UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto De Biologia

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto De Biologia UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Biologia SANDERSON TARCISO PEREIRA DE SOUSA INVESTIGAÇÃO DE GENES ENVOLVIDOS NA BIODEGRADAÇÃO DE HIDROCARBONETOS AROMÁTICOS A PARTIR DO METAGENOMA DE MANGUEZAL IMPACTADO COM PETRÓLEO INVESTIGATION OF GENES INVOLVED IN THE BIODEGRADATION OF AROMATIC HYDROCARBONS FROM THE OIL-IMPACTED MANGROVE METAGENOME Campinas 2018 SANDERSON TARCISO PEREIRA DE SOUSA INVESTIGAÇÃO DE GENES ENVOLVIDOS NA BIODEGRADAÇÃO DE HIDROCARBONETOS AROMÁTICOS A PARTIR DO METAGENOMA DE MANGUEZAL IMPACTADO COM PETRÓLEO INVESTIGATION OF GENES INVOLVED IN THE BIODEGRADATION OF AROMATIC HYDROCARBONS FROM THE OIL-IMPACTED MANGROVE METAGENOME Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutor em Genética e Biologia Molecular na Área de Genética de Micro-organismos. Thesis presented to the Institute of Biology of the University of Campinas as partial fulfillment of the requirements for the degree of Doctor in Genetics and Molecular Biology in the area of Genetics of Microorganisms. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO SANDERSON TARCISO PEREIRA DE SOUSA E ORIENTADO PELA DRA. VALÉRIA MAIA MERZEL. Orientador (a): DRA. VALÉRIA MAIA MERZEL Campinas 2018 Campinas, 20/04/2018. COMISSÃO EXAMINADORA Prof.(a) Dr.(a). Valéria Maia Merzel (Presidente) Prof.(a). Dr.(a) Cynthia Canedo da Silva Prof.(a) Dr(a). Tiago Palladino Delforno Prof.(a) Dr(a). Fabiana Fantinatti Garboggini Prof.(a) Dr(a). Geizecler Tomazetto Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se encontra no processo de vida acadêmica do aluno. DEDICATÓRIA... Dedico essa tese a minha querida avó Antonina do Carmo Ribeiro, que hoje, infelizmente, já não está entre nós, mas tenho certeza que continua olhando e orando por mim de onde ela estiver. Dedico também a minha noiva Jussimara Teles e a todos os meus familiares que me apoiaram de todas as formas para a realização desse trabalho, pois, se não fosse por eles, acho que não conseguiria estar aqui. AGRADECIMENTOS... À Universidade Estadual de Campinas (UNICAMP), em especial ao CPQBA, pela oportunidade e infraestrutura disponibilizada para execução deste trabalho; À orientadora Profa. Dra. Valéria Maia Merzel, pelo incentivo, confiança, aprendizado e amizade em todos os momentos do Doutorado; Aos membros da Banca, Profa. Dra. Cynthia Canêdo Da Silva, Dr. Tiago Palladino Delforno, Profa. Dra. Fabianna Fantinatti Garboggini e Profa. Dra. Marta Cristina Teixeira Duarte, pela disponibilidade e valiosas correções e sugestões realizadas nesta Tese; Aos professores, técnicos e demais funcionários de todas as divisões do CPQBA e CBMEG/UNICAMP pelos ensinamentos e amizade; A todos os amigos e colegas do Doutorado pela amizade, conversas e colaboração nos trabalhos; À secretaria da pós-graduação em genética e biologia molecular pelas instruções, paciência e colaboração; À minha noiva JUSSIMARA TELES PEREIRA, pelo amor e paciência; À toda minha família, em especial a ANTONINA DO CARMO†, ABEL MARTINS, DALVA DE SOUSA, JUSSIARA SILVA, LUÍZ LÁZARO, MARCO AURÉLIO E GIOVANI RIBEIRO, por tudo; À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), pela concessão da bolsa de estudo e apoio financeiro ao projeto “Investigação de genes envolvidos na biodegradação de hidrocarbonetos aromáticos a partir do metagenoma de mangue impactado com petróleo”. Processo nº 2013/22555-4. Resumo O manguezal é um dos biomas mais importantes para a manutenção da vida nos mares e o equilíbrio da biosfera. O sedimento do mangue é uma grande fonte de novos recursos genéticos para pesquisa. Estes ambientes têm sofrido impacto antropogênico por muito tempo, principalmente a poluição causada por derramamento de petróleo. Diversos estudos estão sendo conduzidos para explorar o potencial genético destas comunidades com a finalidade de desenvolver novos processos biotecnológicos para o tratamento de ambientes contaminados. Dentro deste contexto, este trabalho visou identificar e caracterizar genes que codificam dioxigenases, proteínas envolvidas na degradação de hidrocarbonetos aromáticos, a partir de clones fosmidiais de uma biblioteca