Development of Genome-Wide Genetic Assays In

Total Page:16

File Type:pdf, Size:1020Kb

Development of Genome-Wide Genetic Assays In DEVELOPMENT OF GENOME-WIDE GENETIC ASSAYS IN DESULFOVIBRIO VULGARIS HILDENBOROUGH A Dissertation presented to the Faculty of the Graduate School at the University of Missouri In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy By SAMUEL R. FELS Dr. Judy Wall, Dissertation Supervisor MAY 2015 © Copyright by Samuel Fels 2015 All Rights Reserved The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled Development of genome-wide genetic assays in Desulfovibrio vulgaris Hildenborough presented by Samuel Fels, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Judy Wall Professor Mark McIntosh Professor George Stewart Assistant Professor Michael Baldwin Research Associate Professor Robert Schnabel Thanks Mom and Dad (for everything) Acknowledgements I would like to thank everyone who contributed to my success throughout graduate school. Judy Wall has been the best mentor and academic advisor anyone could ask for, and this research would not have been possible without her knowledge and foresight. All members of the Wall lab added something to this research, but very significant contributions were made by Grant Zane, Kimberly Keller, Barbara Giles, Hannah Korte, Geoff Christenson, and Kara de Leon. I would also like to thank members of the MU DNA Core including Sean Blake, Nathan Bivens, and Karen Bromert for their help in analyzing and troubleshooting many aspects of DNA sequencing. Minyong Chung of the Vincent J. Coates Genomic Sequencing Laboratory in Berkeley, California also provided valuable insight and sequencing capacity to this thesis. Many collaborators through the Department of Energy’s ENIGMA group also provided key insights, including Morgan Price, Adam Arkin, Adam Deutschbauer, and Steve Brown of Lawrence Berkeley National Laboratory. My graduate research would not have been possible without support from my family and friends, most notably from my parents and my sister/roommate Becca Fels who agreed to put up with me over the last eight months. Constant mental support and wonderful rainbow sparkles were provided by the amazing Rashaun Wilson. This research was funded by Ecosystems and Networks Integrated with Genomes and Molecular Assemblies (ENIGMA), Office of Science, OBER, U.S. Department of Energy, Contract No. DE-AC02-05CH11231 and a supplemental ENIGMA Discovery Grant for 3’ RNA-seq, which I wrote and received funding for. ii Table of Contents Acknowledgements……………………………………………..….…………….………………………………………………ii List of Tables…………………………………….……………………………….…………………………………….…………….v List of Figures………………………………………………………………….…………………………………………………….vi List of Appendices………………………………………………………….………………………………….…………………viii Abstract……………………………………………………………………….………………………………………..……………..ix Chapter 1 – Introduction……………………………………………………………………………………………..….…….1 1.1 History of Desulfovibrio vulgaris Hildenborough………………………………………....…..…….1 1.2 Motivation for this work……………………………………………………………………………….…..……4 Chapter 2 – Optimizing transposon insertion in DvH…………………………………………….………….…….7 2.1 Introduction…………………………………………………………………………..………………….…..……….7 2.2 Mutagenesis via electroporation……………………………………………………………………..……..9 2.3 Mutagenesis via conjugation………………………………………………………………….………..…….11 2.4 Materials and Methods………………………………………………………………………….….…………..12 2.5 Results…………………………………………………………………………………………..…………………..…..15 Chapter 3 – Development of TnLE-seq library preparation techniques.………………………..……….17 3.1 Introduction……………………………………………………………………………………………….…………..17 3.2 Development of a liquid enrichment protocol………………………………………………………..21 3.3 Changes to an existing Illumina™ library preparation technique…………………..………..24 3.4 Materials and Methods…………………………………………………………………………………..……..29 3.5 Results……………………………………………………………………………………………………………………33 Chapter 4 – Creation of an informatics pipeline and statistical analysis of TnLE-seq data..…….37 4.1 Introduction………………………………………………………………………………………………..…….……37 4.2 Development of the TnLE-seq computational pipeline…………………………………...……..39 4.3 Visualization of insertion points and read counts across a bacterial genome….……...43 4.4 Statistical analysis to determine essential genes……………………….……….…………..………44 4.5 Statistical analyisis of changes in gene fitness………………………………………………………..46 4.6 Materials and Methods………………………………………………………………..………..………………47 4.7 Results……………………………………………………………………………………………………..…………….52 iii Chapter 5 – Isolation of high-quality RNA from bacterial cultures……………………………….………..66 5.1 Introduction………………………………………………………………………………………………..………….66 5.2 Use of a standard RNA quality metric……………………………………………………………………..67 5.3 RNA isolation options……………………………………………………………………………………………..68 5.4 Rho and PNPase deletions and potential RNA quality impact……………..