RESEARCH ARTICLE Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows Ilma Tapio1*, Daniel Fischer1, Lucia Blasco2, Miika Tapio1, R. John Wallace3, Ali R. Bayat1, Laura Ventto1, Minna Kahala2, Enyew Negussie1, Kevin J. Shingfield1,4², Johanna Vilkki1 1 Green Technology, Natural Resources Institute Finland, Jokioinen, Finland, 2 Bio-based business and a1111111111 industry, Natural Resources Institute Finland, Jokioinen, Finland, 3 Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom, 4 Institute of Biological, Environmental and Rural a1111111111 Sciences, Aberystwyth University, Aberystwyth, United Kingdom a1111111111 a1111111111 ² Deceased. a1111111111 *
[email protected] Abstract OPEN ACCESS The ruminal microbiome, comprising large numbers of bacteria, ciliate protozoa, archaea Citation: Tapio I, Fischer D, Blasco L, Tapio M, and fungi, responds to diet and dietary additives in a complex way. The aim of this study Wallace RJ, Bayat AR, et al. (2017) Taxon was to investigate the benefits of increasing the depth of the community analysis in describ- abundance, diversity, co-occurrence and network ing and explaining responses to dietary changes. Quantitative PCR, ssu rRNA amplicon analysis of the ruminal microbiota in response to dietary changes in dairy cows. PLoS ONE 12(7): based taxa composition, diversity and co-occurrence network analyses were applied to e0180260. https://doi.org/10.1371/journal. ruminal digesta samples obtained from four multiparous Nordic Red dairy cows fitted with pone.0180260 rumen cannulae. The cows received diets with forage:concentrate ratio either 35:65 (diet H) Editor: Hauke Smidt, Wageningen University, or 65:35 (L), supplemented or not with sunflower oil (SO) (0 or 50 g/kg diet dry matter), sup- NETHERLANDS plied in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and four Received: January 20, 2017 35-day periods.