Bul1, a New Protein That Binds to the Rsp5 Ubiquitin Ligase in Saccharomyces Cerevisiae

Total Page:16

File Type:pdf, Size:1020Kb

Bul1, a New Protein That Binds to the Rsp5 Ubiquitin Ligase in Saccharomyces Cerevisiae MOLECULAR AND CELLULAR BIOLOGY, July 1996, p. 3255–3263 Vol. 16, No. 7 0270-7306/96/$04.0010 Copyright q 1996, American Society for Microbiology Bul1, a New Protein That Binds to the Rsp5 Ubiquitin Ligase in Saccharomyces cerevisiae HIDEKI YASHIRODA, TOMOKO OGUCHI, YUKO YASUDA, AKIO TOH-E, AND YOSHIKO KIKUCHI* Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan Received 23 October 1995/Returned for modification 27 November 1995/Accepted 26 March 1996 We characterized a temperature-sensitive mutant of Saccharomyces cerevisiae in which a mini-chromosome was unstable at a high temperature and cloned a new gene which encodes a basic and hydrophilic protein (110 kDa). The disruption of this gene caused the same temperature-sensitive growth as the original mutation. By using the two-hybrid system, we further isolated RSP5 (reverses Spt2 phenotype), which encodes a hect (homologous to E6-AP C terminus) domain, as a gene encoding a ubiquitin ligase. Thus, we named our gene BUL1 (for a protein that binds to the ubiquitin ligase). BUL1 seems to be involved in the ubiquitination pathway, since a high dose of UBI1, encoding a ubiquitin, partially suppressed the temperature sensitivity of the bul1 disruptant as well as that of a rsp5 mutant. Coexpression of RSP5 and BUL1 on a multicopy plasmid was toxic for mitotic growth of the wild-type cells. Pulse-chase experiments revealed that Bul1 in the wild-type cells remained stable, while the bands of Bul1 in the rsp5 cells were hardly detected. Since the steady-state levels of the protein were the same in the two strains as determined by immunoblotting analysis, Bul1 might be easily degraded during immunoprecipitation in the absence of intact Rsp5. Furthermore, both Bul1 and Rsp5 appeared to be associated with large complexes which were separated through a sucrose gradient centrifugation, and Rsp5 was coimmunoprecipitated with Bul1. We discuss the possibility that Bul1 functions together with Rsp5 in protein ubiquitination. Ubiquitination is a ubiquitous system for tagging proteins E6-AP (21). The E6 and E6-AP binary complex then binds to which is highly conserved in eukaryotes (6, 11, 17, 19, 27). Not a tumor suppressor protein, p53, which is ubiquitinated by only are aberrant proteins recognized and conjugated with E6-AP, and the tagged p53 is degraded by the 26S proteasome, ubiquitin molecules, but also many important proteins in var- leading to tumorigenesis (47). With an in vitro system, Schef- ious processes of the mitotic cell cycle, signal transduction, or fner et al. established that ubiquitins, ubiquitin-activating en- differentiation are known to be substrates of this system, such zyme (E1), ubiquitin-conjugating enzyme (E2), viral E6 pro- as cyclins and inhibitors of cyclin-dependent kinases (13, 25, tein, E6-AP (E3), and ATP are required for the ubiquitination 34, 48, 53). Subsequently, ATP-requiring proteolysis of those of p53 (45). The cysteine residue near the C terminus of E6-AP multiubiquitinated conjugates by the multicomponent protea- is essential for the formation of a thioester bond with a ubiq- some occurs (40). Since the proteolysis is an irreversible pro- uitin molecule (46). Ubiquitin molecules are transferred cess, the target proteins to be ubiquitinated should be recog- through an E1-E2-E3 enzyme thioester cascade to their target nized with a high degree of specificity and proper timing; thus, proteins (46). In this system, viral E6 protein is a connector strict and complicated regulatory systems are needed. Re- molecule between the enzyme and its substrate; it can recog- cently, large complexes were reported to be required for the nize the target protein and activate the ubiquitin ligase. ubiquitination of cyclin B in various systems (34, 53). Many proteins have been found to