metagenômica construída de sedimento de mangue impactado por petróleo do município de Bertioga-SP. A coleta e processamento das amostras ambientais, juntamente com a construção da biblioteca metagenômica fosmidial, foi realizada previamente no âmbito do projeto FAPESP “Prospecção de metagenoma microbiano de sedimentos de manguezais na busca por novos compostos bioativos” (Processo no. 2011/50809-5). O DNA metagenômico das amostras de sedimento, coletadas em triplicata, foi extraído e usado em reações de PCR para a construção de bibliotecas dos genes de dioxigenases que hidroxilam anéis aromáticos (ARHDs) e análise de seus padrões de distribuição biogeográfico. O DNA total da biblioteca fosmidial foi isolado e sequenciado em plataforma Illumina para prospecção in silico de genes envolvidos no metabolismo de compostos aromáticos. Ainda, os clones fosmidiais foram submetidos a uma triagem preliminar por colorimetria, baseada no uso do composto MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2 H- tetrazolium bromide] (Merck) e, posteriormente, ensaios de degradação de hidrocarbonetos por cromatografia gasosa acoplada à espectrometria de massas (CG-EM) para confirmar e quantificar a atividade de degradação de hidrocarbonetos aromáticos (fenol, naftaleno, fenantreno, pireno e benzopireno) dos clones. O DNA fosmidial dos clones com melhor potencial de degradação foi sequenciado e processado para montagem de grandes fragmentos metagenômicos. Caracterização estrutural e funcional dos insertos metagenômicos foram feitos nas plataformas RAST e IMG, para elucidação de clusters gênicos envolvidos na degradação de hidrocarbonetos aromáticos. Alvos gênicos foram isolados, ligados em vetor de expressão pET28a(+) e transformados em cepas de E. coli BL21(DE3) e Rosetta. A análise da diversidade dos genes α-ARHD revelou que Pseudomonas, Streptomyces, Variovorax, Bordetella e Rhodococcus foram os cinco gêneros mais abundantes entre os 15 sítios analisados. A análise de distribuição biogeográfica revelou forte endemismo de algumas Operational Protein Families (OPF) de α-ARHD em cada região geográfica e uma considerável proximidade evolutiva entre OPFs encontradas em sítios da Antártica e da América do Sul. O sequenciamento da biblioteca fosmidial permitiu identificar um total de 71.729 sequências metagenômicas parciais na categoria SEED para metabolismo de compostos aromáticos (1% do total). Estas foram classificadas nas subcategorias Anaerobic degradation of aromatic compounds (20,34%), Metabolism of central aromatic intermediates (35,40%), e Peripheral pathways for catabolism of aromatic compounds (22,56%). Além disso, foi evidenciado o predomínio das dioxigenases de Catecol, Protocatecuato e Homogentisato, envolvidas no metabolismo central, e das dioxigenases de Fenilpropionato, Lignostilbeno, Bifenil e Benzoato envolvidas nas vias periféricas de degradação de aromáticos. As análises de bioinformática dos dados de sequenciamento dos clones fosmidiais potencialmente degradadores revelaram uma interessante diversidade de genes envolvidos direta e indiretamente no metabolismo de compostos aromáticos. Os ensaios de cromatografia mostraram a eficiência de 3 clones na degradação de fenol (98%), pireno (75%) e naftaleno (71%). Os clones contendo os genes alvos para dioxigenases apresentaram sinais positivos nos testes de expressão. Os resultados deste trabalho permitiram elucidar a riqueza, distribuição e relação genética entre os genes ARHD de diferentes sítios ao redor do mundo. Além disso, a avaliação da biblioteca metagenômica pelas diferentes técnicas empregadas, revelou seu extenso potencial genético para o metabolismo de compostos aromáticos. Abstract Mangrove is one of the most important biomes for the maintenance of life in the seas and the balance of the biosphere. Mangrove sediment is a major source of new genetic resources for research. These environments have long been suffering anthropogenic impacts, especially pollution caused by oil spills. Many microbial species are able to degrade petroleum compounds, and several studies are being conducted to explore the genetic potential of these communities with the purpose of developing new biotechnological processes for the treatment of