………………….70 5.5 Materials and Methods……………………………………..………………………………………….……….74 5.6 Results……………………………………………………………………………………………………….….……….76 Chapter 6 – Development of the 3’ RNA-seq method to determine transcript end sites….…….84 6.1 Introduction…………………………………………………………………………………………………...……..84 6.2 Ribosomal RNA depletion…………………………………………………………………………..…….……88 6.3 Selective ligation of a known DNA aptamer to 3’RNA ends…………….…………….….…….90 6.4 First and second strand cDNA synthesis……………………………………………………….………..92 6.5 Exonuclease I treatment and PCR amplification of the final library…………..……………94 6.6 Methods………………………………………………………………………………………………………………..97 6.7 Results………………………………………………………………………………………………………………….102 Chapter 7 – Analysis of differential expression by total RNA-seq…………..…………………………...108 7.1 Introduction…………………………………………………………………………………….…………………..108 7.2 Potential impact of pnp deletion on transcript expression…………………….……………..110 7.3 Materials and Methods……………………………………………………………..…………………………112 7.4 Results……………………………………………………………………………………………….…………………114 Chapter 8 – Contributions to the field and future directions…………………………..…………………..120 8.1 Contributions to the field………………………………………………………………………….………….120 8.2 Future Directions…………………………………………………………………………………..……………..121 Bibliography…………………………………………………………………………………………………….………………...123 Vita………………………………………………………………………………………………………………………………….…263 iv List of Tables Table 1 – Population tracking by colony counts, performed before and after mutant generation………………………………………………………………………………………………………………………………..15 Table 2 – Impact of oxidation stress on DvH gene products……………………………………………………..18 Table 3 – CFU tracking, 1:10 vs 1:33 dilution…………………………………………………………………………….33 Table 4 – Read quality summary……………………………………………………………………………………………….48 Table 5 – Alignment/coverage summary…………………………………………………………………………………..48 Table 6 – Essential genes…………………………………………………………………………………………………….…….54 Table 7 – Gene fitness changes between experiments………………………………………………………………59 Table 8 – Genes with highest fitness in the presence of 100 mM nitrate……………………..…………..62 Table 9 – Total RNA-seq library information……………………………………………………………..…………….114 Table 10 – Control and experimental comparisons………………………………………………….……………..115 v List of Figures Figure 1 – Transmission electron micrograph of a single DvH bacterium…………………………………….1 Figure 2 – Anaerobic glove bag used for growth and manipulation of DvH………………………………...2 Figure 3 – Chromosome-wide map of cataloged transposon mutant library constructed in DvH..3 Figure 4 – Structure of pRL27 and the final transposon in the DvH genome……………..………………..8 Figure 5 – Comparison of mutagenesis and enrichment in two different Tn-seq experimental approaches…………………………………………………………………………………………………………………………….…24 Figure 6 – Illumina® Library Preparation (part 1)…………………………………………….………………………..25 Figure 7 – Illumina® Library Preparation (part 2).………………………………………………………….……….…27 Figure 8 – Formula to obtain the gene fitness value for any gene……………………..………..……………37 Figure 9 – Gamma distributions to model essential gene probability……………………………………….44 Figure 10 – Cumulative probability to call essential vs non-essential………………………………..………45 Figure 11 – Two-condition comparison of all gene fitness values……………………………………………..46 Figure 12 – Generation of gene fitness values from aligned reads………………………………….………..49 Figure 13 – Sample histogram for fitting gamma distributions……………………………………..…………..50 Figure 14 – Example of read abundance mapping across the DvH genome…………………….………..53 Figure 15 – Gene fitness comparison of rich media biological replicates…..………………………………56 Figure 16 – Gene fitness comparison of rich and minimal media……………………….……………………..58 Figure 17 – Gene fitness comparison of WT DvH and JW710………………………………………..………….60 Figure 18 – Gene fitness comparison of JW710 with and without inhibitory nitrate…………………61 Figure 19 – Gene fitness comparison of JW710 and JW3319………………………………………………..…..64 Figure 20 – Representative Fragment Analyzer™ electrophoretograms used to calculate RQN…70 Figure 21 – Growth comparison of deletion mutant strains……………………………………………..……….78 Figure 22 – Average RQN scores by DvH strain………………………………………………………….………………79 Figure 23 – Average RNA Yield by DvH Strain…………………………………………………………………..……….80 Figure 24 – Comparison of total RNA-seq with simultaneous 5’ and 3’ RNA-seq……………..………..82 Figure 25 – Summary of the 5’ RNA-seq library preparation protocol………………………………..……..86 Figure 26 – Nucleic acid fragments before and after 3’ RNA-seq library preparation………….….…87 Figure 27 – AIR™ Ligase mediated attachment of adenylated DNA fragment to 3’ mRNA ends..91 Figure 28 – First- and second-strand cDNA synthesis……………………………………………………………….93
Recommended publications
  • 要約) Doctoral Dissertation Antibiotics Shapes Population-Level Diversity In