contain a 30-kDa hect In Saccharomyces cerevisiae, many genes are known to be domain at their C termini (20). In S. cerevisiae, at least three involved in the ubiquitination system. UBA1 encodes a ubiq- proteins carry this hect domain. One of them, Rsp5, was sug- uitin-activating enzyme (E1) (39). At least 10 UBC genes (E2) gested to be a ubiquitin ligase like E6-AP (20). rsp5 was iso- encoding ubiquitin-conjugating enzymes have been isolated so lated as a revertant of spt3 encoding a TFIID-binding protein far (27). These enzymes form thioester bonds with ubiquitin (8, 16). UFD4 (identical to YKL162) was found to be involved molecules and transfer them to substrate proteins. In some in the UFD (Ub fusion degradation) pathway (28). We are also cases, additional (E3) factors (18) are known to be required; characterizing another hect gene, TOM1, which is required for UBR1, which encodes an E3a as a substrate-recognizing pro- the G2-M transition at a high temperature (56a). tein involved in N-end rule degradation, was isolated (1, 7). We have obtained temperature-sensitive (ts) mutants of S. Recently, another type of E3 enzyme, namely, a ubiquitin cerevisiae, as isolated previously (33), and one of them was ligase containing a hect (homologous to E6-AP C terminus) defective in the maintenance of minichromosomes at a high domain, was reported (20). temperature. We cloned a new gene, BUL1, and RSP5, whose Human E6-AP was the first ubiquitin ligase described (45). product interacted physically with this new gene product. In When human cells are infected with the high-risk papilloma- this report, we describe these new components involved in the virus, the viral E6 protein binds to a host component, called ubiquitination pathway of S. cerevisiae. MATERIALS AND METHODS * Corresponding author. Mailing address: Department of Biological Strains and genetic manipulations. Escherichia coli K-12 strain DH5a [supE44 Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, DlacU169 (f80lacZDM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1] was used for Hongo, Bunkyo-ku, Tokyo 113, Japan. Phone: 81-3-3812-2111, ext. propagating plasmids. The following strains of S. cerevisiae were used: YPH499 4466. Fax: 81-3-5684-9420. Electronic mail address: [email protected] (MATa ade2 his3 leu2 trp1 ura3 lys2) (50); YPH4992, a homozygous diploid strain -tokyo.ac.jp. of YPH499; KA31 (MATa his3 leu2 ura3 trp1) (24); RAY-3A (MATa leu2 ura3 3255 3256 YASHIRODA ET AL. MOL.CELL.BIOL. (this laboratory). For pHY16, the PstI site inside RSP5 was fused to the down- stream region of the myc epitope tag (amino acid sequence EQKLISEEDL) of the pKT10-mycN vector (constructed by K. Fujimura) so that the fusion gene encoding the myc tag at the N terminus of Rsp5 was expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter (55). pHY17 is YEplac112 containing the 5-kb HindIII fragment of RSP5. pHY18 is pW1 carrying the 4-kb EcoRI-SacI fragment of BUL1. pHY19 is YEplac112 containing both the 5-kb HindIII fragment of RSP5 and the 4-kb EcoRI-SacI fragment of BUL1. pHY20 is YEplac181 bearing BUL1-HA from pHY15. The Ub-X-LacZ plasmids (7) were generously given by A. Varshavsky via K. Tanaka of Tokushima University. For E. coli transformation, the cells were prepared as described by Inoue et al. (23). Yeast transformation was performed with lithium acetate (26). Gene re- placement was carried out as described by Rothstein (42). For BUL1 gene disruption, the plasmid pHY05 (Fig. 1A) was digested with SacI and SalI and used to transform the YPH4992 cells for tryptophan prototrophy. For RSP5 gene disruption, plasmid pTOP232 (Fig. 1B) was digested with HindIII and introduced into strain YPH4992 to select uracil prototrophy. Rolling method. Genomic DNA of strain YHY002, in which plasmid pYH03 was integrated at the BUL1 locus, was isolated, purified by phenol extraction, and digested with restriction enzyme EcoRI. The DNA circularized with T4 DNA ligase (Bethesda Research Laboratories) was introduced into an