contaminated environments. In this context, this work aimed to identify and characterize genes encoding dioxygenases, proteins involved in the degradation of aromatic hydrocarbons, from fosmid clones of a metagenomic library constructed from oil-impacted mangrove sediments located in the city of Bertioga-SP. Sampling and further processing of environmental samples, together with the metagenomic fosmid library construction, were performed previously under the project “Bioprospecting microbial metagenome from mangrove sediments in the search for novel bioactive compounds” (FAPESP Process no. 2011/50809-5). Metagenomic DNA from sediment samples, collected in triplicate, was extracted and used in PCR reactions for the assembly of Aromatic Ring-Hydroxylating Dioxygenases (ARHDs) gene library and analysis of their biogeographic distribution patterns. Total fosmid DNA was isolated and sequenced on the Illumina platform for in silico prospecting of genes involved in the metabolism of aromatic compounds. Further, fosmid clones were subjected to a preliminary colorimetric screening, based on the use
Recommended publications
  • Radionuclide Fate in Naturally Occurring Radioactive Materials (NORM) in the Oil and Gas Industry
    Radionuclide Fate in Naturally Occurring Radioactive Materials (NORM) in the Oil and Gas Industry A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2019 Faraaz Ahmad School of Earth and Environmental Sciences 1 Table of Contents List of Figures…………………………….……………………………………………………………………………………….7 List of Tables…..……………………………..…………………………………………………………………………………15 List of Abbreviations ............................................................................................................. 17 Thesis Abstract ...................................................................................................................... 20 Declaration ............................................................................................................................ 22 Copyright statement ............................................................................................................. 22 Acknowledgements ............................................................................................................... 23 About The Author .................................................................................................................. 25 CHAPTER 1: Introduction…………………………………………..……………………….26 1.0 Project Introduction ................................................................................................... 26 1.1 Aims and objectives ............................................................................................... 31 1.1.1
    [Show full text]
  • Phylogenetic and Functional Characterization of Symbiotic Bacteria in Gutless Marine Worms (Annelida, Oligochaeta)
    Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta) Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Anna Blazejak Oktober 2005 Die vorliegende Arbeit wurde in der Zeit vom März 2002 bis Oktober 2005 am Max-Planck-Institut für Marine Mikrobiologie in Bremen angefertigt. 1. Gutachter: Prof. Dr. Rudolf Amann 2. Gutachter: Prof. Dr. Ulrich Fischer Tag des Promotionskolloquiums: 22. November 2005 Contents Summary ………………………………………………………………………………….… 1 Zusammenfassung ………………………………………………………………………… 2 Part I: Combined Presentation of Results A Introduction .…………………………………………………………………… 4 1 Definition and characteristics of symbiosis ...……………………………………. 4 2 Chemoautotrophic symbioses ..…………………………………………………… 6 2.1 Habitats of chemoautotrophic symbioses .………………………………… 8 2.2 Diversity of hosts harboring chemoautotrophic bacteria ………………… 10 2.2.1 Phylogenetic diversity of chemoautotrophic symbionts …………… 11 3 Symbiotic associations in gutless oligochaetes ………………………………… 13 3.1 Biogeography and phylogeny of the hosts …..……………………………. 13 3.2 The environment …..…………………………………………………………. 14 3.3 Structure of the symbiosis ………..…………………………………………. 16 3.4 Transmission of the symbionts ………..……………………………………. 18 3.5 Molecular characterization of the symbionts …..………………………….. 19 3.6 Function of the symbionts in gutless oligochaetes ..…..…………………. 20 4 Goals of this thesis …….…………………………………………………………..