    ) Doctoral Dissertation Antibiotics shapes population-level diversity in the human gut microbiome ( ) Nishijima Suguru Acknowledgments I would like to express my sincere gratitude to my supervisor, Prof. Masahira Hattori, whose expertise, knowledge and continuous encouragement throughout my research. My sincere thanks also go to Assoc. Prof. Kenshiro Oshima (The University of Tokyo), Dr. Wataru Suda and Dr. Seok-Won Kim for their motivation, immense support and encouragement throughout my work. I am also grateful to all my collaborators, Prof. Hidetoshi Morita (Okayama University) for his fecal sample collection, DNA isolation and sincere encouragement, Prof. Kenya Honda and Dr. Koji Atarashi (Keio University) for mice experiments, Assoc. Prof. Masahiro Umezaki (the University of Tokyo) for support for dietary data analysis, Dr. Todd D. Taylor (RIKEN) for support for writing manuscript and Dr. Yuu Hirose (Toyohashi University of technology) for DNA sequencing. I also would like to thank all past and present members of our laboratory, Erica Iioka, Misa Takagi, Emi Omori, Hiromi Kuroyamagi, Naoko Yamashita, Keiko Komiya, Rina Kurokawa, Chie Shindo, Yukiko Takayama and Yasue Hattori for their great technical support and kind assistance. i Antibiotics shapes population-level diversity in the human gut microbiome () Abstract The human gut microbiome has profound influences on the host’s physiology through its interference with various intestinal functions. The development of next-generation sequencing (NGS) technologies enabled us to comprehensively explore ecological and functional features of the gut microbiomes. Recent studies using the NGS-based metagenomic approaches have suggested high ecological diversity of the microbiome across countries. However, little is known about the structure and feature of the Japanese gut microbiome, and the factor that shapes the population-level diversity in the human gut microbiome.
    [Show full text]
  • Microbial Community Structure Dynamics in Ohio River Sediments During Reductive Dechlorination of Pcbs
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS Andres Enrique Nunez University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Nunez, Andres Enrique, "MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS" (2008). University of Kentucky Doctoral Dissertations. 679. https://uknowledge.uky.edu/gradschool_diss/679 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Andres Enrique Nunez The Graduate School University of Kentucky 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Andres Enrique Nunez Director: Dr. Elisa M. D’Angelo Lexington, KY 2008 Copyright © Andres Enrique Nunez 2008 ABSTRACT OF DISSERTATION MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS The entire stretch of the Ohio River is under fish consumption advisories due to contamination with polychlorinated biphenyls (PCBs). In this study, natural attenuation and biostimulation of PCBs and microbial communities responsible for PCB transformations were investigated in Ohio River sediments. Natural attenuation of PCBs was negligible in sediments, which was likely attributed to low temperature conditions during most of the year, as well as low amounts of available nitrogen, phosphorus, and organic carbon.
    [Show full text]
  • CUED Phd and Mphil Thesis Classes
    High-throughput Experimental and Computational Studies of Bacterial Evolution Lars Barquist Queens' College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 23 August 2013 Arrakis teaches the attitude of the knife { chopping off what's incomplete and saying: \Now it's complete because it's ended here." Collected Sayings of Muad'dib Declaration High-throughput Experimental and Computational Studies of Bacterial Evolution The work presented in this dissertation was carried out at the Wellcome Trust Sanger Institute between October 2009 and August 2013. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 60,000 words as specified by the Faculty of Biology Degree Committee. This dissertation has been typeset in 12pt Computer Modern font using LATEX according to the specifications set by the Board of Graduate Studies and the Faculty of Biology Degree Committee. No part of this dissertation or anything substantially similar has been or is being submitted for any other qualification at any other university. Acknowledgements I have been tremendously fortunate to spend the past four years on the Wellcome Trust Genome Campus at the Sanger Institute and the European Bioinformatics Institute. I would like to thank foremost my main collaborators on the studies described in this thesis: Paul Gardner and Gemma Langridge. Their contributions and support have been invaluable. I would also like to thank my supervisor, Alex Bateman, for giving me the freedom to pursue a wide range of projects during my time in his group and for advice.