E. coli strain to select ampicillin-resistant colonies. The recovered plasmid contained the entire BUL1 gene, and the 4-kb EcoRI-SacI DNA fragment was inserted into either pRS316 (pHY06) or YEUp3 (pHY66). FIG. 1. Restriction maps of BUL1 and RSP5 and structures of various plas- DNA sequencing. Nucleotide sequences were determined by the dideoxy mids. (A) Map of BUL1 and its neighboring regions, constructed from two chain-termination method (44), using double-stranded DNAs as templates and a plasmids, pHY01 and pHY06. Only inserts of various plasmids are given (lines). Dye Deoxy Cycle sequencing kit (Applied Biosystems). After PCRs, the samples YEp, multicopy plasmid; YCp, single-copy plasmid; and Ylp, integration plas- were analyzed by using 6% polyacrylamide gels and an ABI model 370 se- mid. The complementation activity of each plasmid is indicated on the right. quencer. Plasmid pHY05 was used to disrupt BUL1 (see text), and pHY07, which contains DNA isolation and Southern hybridization. Yeast DNA was isolated (43), a gene encoding Bul1 fused to the LexA DNA binding domain, was used for digested with appropriate restriction enzymes, and run on 1% agarose gels. screening plasmids by the two-hybrid system. (B) Map of RSP5 and structure of During the treatment of the gel with 0.4 N NaOH for 4 h, the denatured DNA the plasmids. Plasmid pHY09 was isolated by the two-hybrid system; the C- was blotted onto Hybond N1 membrane filters (Amersham). Southern hybrid- terminal part of RSP5 was fused in frame to the Gal4 activation domain on ization was performed by using the enhanced chemiluminescence direct nucleic plasmid pGAD. Plasmid pTOP232 was used for disrupting RSP5. Restriction acid labeling system, according to the procedure recommended by the manufac- sites: B, BamHI; Bg, BglII; C, ClaI; E, EcoRI; H, HindIII; K, KpnI; Pv, PvuII; turer (Amersham). For the evaluation of the BUL1 gene disruption, the 3-kb RV, EcoRV; Sc, SacI; Sl, SalI; and X, XhoI.
Recommended publications
  • 要約) Doctoral Dissertation Antibiotics Shapes Population-Level Diversity In
    ) Doctoral Dissertation Antibiotics shapes population-level diversity in the human gut microbiome ( ) Nishijima Suguru Acknowledgments I would like to express my sincere gratitude to my supervisor, Prof. Masahira Hattori, whose expertise, knowledge and continuous encouragement throughout my research. My sincere thanks also go to Assoc. Prof. Kenshiro Oshima (The University of Tokyo), Dr. Wataru Suda and Dr. Seok-Won Kim for their motivation, immense support and encouragement throughout my work. I am also grateful to all my collaborators, Prof. Hidetoshi Morita (Okayama University) for his fecal sample collection, DNA isolation and sincere encouragement, Prof. Kenya Honda and Dr. Koji Atarashi (Keio University) for mice experiments, Assoc. Prof. Masahiro Umezaki (the University of Tokyo) for support for dietary data analysis, Dr. Todd D. Taylor (RIKEN) for support for writing manuscript and Dr. Yuu Hirose (Toyohashi University of technology) for DNA sequencing. I also would like to thank all past and present members of our laboratory, Erica Iioka, Misa Takagi, Emi Omori, Hiromi Kuroyamagi, Naoko Yamashita, Keiko Komiya, Rina Kurokawa, Chie Shindo, Yukiko Takayama and Yasue Hattori for their great technical support and kind assistance. i Antibiotics shapes population-level diversity in the human gut microbiome () Abstract The human gut microbiome has profound influences on the host’s physiology through its interference with various intestinal functions. The development of next-generation sequencing (NGS) technologies enabled us to comprehensively explore ecological and functional features of the gut microbiomes. Recent studies using the NGS-based metagenomic approaches have suggested high ecological diversity of the microbiome across countries. However, little is known about the structure and feature of the Japanese gut microbiome, and the factor that shapes the population-level diversity in the human gut microbiome.