    [Show full text]
  • Tree Scale: 1 D Bacteria P Desulfobacterota C Jdfr-97 O Jdfr-97 F Jdfr-97 G Jdfr-97 S Jdfr-97 Sp002010915 WGS ID MTPG01
    d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermodesulfobacterium s Thermodesulfobacterium commune WGS ID JQLF01 d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermosulfurimonas s Thermosulfurimonas dismutans WGS ID LWLG01 d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f DG-60 g DG-60 s DG-60 sp001304365 WGS ID LJNA01 ID WGS sp001304365 DG-60 s DG-60 g DG-60 f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f Desulfofervidaceae g Desulfofervidus s Desulfofervidus auxilii RS GCF 001577525 1 001577525 GCF RS auxilii Desulfofervidus s Desulfofervidus g Desulfofervidaceae f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfatatoraceae g Thermodesulfatator s Thermodesulfatator atlanticus WGS ID ATXH01 d Bacteria p Desulfobacterota c Desulfobacteria o Desulfatiglandales f NaphS2 g 4484-190-2 s 4484-190-2 sp002050025 WGS ID MVDB01 ID WGS sp002050025 4484-190-2 s 4484-190-2 g NaphS2 f Desulfatiglandales o Desulfobacteria c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g QOAM01 s QOAM01 sp003978075 WGS ID QOAM01 d Bacteria p Desulfobacterota c BSN033 o UBA8473 f UBA8473 g UBA8473 s UBA8473 sp002782605 WGS
    [Show full text]
  • (Pelobacter) and Methanococcoides Are Responsible for Choline-Dependent Methanogenesis in a Coastal Saltmarsh Sediment
    The ISME Journal https://doi.org/10.1038/s41396-018-0269-8 ARTICLE Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment 1 1 1 2 3 1 Eleanor Jameson ● Jason Stephenson ● Helen Jones ● Andrew Millard ● Anne-Kristin Kaster ● Kevin J. Purdy ● 4 5 1 Ruth Airs ● J. Colin Murrell ● Yin Chen Received: 22 January 2018 / Revised: 11 June 2018 / Accepted: 26 July 2018 © The Author(s) 2018. This article is published with open access Abstract Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope 13 probing with high throughput sequencing of 16S rRNA genes and C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm 13 incubation with C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that 1234567890();,: 1234567890();,: choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway.
    [Show full text]
  • Bacterial Involvements in Ulcerative Colitis: Molecular and Microbiological Studies
    BACTERIAL INVOLVEMENTS IN ULCERATIVE COLITIS: MOLECULAR AND MICROBIOLOGICAL STUDIES Samia Alkhalil A thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth Institute of Biomedical and biomolecular Sciences School of Pharmacy and Biomedical Sciences October 2017 AUTHORS’ DECLARATION I declare that whilst registered as a candidate for the degree of Doctor of Philosophy at University of Portsmouth, I have not been registered as a candidate for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award. Samia Alkhalil I ABSTRACT Inflammatory bowel disease (IBD) is a series of disorders characterised by chronic intestinal inflammation, with the principal examples being Crohn’s Disease (CD) and ulcerative colitis (UC). A paradigm of these disorders is that the composition of the colon microbiota changes, with increases in bacterial numbers and a reduction in diversity, particularly within the Firmicutes. Sulfate reducing bacteria (SRB) are believed to be involved in the etiology of these disorders, because they produce hydrogen sulfide which may be a causative agent of epithelial inflammation, although little supportive evidence exists for this possibility. The purpose of this study was (1) to detect and compare the relative levels of gut bacterial populations among patients suffering from ulcerative colitis and healthy individuals using PCR-DGGE, sequence analysis and biochip technology; (2) develop a rapid detection method for SRBs and (3) determine the susceptibility of Desulfovibrio indonesiensis in biofilms to Manuka honey with and without antibiotic treatment.
