Microbial Mercury Methylation and Demethylation

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Mercury Methylation and Demethylation ©2011 Riqing Yu ALL RIGHTS RESERVED MICROBIAL MERCURY METHYLATION AND DEMETHYLATION: BIOGEOCHEMICAL MECHANISMS AND METAGENOMIC PERSPECTIVES IN FRESHWATER ECOSYSTEMS by RIQING YU A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Environmental Sciences Written under the direction of Professor Tamar Barkay and approved by __________________________________ __________________________________ __________________________________ __________________________________ New Brunswick, New Jersey May 2011 ABSTRACT OF THE DISSERTATION Microbial Mercury Methylation and Demethylation: Biogeochemical Mechanisms and Metagenomic Perspectives in Freshwater Ecosystems by RIQING YU Dissertation Director: Professor Tamar Barkay Elevated concentration of methylmercury (MeHg) in fish is a worldwide concern due to its detrimental effects on human health. Although Hg methylation is a key issue regarding MeHg contamination, neither abiotic nor microbial methylation mechanisms are well understood. The overall objective of this study was to link the potential for microbial methylation and demethylation to the molecular characterization of microbial communities in two typical freshwater ecosystems and to gain in-depth understanding of Hg methylation mechanisms by syntrophy. Sunday Lake is a remote and “pristine” forest lake exposed to Hg mostly through atmospheric deposition in the Adirondack Mountains, New York. This study demonstrated that floating Sphagnum moss mats near the lake water front were hot spots for MeHg accumulation and microbial methylation, and sub-habitats where sulfate reducing bacteria (SRB) community was highly developed. SRB were identified as a major group of Hg methylators, as sulfate addition to the mat samples doubled the potential Hg methylation rates while molybdate significantly inhibited them. The dominant distribution of Syntrophobacter spp. in the Sphagnum mats led to the ii investigation of syntrophy in Hg methylation. By incubating mono- or co-cultures of Syntrophobacter spp., with Desulfovibrio spp., this study was the first to demonstrate that a Syntrophobacter-Desulfovibrio coculture significantly increased growth of both syntrophic partners and stimulated MeHg synthesis compared to activities of Desulfovibro spp. monocultures. Syntrophy could stimulate MeHg synthesis by two pathways: Desulfovibrio growing with methanogens in sulfate-free environments, and Desulfovibrio growing with Syntrophobacter in sulfate-limited environments where sources of energy and carbon are limited. In the South River, an industrially Hg-contaminated site in Virginia, high Hg methylation rates and low demethylation activities were observed in nine sites downstream from the contaminating source, partially explaining why fish in this river have high MeHg levels. 16S rRNA sequencing from sediment cDNA showed that at least three groups of SRB and one group of Geobacter-like iron reducing bacteria (IRB) that were closely affiliated to known Hg methylators, were active in the sediments. Further metabolic inhibition and stimulation experiments confirmed that both SRB and IRB were involved in the microbial methylation in South River sediments. iii DEDICATION To my father, in memory of his anticipation. iv ACKNOWLEDGEMENTS I wish to express my sincere gratitude to my dissertation advisor, Dr. Tamar Barkay, for her constructive suggestions, patient guidance, and continuous encouragement and motivation through the entire course of study. Special thanks are also given to Dr. John Reinfelder and Dr. Max M. Häggblom, members of my advisory committee for their inspiration and valuable suggestions in the planning of this study, and important comments on my studies. I am grateful to all the help from Dr. Mark E. Hines, my outside advisory committee member. Without his guide, I could not complete my Hg methylation and demethylation experiments. Thanks to the full supports and illuminating discussions from my labmates and colleagues, Jeffra Schaefer, Jonna Coombs, Yanping Wang, Chu-ching Lin, Heather Wiatrowski, Kritee, Sharron Crane, Zachary Freedman, Melitza Crespo-Medina, Rachel Ward, Aspa Chatziefthimiou and Kim Cruz. Thanks to all my friends, especially to Ruyan Han, Gavin Swiatek, Hui Liu, and Yun Li for their always supporting and help. I am indebted to my mother and my wife. Their support and encouragement have motivated and helped me to complete this study. I would also like to appreciate the financial aid from the National Science Foundation Biocomplexity Grant, the E. I. Du Pont DE Nemours & Co., New Jersey Water Resources Research Institute, and the Department of Biochemistry and Microbiology during the course of my dissertation study. v TABLE OF CONTENTS Title Page Title Page Abstract of the