(Pelobacter) and Methanococcoides Are Responsible for Choline-Dependent Methanogenesis in a Coastal Saltmarsh Sediment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multiple Lateral Transfers of Dissimilatory Sulfite Reductase
JOURNAL OF BACTERIOLOGY, Oct. 2001, p. 6028–6035 Vol. 183, No. 20 0021-9193/01/$04.00ϩ0 DOI: 10.1128/JB.183.20.6028–6035.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes MICHAEL KLEIN,1 MICHAEL FRIEDRICH,2 ANDREW J. ROGER,3 PHILIP HUGENHOLTZ,4 SUSAN FISHBAIN,5 1 4 6 1 HEIKE ABICHT, LINDA L. BLACKALL, DAVID A. STAHL, AND MICHAEL WAGNER * 1 Lehrstuhl fu¨r Mikrobiologie, Technische Universita¨t Mu¨nchen, D-85350 Freising, and Department of Biogeochemistry, Max Planck Downloaded from Institute for Terrestrial Microbiology, D-35043-Marburg,2 Germany; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada3; Advanced Wastewater Management Centre, Department of Microbiology and Parasitology, The University of Queensland, Brisbane 4072, Queensland, Australia4; Department of Civil Engineering, Northwestern University, Evanston, Illinois 60208-31095; and Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195-27006 Received 26 February 2001/Accepted 3 July 2001 http://jb.asm.org/ A large fragment of the dissimilatory sulfite reductase genes (dsrAB) was PCR amplified and fully sequenced from 30 reference strains representing all recognized lineages of sulfate-reducing bacteria. In addition, the sequence of the dsrAB gene homologs of the sulfite reducer Desulfitobacterium dehalogenans was determined. In contrast to previous reports, comparative analysis of all available DsrAB sequences produced a tree topology partially inconsistent with the corresponding 16S rRNA phylogeny. For example, the DsrAB sequences of -several Desulfotomaculum species (low G؉C gram-positive division) and two members of the genus Thermode sulfobacterium (a separate bacterial division) were monophyletic with ␦-proteobacterial DsrAB sequences. -
Regeneration of Unconventional Natural Gas by Methanogens Co
www.nature.com/scientificreports OPEN Regeneration of unconventional natural gas by methanogens co‑existing with sulfate‑reducing prokaryotes in deep shale wells in China Yimeng Zhang1,2,3, Zhisheng Yu1*, Yiming Zhang4 & Hongxun Zhang1 Biogenic methane in shallow shale reservoirs has been proven to contribute to economic recovery of unconventional natural gas. However, whether the microbes inhabiting the deeper shale reservoirs at an average depth of 4.1 km and even co-occurring with sulfate-reducing prokaryote (SRP) have the potential to produce biomethane is still unclear. Stable isotopic technique with culture‑dependent and independent approaches were employed to investigate the microbial and functional diversity related to methanogenic pathways and explore the relationship between SRP and methanogens in the shales in the Sichuan Basin, China. Although stable isotopic ratios of the gas implied a thermogenic origin for methane, the decreased trend of stable carbon and hydrogen isotope value provided clues for increasing microbial activities along with sustained gas production in these wells. These deep shale-gas wells harbored high abundance of methanogens (17.2%) with ability of utilizing various substrates for methanogenesis, which co-existed with SRP (6.7%). All genes required for performing methylotrophic, hydrogenotrophic and acetoclastic methanogenesis were present. Methane production experiments of produced water, with and without additional available substrates for methanogens, further confrmed biomethane production via all three methanogenic pathways. Statistical analysis and incubation tests revealed the partnership between SRP and methanogens under in situ sulfate concentration (~ 9 mg/L). These results suggest that biomethane could be produced with more fexible stimulation strategies for unconventional natural gas recovery even at the higher depths and at the presence of SRP. -
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto De Biologia
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Biologia SANDERSON TARCISO PEREIRA DE SOUSA INVESTIGAÇÃO DE GENES ENVOLVIDOS NA BIODEGRADAÇÃO DE HIDROCARBONETOS AROMÁTICOS A PARTIR DO METAGENOMA DE MANGUEZAL IMPACTADO COM PETRÓLEO INVESTIGATION OF GENES INVOLVED IN THE BIODEGRADATION OF AROMATIC HYDROCARBONS FROM THE OIL-IMPACTED MANGROVE METAGENOME Campinas 2018 SANDERSON TARCISO PEREIRA DE SOUSA INVESTIGAÇÃO DE GENES ENVOLVIDOS NA BIODEGRADAÇÃO DE HIDROCARBONETOS AROMÁTICOS A PARTIR DO METAGENOMA DE MANGUEZAL IMPACTADO COM PETRÓLEO INVESTIGATION OF GENES INVOLVED IN THE BIODEGRADATION OF AROMATIC HYDROCARBONS FROM THE OIL-IMPACTED MANGROVE METAGENOME Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutor em Genética e Biologia Molecular na Área de Genética de Micro-organismos. Thesis presented to the Institute of Biology of the University of Campinas as partial fulfillment of the requirements for the degree of Doctor in Genetics and Molecular Biology in the area of Genetics of Microorganisms. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO SANDERSON TARCISO PEREIRA DE SOUSA E ORIENTADO PELA DRA. VALÉRIA MAIA MERZEL. Orientador (a): DRA. VALÉRIA MAIA MERZEL Campinas 2018 Campinas, 20/04/2018. COMISSÃO EXAMINADORA Prof.(a) Dr.(a). Valéria Maia Merzel (Presidente) Prof.(a). Dr.(a) Cynthia Canedo da Silva Prof.(a) Dr(a). Tiago Palladino Delforno Prof.(a) Dr(a). Fabiana Fantinatti Garboggini Prof.(a) Dr(a). Geizecler Tomazetto Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se encontra no processo de vida acadêmica do aluno. DEDICATÓRIA... Dedico essa tese a minha querida avó Antonina do Carmo Ribeiro, que hoje, infelizmente, já não está entre nós, mas tenho certeza que continua olhando e orando por mim de onde ela estiver. -