    [Show full text]
  • Identification of a Novel Cobamide Remodeling Enzyme in the Beneficial Human Gut Bacterium Akkermansia Muciniphila
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.280537; this version posted September 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Identification of a novel cobamide remodeling enzyme in the beneficial human gut bacterium 2 Akkermansia muciniphila 3 4 Kenny C. Moka, Olga M. Sokolovskayaa, Alexa M. Nicolasa, Zachary F. Hallberga, Adam 5 Deutschbauerb, Hans K. Carlsonb, and Michiko E. Tagaa# 6 7 aDepartment of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 8 9 bEnvironmental Genomics and Systems Biology Division, Lawrence Berkeley National 10 Laboratory, Berkeley, CA 11 12 #Correspondence to [email protected] 13 14 Running title: Cobamide remodeling in a beneficial gut bacterium 15 16 Abstract word count: 233 17 18 Text word count: 6,114 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.280537; this version posted September 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 19 Abstract 20 21 The beneficial human gut bacterium Akkermansia muciniphila provides metabolites to other 22 members of the gut microbiota by breaking down host mucin, but most of its other metabolic 23 functions have not been investigated. A. muciniphila is known to use cobamides, the vitamin B12 24 family of cofactors with structural diversity in the lower ligand, though the specific cobamides it 25 can use have not been examined.
    [Show full text]
  • Molecular Evidence for Microbially-Mediated Sulfur Cycling in the Deep Subsurface of the Witwatersrand Basin, South Africa Leah
    Molecular Evidence for Microbially-Mediated Sulfur Cycling in the Deep Subsurface of the Witwatersrand Basin, South Africa Leah Morgan Senior Integrative Exercise March 10, 2004 Submitted in partial fulfillment of the requirements for a Bachelor of Arts degree from Carleton College, Northfield, Minnesota. Table of Contents Introduction .........................................................................................................1 Microbial Investigations.......................................................................... 1 Biological Sulfate Reduction and Sulfur Oxidation ...................................3 Geological Setting................................................................................................6 Methods.............................................................................................................10 Sampling ................................................................................................10 DNA Extraction ......................................................................................11 Polymerase Chain Reaction and Thermal Cycling ..................................11 Gel Electrophoresis ................................................................................12 Cloning...................................................................................................14 M13 PCR................................................................................................16 Restriction Digest ...................................................................................16
    [Show full text]
  • Udayarka Karra & Ramesh Goel Department of Civil
