding protein NP_230412.1 174311 B06 314 VC2183 prsA ribose-phosphate pyrophosphokinase NP_231814.1 174603 B07 108 VC0675 thyA thymidylate synthase NP_230324.1 174474 B08 466 VC1297 asnS asparaginyl-tRNA synthetase NP_230942.2 174933 B09 198
    [Show full text]