Supplementary Information
doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig. -
Actes Congrès MICROBIOD 1
Actes du congrès international "Biotechnologie microbienne au service du développement" (MICROBIOD) Marrakech, MAROC 02-05 Novembre 2009 "Ce travail est publié avec le soutien du Ministère de l'Education Nationale, de l'Enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique et du CNRST". MICROBIONA Edition www.ucam.ac.ma/microbiona 1 1 Mot du Comité d'organisation Cher (e) membre de MICROBIONA Cher(e) Participant(e), Sous le Haut Patronage de sa Majesté le Roi Mohammed VI, l'Association MICROBIONA et la Faculté des Sciences Semlalia, Université Cadi Ayyad, organisent du 02 au 05 Novembre 2009, en collaboration avec la Société Française de Microbiologie, le Pôle de Compétences Eau et Environnement et l'Incubateur Universitaire de Marrakech, le congrès international "Biotechnologie microbienne au service du développement" (MICROBIOD). Cette manifestation scientifique spécialisée permettra la rencontre de chercheurs de renommée internationale dans le domaine de la biotechnologie microbienne. Le congrès MICROBIOD est une opportunité pour les participants de mettre en relief l’importance socio-économique et environnementale de la valorisation et l’application de nouvelles techniques de biotechnologie microbienne dans divers domaines appliquées au développement et la gestion durable des ressources, à savoir l’agriculture, l'alimentation, l'environnement, la santé, l’industrie agro-alimentaire et le traitement et recyclage des eaux et des déchets par voie microbienne. Ce congrès sera également l’occasion pour les enseignants-chercheurs et les étudiants-chercheurs marocains d’actualiser leurs connaissances dans le domaine des biotechnologies microbiennes, qui serviront à l’amélioration de leurs recherches et enseignements. Le congrès MICROBIOD sera également l’occasion pour certains de nos collaborateurs étrangers de contribuer de près à la formation de nos étudiants en biotechnologie microbienne et ceci par la discussion des protocoles de travail, des méthodes d’analyse et des résultats obtenus. -
Supporting Information
Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs. -
Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg -
Radionuclide Fate in Naturally Occurring Radioactive Materials (NORM) in the Oil and Gas Industry
Radionuclide Fate in Naturally Occurring Radioactive Materials (NORM) in the Oil and Gas Industry A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2019 Faraaz Ahmad School of Earth and Environmental Sciences 1 Table of Contents List of Figures…………………………….……………………………………………………………………………………….7 List of Tables…..……………………………..…………………………………………………………………………………15 List of Abbreviations ............................................................................................................. 17 Thesis Abstract ...................................................................................................................... 20 Declaration ............................................................................................................................ 22 Copyright statement ............................................................................................................. 22 Acknowledgements ............................................................................................................... 23 About The Author .................................................................................................................. 25 CHAPTER 1: Introduction…………………………………………..……………………….26 1.0 Project Introduction ................................................................................................... 26 1.1 Aims and objectives ............................................................................................... 31 1.1.1 -
Constraint-Based Modeling Analysis of the Metabolism of Two Pelobacter Species Jun Sun1*, Shelley a Haveman2,3, Olivia Bui1, Tom R Fahland1,4, Derek R Lovley2