    Mercury & Methyl Mercury in Great Salt Lake: Overview & Analysis Ramesh Goel Associate Professor Department of Civil & Environmental Engineering University of Utah May 9th, 2012 Presentation Outline • Introduction – Mercury & Mercury Cycle – Concerns • Research Objectives • Methods – Sampling Methods & Analysis • Results & Discussions • Summary Introduction Elemental Hg(0) Human & Inorganic Ecological Emissions & Organic Consequences Speciation Hg(I)/(II) Atmospheri Ecosystem c Transport Transport & Depositions Biological Uptake & Release Concerns & Consequences • Persistent Bioaccumulative Toxin (PBT) • Ecological effects Higher – Bioaccumulation & Fish Order Beings magnification • Human health concerns Algae/ Bacteria – Potent neurotoxin – RfD for MeHg: 0.1 µg/kg-day – Acute LD50 (Body weight of 70-kg human) • Inorganic: 14-57 mg/kg • Organic: 20-60 mg/kg (MeHg) Mercury Concerns in Great Salt Lake (GSL) Watershed • 2003 USGS finds Hg levels in GSL water, among highest ever measured • Mercury sources – Hg in GSL likely not new – Natural/Anthropogenic • 2005 USGS finds elevated Hg in brine shrimp, grebe livers from GSL • 2005 DOH, DWR and DEQ, consumption advisories for fish and water fowl in Utah • Great Salt Lake Ecosystem Program – Selenium (Se) Standard – Wetlands assessment plan – Mercury analysis Research Objectives • Synoptic sampling & analysis of mercury, in water column & sediments from Farmington Bay (FB), Utah Lake and Jordan River • Analyze the fate of mercury entering municipal waste water treatment plants (WWTP), emptying into Jordan River • To evaluate the rate of mercury methylation in the sediments from the Turpin unit of FB • And, to investigate the ecology of sulfate reducers possibly participating in mercury methylation of the sediments Methodology • Cold Vapor Atomic Florescence Spectrometry (CVAFS) • Reference methods 1630 and 1631 of EPA Hg Analysis • Methyl mercury in sediments extraction using Liquid-Liquid Extraction (LLE) (Nicolas S.
    [Show full text]
  • A Genome-Guided Analysis of Desulfotignum Phosphitoxidans Anja Poehlein1, Rolf Daniel1, Bernhard Schink2 and Diliana D Simeonova2*
    Poehlein et al. BMC Genomics 2013, 14:753 http://www.biomedcentral.com/1471-2164/14/753 RESEARCH ARTICLE Open Access Life based on phosphite: a genome-guided analysis of Desulfotignum phosphitoxidans Anja Poehlein1, Rolf Daniel1, Bernhard Schink2 and Diliana D Simeonova2* Abstract Background: The Delta-Proteobacterium Desulfotignum phosphitoxidans is a type strain of the genus Desulfotignum, which comprises to date only three species together with D. balticum and D. toluenicum. D. phosphitoxidans oxidizes phosphite to phosphate as its only source of electrons, with either sulfate or CO2 as electron acceptor to gain its metabolic energy, which is of exclusive interest. Sequencing of the genome of this bacterium was undertaken to elucidate the genomic basis of this so far unique type of energy metabolism. Results: The genome contains 4,998,761 base pairs and 4646 genes of which 3609 were assigned to a function, and 1037 are without function prediction. Metabolic reconstruction revealed that most biosynthetic pathways of Gram negative, autotrophic sulfate reducers were present. Autotrophic CO2 assimilation proceeds through the Wood-Ljungdahl pathway. Additionally, we have found and confirmed the ability of the strain to couple phosphite oxidation to dissimilatory nitrate reduction to ammonia, which in itself is a new type of energy metabolism. Surprisingly, only two pathways for uptake, assimilation and utilization of inorganic and organic phosphonates were found in the genome. The unique for D. phosphitoxidans Ptx-Ptd cluster is involved in inorganic phosphite oxidation and an atypical C-P lyase-coding cluster (Phn) is involved in utilization of organophosphonates. Conclusions: We present the whole genome sequence of the first bacterium able to gain metabolic energy via phosphite oxidation.