    [Show full text]
  • Open Matthew R Moreau Ph.D. Dissertation Finalfinal.Pdf
    The Pennsylvania State University The Graduate School Department of Veterinary and Biomedical Sciences Pathobiology Program PATHOGENOMICS AND SOURCE DYNAMICS OF SALMONELLA ENTERICA SEROVAR ENTERITIDIS A Dissertation in Pathobiology by Matthew Raymond Moreau 2015 Matthew R. Moreau Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 The Dissertation of Matthew R. Moreau was reviewed and approved* by the following: Subhashinie Kariyawasam Associate Professor, Veterinary and Biomedical Sciences Dissertation Adviser Co-Chair of Committee Bhushan M. Jayarao Professor, Veterinary and Biomedical Sciences Dissertation Adviser Co-Chair of Committee Mary J. Kennett Professor, Veterinary and Biomedical Sciences Vijay Kumar Assistant Professor, Department of Nutritional Sciences Anthony Schmitt Associate Professor, Veterinary and Biomedical Sciences Head of the Pathobiology Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT Salmonella enterica serovar Enteritidis (SE) is one of the most frequent common causes of morbidity and mortality in humans due to consumption of contaminated eggs and egg products. The association between egg contamination and foodborne outbreaks of SE suggests egg derived SE might be more adept to cause human illness than SE from other sources. Therefore, there is a need to understand the molecular mechanisms underlying the ability of egg- derived SE to colonize the chicken intestinal and reproductive tracts and cause disease in the human host. To this end, the present study was carried out in three objectives. The first objective was to sequence two egg-derived SE isolates belonging to the PFGE type JEGX01.0004 to identify the genes that might be involved in SE colonization and/or pathogenesis.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0058468 A1 Mickeown (43) Pub
    US 20120058468A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0058468 A1 MickeoWn (43) Pub. Date: Mar. 8, 2012 (54) ADAPTORS FOR NUCLECACID Related U.S. Application Data CONSTRUCTS IN TRANSMEMBRANE (60) Provisional application No. 61/148.737, filed on Jan. SEQUENCING 30, 2009. Publication Classification (75) Inventor: Brian Mckeown, Oxon (GB) (51) Int. Cl. CI2O I/68 (2006.01) (73) Assignee: OXFORD NANOPORE C7H 2L/00 (2006.01) TECHNOLGIES LIMITED, (52) U.S. Cl. ......................................... 435/6.1:536/23.1 Oxford (GB) (57) ABSTRACT (21) Appl. No.: 13/147,159 The invention relates to adaptors for sequencing nucleic acids. The adaptors may be used to generate single stranded constructs of nucleic acid for sequencing purposes. Such (22) PCT Fled: Jan. 29, 2010 constructs may contain both strands from a double stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) (86) PCT NO.: PCT/GB1O/OO160 template. The invention also relates to the constructs gener ated using the adaptors, methods of making the adaptors and S371 (c)(1), constructs, as well as methods of sequencing double stranded (2), (4) Date: Nov. 15, 2011 nucleic acids. Patent Application Publication Mar. 8, 2012 Sheet 1 of 4 US 2012/0058468 A1 Figure 5' 3 Figure 2 Figare 3 Patent Application Publication Mar. 8, 2012 Sheet 2 of 4 US 2012/0058468 A1 Figure 4 End repair Acid adapters ligate adapters Patent Application Publication Mar. 8, 2012 Sheet 3 of 4 US 2012/0058468 A1 Figure 5 Wash away type ifype foducts irrirrosilise Type| capture WashRE products away unbcure Pace É: Wash away unbound rag terts Free told fasgirre?ts aid raiser to festible Figure 6 Beatre Patent Application Publication Mar.
    [Show full text]
  • Ribonucleases. Possible New Approach in Cancer Therapy V.O
    2 Experimental Oncology 38, 2–8, 2016 (March) Exp Oncol 2016 REVIEW 38, 1, 2–8 RIBONUCLEASES. POSSIBLE NEW APPROACH IN CANCER THERAPY V.O. Shlyakhovenko R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv 03022, Ukraine In the review, the use of the ribonucleases for cancer therapy is discussed. Using of epigenetic mechanisms of regulation — blocking protein synthesis without affecting the DNA structure — is a promising direction in the therapy. The ribonucleases isolated from different sources, despite of similar mechanism of enzymatic reactions, have different biological effects. The use of enzymes isolated from new sources, particularly from plants and fungi, shows promising results. In this article we discuss the new approach for the use of enzymes resistant to inhibitors and ribozymes, that is aimed at the destruction of the oncogene specific mRNA and the induction of apoptosis. Key Words: RNases, RNA cleavage, cytotoxicity, apoptosis, cancer therapy. Ribonucleases (RNases) are a large group of hy- polynucleotide phosphorylase (PNPase), RNase PH, drolytic enzymes that degrade ribonucleic acid (RNA) RNase II, RNase R, RNase D, RNase T, oligoribonucle- molecules. They are nucleases that catalyze the break- ase, exoribonuclease I and exoribonuclease II. These down of RNA into smaller components. RNases are enzymes differently cleave various RNA species. a superfamily of enzymes which catalyzing the degra- Recently, researchers have paid attention to RNases dation of RNA operate at the levels of transcription and as possible agents for the cancer treatment. The idea translation. They can be cytotoxic because the cleavage of using RNases for the treatment of cancer is to find of RNA renders illegible its information.