Sun et al. BMC Systems Biology 2010, 4:174 http://www.biomedcentral.com/1752-0509/4/174 RESEARCH ARTICLE Open Access Constraint-based modeling analysis of the metabolism of two Pelobacter species Jun Sun1*, Shelley A Haveman2,3, Olivia Bui1, Tom R Fahland1,4, Derek R Lovley2 Abstract Background: Pelobacter species are commonly found in a number of subsurface environments, and are unique members of the Geobacteraceae family. They are phylogenetically intertwined with both Geobacter and Desulfuromonas species. Pelobacter species likely play important roles in the fermentative degradation of unusual organic matters and syntrophic metabolism in the natural environments, and are of interest for applications in bioremediation and microbial fuel cells. Results: In order to better understand the physiology of Pelobacter species, genome-scale metabolic models for Pelobacter carbinolicus and Pelobacter propionicus were developed. Model development was greatly aided by the availability of models of the closely related Geobacter sulfurreducens and G. metallireducens. The reconstructed P. carbinolicus model contains 741 genes and 708 reactions, whereas the reconstructed P. propionicus model contains 661 genes and 650 reactions. A total of 470 reactions are shared among the two Pelobacter models and the two Geobacter models. The different reactions between the Pelobacter and Geobacter models reflect some unique metabolic capabilities such as fermentative growth for both Pelobacter species. The reconstructed Pelobacter models were validated by simulating published growth conditions including fermentations, hydrogen production in syntrophic co-culture conditions, hydrogen utilization, and Fe(III) reduction. Simulation results matched well with experimental data and indicated the accuracy of the models. Conclusions: We have developed genome-scale metabolic models of P. -
The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment. -
Metagenomes of Native and Electrode-Enriched Microbial Communities from the Soudan Iron Mine Jonathan P
Metagenomes of native and electrode-enriched microbial communities from the Soudan Iron Mine Jonathan P. Badalamenti and Daniel R. Bond Department of Microbiology and BioTechnology Institute, University of Minnesota - Twin Cities, Saint Paul, Minnesota, USA Twitter: @JonBadalamenti @wanderingbond Summary Approach - compare metagenomes from native and electrode-enriched deep subsurface microbial communities 30 Despite apparent carbon limitation, anoxic deep subsurface brines at the Soudan ) enriched 2 Underground Iron Mine harbor active microbial communities . To characterize these 20 A/cm µ assemblages, we performed shotgun metagenomics of native and enriched samples. enrich ( harvest cells collect inoculate +0.24 V extract 10 Follwing enrichment on poised electrodes and long read sequencing, we recovered Soudan brine electrode 20° C from DNA biodreactors current electrodes from the metagenome the closed, circular genome of a novel Desulfuromonas sp. 0 0 10 20 30 40 filtrate PacBio RS II Illumina HiSeq with remarkable genomic features that were not fully resolved by short read assem- extract time (d) long reads short reads TFF DNA unenriched bly alone. This organism was essentially absent in unenriched Soudan communities, 0.1 µm retentate assembled metagenomes reconstruct long read return de novo complete genome(s) assembly indicating that electrodes are highly selective for putative metal reducers. Native HGAP assembly community metagenomes suggest that carbon cycling is driven by methyl-C me- IDBA_UD 1 hybrid tabolism, in particular methylotrophic methanogenesis. Our results highlight the 3 µm prefilter assembly N4 binning promising potential for long reads in metagenomic surveys of low-diversity environ- borehole N4 binning read trimming and filtering brine de novo ments. -
Supplementary Information
Retroconversion of estrogens into androgens by bacteria via a cobalamin-mediated methylation Po-Hsiang Wang, Yi-Lung Chen, Sean Ting-Shyang Wei, Kan Wu, Tzong-Huei Lee, Tien-Yu Wu, and Yin-Ru Chiang Supplementary Information Table of Contents Dataset Dataset S1. Genome annotation of strain DHT3 and transcriptomic analysis (RNA-Seq) of bacterial cells grown anaerobically with testosterone or estradiol. SI Tables Table S1. Oligonucleotides used in this study. Table S2. Selection of housekeeping genes of strain DHT3 used for constructing the linear regression line in the global gene expression profiles (RNA-Seq). Table S3. Selection of the cobalamin-dependent methyltransferases used for the un-rooted maximum likelihood tree construction. Table S4. UPLC–APCI–HRMS data of the intermediates involved in anaerobic estrone catabolism by strain DHT3. Table S5. 1H- (600 MHz) and 13C-NMR (150 MHz) spectral data of the HPLC-purified metabolite (AND2) and the authentic standard 5-androstan-3,17-diol Table S6. Selection of the bacteria used for comparative analysis of the gene organization for HIP degradation. SI Figures Fig. S1 Scanning electron micrographs of strain DHT3 cells. Fig. S2 Cobalamin as an essential vitamin during the anaerobic growth of strain DHT3 on estradiol. Fig. S3 Arrangement and expression analysis of the emt genes in strain DHT3. Fig. S4 The anaerobic growth of the wild type (A) and the emtA-disrupted mutant (B) of strain DHT3 with testosterone and estradiol. Fig. S5 APCI–HRMS spectrum of the HIP produced by estrone-fed strain DHT3. 1 Fig. S6 UPLC–APCI–HRMS spectra of two TLC-purified androgen metabolites, 17β-hydroxyandrostan-3-one (A) and 3β,17β-dihydroxyandrostane (B).