    [Show full text]
  • Regeneration of Unconventional Natural Gas by Methanogens Co
    www.nature.com/scientificreports OPEN Regeneration of unconventional natural gas by methanogens co‑existing with sulfate‑reducing prokaryotes in deep shale wells in China Yimeng Zhang1,2,3, Zhisheng Yu1*, Yiming Zhang4 & Hongxun Zhang1 Biogenic methane in shallow shale reservoirs has been proven to contribute to economic recovery of unconventional natural gas. However, whether the microbes inhabiting the deeper shale reservoirs at an average depth of 4.1 km and even co-occurring with sulfate-reducing prokaryote (SRP) have the potential to produce biomethane is still unclear. Stable isotopic technique with culture‑dependent and independent approaches were employed to investigate the microbial and functional diversity related to methanogenic pathways and explore the relationship between SRP and methanogens in the shales in the Sichuan Basin, China. Although stable isotopic ratios of the gas implied a thermogenic origin for methane, the decreased trend of stable carbon and hydrogen isotope value provided clues for increasing microbial activities along with sustained gas production in these wells. These deep shale-gas wells harbored high abundance of methanogens (17.2%) with ability of utilizing various substrates for methanogenesis, which co-existed with SRP (6.7%). All genes required for performing methylotrophic, hydrogenotrophic and acetoclastic methanogenesis were present. Methane production experiments of produced water, with and without additional available substrates for methanogens, further confrmed biomethane production via all three methanogenic pathways. Statistical analysis and incubation tests revealed the partnership between SRP and methanogens under in situ sulfate concentration (~ 9 mg/L). These results suggest that biomethane could be produced with more fexible stimulation strategies for unconventional natural gas recovery even at the higher depths and at the presence of SRP.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Figure S1. Differentially abundant spots between the mid-log phase cells grown on xylan or xylose. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. The identities of the circled spots are summarized in Table 3. Figure S2. Differentially abundant spots between the stationary phase cells grown on xylan or xylose. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. The identities of the circled spots are summarized in Table 4. S2 Table S1. Summary of the non-polysaccharide degrading proteins identified in the B. proteoclasticus cytosol by 2DE/MALDI-TOF. Protein Locus Location Score pI kDa Pep. Cov. Amino Acid Biosynthesis Acetylornithine aminotransferase, ArgD Bpr_I1809 C 1.7 × 10−4 5.1 43.9 11 34% Aspartate/tyrosine/aromatic aminotransferase Bpr_I2631 C 3.0 × 10−14 4.7 43.8 15 46% Aspartate-semialdehyde dehydrogenase, Asd Bpr_I1664 C 7.6 × 10−18 5.5 40.1 17 50% Branched-chain amino acid aminotransferase, IlvE Bpr_I1650 C 2.4 × 10−12 5.2 39.2 13 32% Cysteine synthase, CysK Bpr_I1089 C 1.9 × 10−13 5.0 32.3 18 72% Diaminopimelate dehydrogenase Bpr_I0298 C 9.6 × 10−16 5.6 35.8 16 49% Dihydrodipicolinate reductase, DapB Bpr_I2453 C 2.7 × 10−6 4.9 27.0 9 46% Glu/Leu/Phe/Val dehydrogenase Bpr_I2129 C 1.2 × 10−30 5.4 48.6 31 64% Imidazole glycerol phosphate synthase Bpr_I1240 C 8.0 × 10−3 4.7 22.5 8 44% glutamine amidotransferase subunit Ketol-acid reductoisomerase, IlvC Bpr_I1657 C 3.8 × 10−16
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Identification of Transcriptomic Differences Between Lower
    International Journal of Molecular Sciences Article Identification of Transcriptomic Differences between Lower Extremities Arterial Disease, Abdominal Aortic Aneurysm and Chronic Venous Disease in Peripheral Blood Mononuclear Cells Specimens Daniel P. Zalewski 1,*,† , Karol P. Ruszel 2,†, Andrzej St˛epniewski 3, Dariusz Gałkowski 4, Jacek Bogucki 5 , Przemysław Kołodziej 6 , Jolanta Szyma ´nska 7 , Bartosz J. Płachno 8 , Tomasz Zubilewicz 9 , Marcin Feldo 9,‡ , Janusz Kocki 2,‡ and Anna Bogucka-Kocka 1,‡ 1 Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chod´zkiSt., 20-093 Lublin, Poland; [email protected] 2 Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; [email protected] (K.P.R.); [email protected] (J.K.) 3 Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Gł˛ebokaSt., 20-612 Lublin, Poland; [email protected] 4 Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA; [email protected] 5 Chair and Department of Organic Chemistry, Medical University of Lublin, 4a Chod´zkiSt., Citation: Zalewski, D.P.; Ruszel, K.P.; 20-093 Lublin, Poland; [email protected] St˛epniewski,A.; Gałkowski, D.; 6 Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Bogucki, J.; Kołodziej, P.; Szyma´nska, Lublin, 4a Chod´zkiSt., 20-093 Lublin, Poland; [email protected] J.; Płachno, B.J.; Zubilewicz, T.; Feldo, 7 Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, M.; et al.