    [Show full text]
  • In Silico Characterization of Plasmodium Falciparum and P
    ics om & B te i ro o P in f f o o r l m a Journal of a n t r i Timta et al., J Proteomics Bioinform 2015, 8:8 c u s o J DOI: 10.4172/jpb.1000369 ISSN: 0974-276X Proteomics & Bioinformatics Research Article Article OpenOpen Access Access In Silico Characterization of Plasmodium falciparum and P. yoelii Translocon and Exoribonuclease II (RNase II) Identified in the Merozoite Rhoptry Proteome Moses Z Timta, Raghavendra Yadavalli and Tobili Y Sam-Yellowe* Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions Cleveland State University, Cleveland, OH, USA Abstract In this study, we characterize Plasmodium falciparum proteins, exoribonuclease II (RNase II) and Translocon (PTEX150); encoded by genes PF3D7_0906000 and PF3D7_1436300, respectively, and selected from proteomic analysis of the P. yoelii merozoite rhoptries. The proteins were characterized bioinformatically using PlasmoDB, ExPasy and NCBI portals. The strategy for characterization was established on the basis of protein alignment for sequence identity, domain analysis and transcriptome analysis of the genes PF3D7_0906000 and PF3D7_1436300 among Plasmodium species and members of the phylum apicomplexa. The protein translocon (PTEX150) is a subunit of transport complex in the parasitophorous vacuole membrane (PVM) involved in protein export from the intracellular parasite into the host erythrocyte cytoplasm. The role of the translocon in P. yoelii is unknown. The ribonuclease binding (RNB-like) domains in RNase II are predicted to be highly conserved among Plasmodium sp. and other apicomplexans with different host cell specificities. Keywords: Plasmodium falciparum; Structural proteomics; P. falciparum genes PF3D7_0906000 and PF3D7_1436300.
    [Show full text]
  • Identification and Characterization of Photorhabdus Temperata Mutants Altered in Hemolysis and Virulence
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Winter 2011 Identification and characterization of Photorhabdus temperata mutants altered in hemolysis and virulence Christine A. Chapman University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Chapman, Christine A., "Identification and characterization of Photorhabdus temperata mutants altered in hemolysis and virulence" (2011). Master's Theses and Capstones. 679. https://scholars.unh.edu/thesis/679 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. IDENTIFICATION AND CHARACTERIZATION OF PHOTORHABDUS TEMPERATA MUTANTS ALTERED IN HEMOLYSIS AND VIRULENCE BY CHRISTINE A. CHAPMAN B.S., University of Mary Washington, 2008 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Microbiology December, 2011 UMI Number: 1507817 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 1507817 Copyright 2012 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Tese Jucimar Zacaria.Pdf (4.725Mb)
    UNIVERSIDADE DE CAXIAS DO SUL CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE INSTITUTO DE BIOTECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA DIVERSIDADE, CLONAGEM E CARACTERIZAÇÃO DE NUCLEASES EXTRACELULARES DE Aeromonas spp. JUCIMAR ZACARIA CAXIAS DO SUL 2016 JUCIMAR ZACARIA DIVERSIDADE, CLONAGEM E CARACTERIZAÇÃO DE NUCLEASES EXTRACELULARES DE Aeromonas spp. Tese apresentada ao programa de Pós- graduação em Biotecnologia da Universidade de Caxias do Sul, visando à obtenção de grau de Doutor em Biotecnologia. Orientador: Dr. Sergio Echeverrigaray Co-orientador: Dra. Ana Paula Longaray Delamare Caxias do Sul 2016 ii Z13d Zacaria, Jucimar Diversidade, clonagem e caracterização de nucleases extracelulares de Aeromonas spp. / Jucimar Zacaria. – 2016. 258 f.: il. Tese (Doutorado) - Universidade de Caxias do Sul, Programa de Pós- Graduação em Biotecnologia, 2016. Orientação: Sergio Echeverrigaray. Coorientação: Ana Paula Longaray Delamare. 1. Aeromas. 2. DNases extracelulares. 3. Termoestabilidade. 4. Dns. 5. Aha3441. I. Echeverrigaray, Sergio, orient. II. Delamare, Ana Paula Longaray, coorient. III. Título. Elaborado pelo Sistema de Geração Automática da UCS com os dados fornecidos pelo(a) autor(a). JUCIMAR ZACARIA DIVERSIDADE, CLONAGEM E CARACTERIZAÇÃO DE NUCLEASES EXTRACELULARES DE Aeromonas spp. Tese apresentada ao Programa de Pós-graduação em Biotecnologia da Universidade de Caxias do Sul, visando à obtenção do título de Doutor em Biotecnologia. Orientador: Prof. Dr. Sergio Echeverrigaray Laguna Co-orientadora: Profa. Dra. Ana Paula Longaray