    [Show full text]
  • DNA Microarray Technology for Biodiversity Inventories of Sulfate Reducing Prokaryotes
    DNA Microarray Technology for Biodiversity Inventories of Sulfate Reducing Alexander Loy Prokaryotes Lehrstuhl für Mikrobiologie der Technischen Universität München DNA Microarray Technology for Biodiversity Inventories of Sulfate-Reducing Prokaryotes Alexander Loy Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Gert Forkmann Prüfer der Dissertation: 1. Univ.-Prof. Dr. Michael Wagner, Universität Wien/Österreich 2. Univ.-Prof. Dr. Karl-Heinz Schleifer 3. Univ.-Prof. Dr. Rudi F. Vogel Die Dissertation wurde am 13.03.2003 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 02.06.2003 angenommen. ABBREVIATIONS apsA gene encoding alpha subunit of adenosine-5`-phosphosulfate reductase ApsA alpha subunit of adenosine-5`-phosphosulfate reductase BLAST Basic Local Alignment Search Tool bp base pairs Cy5 5,5’-disulfo-1,1’-di(X-carbopentynyl)-3,3,3’,3’-tetramethyindole-Cy5.18- derivative, N-hydroxysuccimidester Cy5-dCTP 5-amino-propargyl-2'-deoxycytidine 5'-triphosphate coupled to Cy5 fluorescent dye cDNA complementary deoxyribonucleic acid DGGE denaturing gradient gel electrophoresis DNA deoxyribonucleic acid dsrAB genes encoding alpha and beta subunit of dissimilatory (bi)sulfite reductase DsrAB alpha and beta subunits
    [Show full text]
  • A Comparison of Stable-Isotope Probing
    Blackwell Publishing LtdOxford, UKEMIEnvironmental Microbiology 1462-2912© 2006 The Authors; Journal compilation © 2006 Society for Applied Microbiology and Blackwell Publishing Ltd20068915751589Original ArticleStable- isotope probing of marine sediment enrichmentsG. Webster et al. Environmental Microbiology (2006) 8(9), 1575–1589 doi:10.1111/j.1462-2920.2006.01048.x A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries Gordon Webster,1,2* Lynsey C. Watt,3 able substrate, resulted in widespread incorporation Joachim Rinna,2,3 John C. Fry,1 Richard P. Evershed,4 consistent with the higher extent of 13C-incorporation R. John Parkes2,3 and Andrew J. Weightman1 (~10 times) into PLFA compared with 13C-acetate or 1Cardiff School of Biosciences, Cardiff University, Main 13C-pyruvate. 13C-PLFA in the 13C-acetate and 13C-pyru- Building, Park Place, Cardiff, Wales CF10 3TL, UK. vate slurries were similar to each other and to those 2School of Earth, Ocean and Planetary Sciences, Cardiff that developed in the 13C-glucose slurry after 4 days. University, Main Building, Park Place, Cardiff, Wales These were more diagnostic, with branched odd- CF10 3YE, UK. chain fatty acids (i15:0, a15:0 and 15:1w6) possibly 3Department of Earth Sciences, University of Bristol, Wills indicating the presence of Desulfococcus or Des- Memorial Building, Queens Road, Bristol, England ulfosarcina sulfate-reducing bacteria (SRB) and BS8 1RJ, UK. sequences related to these SRB were in the 13C-ace- 4School of Chemistry, University of Bristol, Cantocks tate-DNA dsrA gene library. The 13C-acetate-DNA 16S Close, Bristol, England BS8 1TS, UK.
    [Show full text]
  • Distributions of Model Microorganisms Along an Estuarine Gradient
    University of Warwick institutional repository: http://go.warwick.ac.uk/wrap A Thesis Submitted for the Degree of PhD at the University of Warwick http://go.warwick.ac.uk/wrap/4511 This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. Distributions of model microorganisms along an estuarine gradient By Franck Carbonero A thesis submitted for the degree of Doctor of Philosophy Department of Biological Sciences University of Warwick June 2010 Table of contents LIST OF FIGURES ...........................................................................................................................IV LIST OF TABLES .............................................................................................................................VI ACKNOWLEDGMENTS ............................................................................................................... VII ABSTRACT........................................................................................................................................IX ABBREVIATIONS ..............................................................................................................................X CHAPTER 1 INTRODUCTION ........................................................................................................ 1 1.1 MICROBIAL ECOLOGY EARLY HISTORY........................................................................................
    [Show full text]