    [Show full text]
  • Open Matthew R Moreau Ph.D. Dissertation Finalfinal.Pdf
    The Pennsylvania State University The Graduate School Department of Veterinary and Biomedical Sciences Pathobiology Program PATHOGENOMICS AND SOURCE DYNAMICS OF SALMONELLA ENTERICA SEROVAR ENTERITIDIS A Dissertation in Pathobiology by Matthew Raymond Moreau 2015 Matthew R. Moreau Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 The Dissertation of Matthew R. Moreau was reviewed and approved* by the following: Subhashinie Kariyawasam Associate Professor, Veterinary and Biomedical Sciences Dissertation Adviser Co-Chair of Committee Bhushan M. Jayarao Professor, Veterinary and Biomedical Sciences Dissertation Adviser Co-Chair of Committee Mary J. Kennett Professor, Veterinary and Biomedical Sciences Vijay Kumar Assistant Professor, Department of Nutritional Sciences Anthony Schmitt Associate Professor, Veterinary and Biomedical Sciences Head of the Pathobiology Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT Salmonella enterica serovar Enteritidis (SE) is one of the most frequent common causes of morbidity and mortality in humans due to consumption of contaminated eggs and egg products. The association between egg contamination and foodborne outbreaks of SE suggests egg derived SE might be more adept to cause human illness than SE from other sources. Therefore, there is a need to understand the molecular mechanisms underlying the ability of egg- derived SE to colonize the chicken intestinal and reproductive tracts and cause disease in the human host. To this end, the present study was carried out in three objectives. The first objective was to sequence two egg-derived SE isolates belonging to the PFGE type JEGX01.0004 to identify the genes that might be involved in SE colonization and/or pathogenesis.
    [Show full text]
  • Detoxification of Lignocellulose-Derived Microbial Inhibitory Compounds by Clostridium Beijerinckii NCIMB 8052 During Acetone-Butanol-Ethanol Fermentation
    Detoxification of Lignocellulose-derived Microbial Inhibitory Compounds by Clostridium beijerinckii NCIMB 8052 during Acetone-Butanol-Ethanol Fermentation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yan Zhang Graduate Program in Animal Sciences The Ohio State University 2013 Dissertation Committee: Thaddeus C. Ezeji, Advisor Steven C. Loerch Sandra G. Velleman Zhongtang Yu Venkat Gopalan Copyrighted by Yan Zhang 2013 Abstract Pretreatment and hydrolysis of lignocellulosic biomass to fermentable sugars generate a complex mixture of microbial inhibitors such as furan aldehydes (e.g., furfural), which at sublethal concentration in the fermentation medium can be tolerated or detoxified by acetone butanol ethanol (ABE)-producing Clostridium beijerinckii NCIMB 8052. The response of C. beijerinckii to furfural at the molecular level, however, has not been directly studied. Therefore, this study was to elucidate mechanism employed by C. beijerinckii to detoxify lignocellulose-derived microbial inhibitors and use this information to develop inhibitor-tolerant C. beijerinckii. Towards the long-term goal of developing inhibitor-tolerant Clostridium strains, the first objective was to evaluate ABE fermentation by C. beijerinckii using different proportions of Miscanthus giganteus hydrolysates as carbon source. Compared to the growth of C. beijerinckii in control medium, C. beijerinckii experienced different degrees of inhibition. The degree of inhibition was dose-dependent, and C. beijerinckii did not grow in P2 medium with greater than 25% (v/v) Miscanthus giganteus hydrolysates. To improve tolerance of C. beijerinckii to inhibitors, supplementation of P2 medium with undiluted (100%) Miscanthus giganteus hydrolysates with 4 g/L CaCO3 resulted in successful growth of and ABE production by C.
    [Show full text]