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0186168 A1 Konieczka Et Al
    US 2016O1861 68A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0186168 A1 Konieczka et al. (43) Pub. Date: Jun. 30, 2016 (54) PROCESSES AND HOST CELLS FOR Related U.S. Application Data GENOME, PATHWAY. AND BIOMOLECULAR (60) Provisional application No. 61/938,933, filed on Feb. ENGINEERING 12, 2014, provisional application No. 61/935,265, - - - filed on Feb. 3, 2014, provisional application No. (71) Applicant: ENEVOLV, INC., Cambridge, MA (US) 61/883,131, filed on Sep. 26, 2013, provisional appli (72) Inventors: Jay H. Konieczka, Cambridge, MA cation No. 61/861,805, filed on Aug. 2, 2013. (US); James E. Spoonamore, Publication Classification Cambridge, MA (US); Ilan N. Wapinski, Cambridge, MA (US); (51) Int. Cl. Farren J. Isaacs, Cambridge, MA (US); CI2N 5/10 (2006.01) Gregory B. Foley, Cambridge, MA (US) CI2N 15/70 (2006.01) CI2N 5/8 (2006.01) (21) Appl. No.: 14/909, 184 (52) U.S. Cl. 1-1. CPC ............ CI2N 15/1082 (2013.01); C12N 15/81 (22) PCT Filed: Aug. 4, 2014 (2013.01); C12N 15/70 (2013.01) (86). PCT No.: PCT/US1.4/49649 (57) ABSTRACT S371 (c)(1), The present disclosure provides compositions and methods (2) Date: Feb. 1, 2016 for genomic engineering. Patent Application Publication Jun. 30, 2016 Sheet 1 of 4 US 2016/O186168 A1 Patent Application Publication Jun. 30, 2016 Sheet 2 of 4 US 2016/O186168 A1 &&&&3&&3&&**??*,º**)..,.: ××××××××××××××××××××-************************** Patent Application Publication Jun. 30, 2016 Sheet 3 of 4 US 2016/O186168 A1 No.vaegwzºkgwaewaeg Patent Application Publication Jun. 30, 2016 Sheet 4 of 4 US 2016/O186168 A1 US 2016/01 86168 A1 Jun.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Polyamines Mitigate Antibiotic Inhibition of A.Actinomycetemcomitans Growth
    Polyamines Mitigate Antibiotic Inhibition of A.actinomycetemcomitans Growth THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Allan Wattimena Graduate Program in Dentistry The Ohio State University 2017 Master's Examination Committee: Dr John Walters, Advisor Dr Purnima Kumar Dr Sara Palmer Dr Shareef Dabdoub Copyright by Allan Wattimena 2017 Abstract Polyamines are ubiquitous polycationic molecules that are present in all prokaryotic and eukaryotic cells. They are the breakdown products of amino acids and are important modulators of cell growth, stress and cell proliferation. Polyamines are present in higher concentrations in the periodontal pocket and may affect antibiotic resistance of bacterial biofilms. The effect of polyamines was investigated with amoxicillin (AMX), azithromycin (AZM) and doxycycline (DOX) on the growth of Aggregatibacter actinomycetemcomitans (A.a.) Y4 strain. Bacteria were grown in brain heart infusion broth under the following conditions: 1) A.a. only, 2) A.a. + antibiotic, 3) A.a. + antibiotic + polyamine mix (1.4mM putrescine, 0.4mM spermidine, 0.4mM spermine). Growth curve analysis, MIC determination and metatranscriptomic analysis were carried out. The presence of exogenous polyamines produced a small, but significant increase in growth of A.a. Polyamines mitigated the inhibitory effect of AMX, AZM and DOX on A.a. growth. Metatranscriptomic analysis revealed differing transcriptomic profiles when comparing AMX and AZM in the presence of polyamines. Polyamines produced a transient mitigation of AMX inhibition, but did not have a significant effect on gene transcription. Many gene transcription changes were seen when polyamines were in the presence of AZM.
    [Show full text]
  • Development of Genome-Wide Genetic Assays In
    DEVELOPMENT OF GENOME-WIDE GENETIC ASSAYS IN DESULFOVIBRIO VULGARIS HILDENBOROUGH A Dissertation presented to the Faculty of the Graduate School at the University of Missouri In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy By SAMUEL R. FELS Dr. Judy Wall, Dissertation Supervisor MAY 2015 © Copyright by Samuel Fels 2015 All Rights Reserved The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled Development of genome-wide genetic assays in Desulfovibrio vulgaris Hildenborough presented by Samuel Fels, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Judy Wall Professor Mark McIntosh Professor George Stewart Assistant Professor Michael Baldwin Research Associate Professor Robert Schnabel Thanks Mom and Dad (for everything) Acknowledgements I would like to thank everyone who contributed to my success throughout graduate school. Judy Wall has been the best mentor and academic advisor anyone could ask for, and this research would not have been possible without her knowledge and foresight. All members of the Wall lab added something to this research, but very significant contributions were made by Grant Zane, Kimberly Keller, Barbara Giles, Hannah Korte, Geoff Christenson, and Kara de Leon. I would also like to thank members of the MU DNA Core including Sean Blake, Nathan Bivens, and Karen Bromert for their help in analyzing and troubleshooting many aspects of DNA sequencing. Minyong Chung of the Vincent J. Coates Genomic Sequencing Laboratory in Berkeley, California also provided valuable insight and sequencing capacity to this thesis. Many collaborators through the Department of Energy’s ENIGMA group also provided key insights, including Morgan Price, Adam Arkin, Adam Deutschbauer, and Steve Brown of Lawrence Berkeley National Laboratory.
    [Show full text]
  • Initiation of Mrna Decay in Bacteria
    Cell. Mol. Life Sci. DOI 10.1007/s00018-013-1472-4 Cellular and Molecular Life Sciences REVIEW Initiation of mRNA decay in bacteria Soumaya Laalami · Léna Zig · Harald Putzer Received: 25 May 2013 / Revised: 1 September 2013 / Accepted: 3 September 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com Abstract The instability of messenger RNA is fundamen- Keywords mRNA degradation · RNase E · RNase J · tal to the control of gene expression. In bacteria, mRNA RNase Y · Gene expression · Prokaryote degradation generally follows an “all-or-none” pattern. This implies that if control is to be efficient, it must occur Abbreviations at the initiating (and presumably rate-limiting) step of the NTH N-terminal half degradation process. Studies of E. coli and B. subtilis, spe- CTH C-terminal half cies separated by 3 billion years of evolution, have revealed RBS Ribosome binding site the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different Introduction has given way to new models that can be resumed by “dif- ferent enzymes—similar strategies”. The recent characteri- Messenger RNA (mRNA) is short-lived. In bacteria, the zation of key ribonucleases sheds light on an impressive half-lives of mRNAs can vary from seconds to over an case of convergent evolution that illustrates that the surpris- hour, but they are generally much shorter than the doubling ingly similar functions of these totally unrelated enzymes time of the organism. This metabolic instability is crucial are of general importance to RNA metabolism in bacteria.
    [Show full text]