Dissertation ii Dedication iv Acknowledgements v Table of Contents vi List of Tables ix List of Figures x Chapter 1 − General Introduction 1 1.1. Mercury Chemistry – Overview 1 1.2. Biogeochemical Cycling of Mercury 1 1.3. Mercury Methylation and Methylating Microorganisms 4 1.4. Microbial Demethylation of Methylmercury 8 1.5. Purpose of Study 9 References 14 Chapter 2 − Mercury Methylation in Sphagnum Moss Mats and Its 19 Association with Sulfate-Reducing Bacteria in an Acidic Adirondack Forest Lake Wetland Abstract 19 Introduction 21 Materials and Methods 23 Results 31 Disscussion 38 vi References 46 Chapter 3 − Presence of Syntrophobacter spp. in Hg Methylating Sphagnum 69 Moss Mats and Two Proposed Pathways for the Stimulation of Methylation by Syntrophic Interactions Abstract 69 Introduction 71 Materials and Methods 73 Results 82 Disscussion 93 References 106 Chapter 4 − Potentials of Microbial Methylmercury Production and 131 Degradation and Molecular Characterization of Active Microbial Communities in Sediments from the South River, VA Abstract 131 Introduction 133 Materials and Methods 135 Results 144 Disscussion 155 References 165 Chapter 5 − Conclusion 186 References 191 Appendix A 192 vii Fig.A-1. Sampling sites in Sunday Lake, Adirondack Mountains, New 192 York. Fig.A-2. Phylogenetic tree of Syntrophobacteraceae-like clone 16S rRNA 193 genes from the MAT enrichment with propionate-sulfate medium Appendix B 194 Fig. B-1. mcrA genes in the native samples of Sunday Lake 194 Appendix C 195 Table C-1. Sequences similarity of 16S rRNA genes from the clone 195 library of RRD 10.0, the South River in May 2008 Table C-2. Sequences similarity of 16S rRNA genes from the clone 198 library of RRD 14.0, the South River in May 2008 Table C-3. Sequences similarity of 16S rRNA genes from the clone 201 library of RRD 10.0, the South River in August 2008 Table C-4. Sequences similarity of 16S rRNA genes from the clone 204 library of RRD 20.6, the South River in Aug. 2008 viii LIST OF TABLES Table Title Page 2.1 Physical and chemical characteristics of study sites in Sunday Lake 56 2.2 Distributions of SRB groups and effects of sulfate in Sunday Lake 58 2.3 MPN estimates of SRB and PO-SRB in the MAT in Sunday Lake 59 S2.1 Primers and PCR conditions that were used in Chapter 2 66 3.1 Methylation activities by mono- & co-cultures of syntrophy 111 S3.1 Coculture medium for M. hungatei with S. wolinii or S. 119 Sulfatireducens, and for S. sulfatireducens with D. desulfuricans ND132 or D. africanus S3.2 Coculture medium for S. fumaroxidans with M. hungatei 121 S3.3 Coculture medium for M. hungatei with D. desulfuricans ND132 or 122 D. africanus S3.4 Sequence similarity of selected excised DGGE fragments of 16S 123 rRNA genes amplified from the MAT sample before and after sulfate enrichment by using SRB group-specific primer sets S3.5 Sequence similarity of 16S rRNA genes obtained with 125 Syntrophobacter-specific primers from DNA extract of MAT SRB- MPN incubations and Cheesequake mat 4.1 Physical and chemical characteristics of sediments from the South 171 River, VA in 2008 and 2010 S4.1 Sequences similarity of 16S rRNA genes from the clones with 184 affiliation with the Deltaproteobacteria in the South River sediments ix LIST OF FIGURES Figure Title Page 1.1 The biogeochemical cycling of mercury in the environment 12 1.2 Model of a typical Gram-negative mercury resistance (mer) operon 13 2.1 Potential methylation rates of Sunday Lake samples and the impact of 60 various treatments on these rates 2.2 dsrAB genes in the native and sulfate-enriched samples, Sunday Lake 61 2.3 Phylogenetic analysis of dsrB genes in the native MAT, Sunday Lake 62 2.4 DGGE of bacterial dsrB in MPN cultures from MAT samples 64 2.5 Phylogenetic analysis of dsrB-based DGGE fragments of SRB and 65 syntrophic propionate-oxidizing SRB in the MAT enrichments S2.1 PCR amplification products indicating presence of 16S rRNA genes 68 homologous to those of SRB5 in Sunday Lake samples 3.1 Phylogenetic tree of 16S rRNA genes obtained by DGGE of PCR 112 products using four group-specific SRB primer sets from DNA Extracts of floating Sphagnum moss mats in Sunday Lake 3.2 Phylogenetic tree of 16S rRNA gene sequences obtained using PCR 113 with Syntrophobacteraceae-specific primers from DNA extracts of SRB medium enrichments with Sphagnum mat samples, Sunday Lake 3.3 Synthesis of CH3Hg and change in protein contents of monocultures 114 of S. wolinii, S. sulfatireducens, S. fumaroxidans, M. hungatei, and D. Africanus 3.4 Synthesis of CH3Hg and change in protein contents of mono- and 115 cocultures of M. hungatei with three Syntrophobacter spp. x in sulfate-free propionate media 3.5 Synthesis of CH3Hg and change in protein contents of mono- and 116 cocultures of M. hungatei with D. desulfuricans ND 132 or D. africanus in a sulfate-free lactate medium 3.6 CH3Hg synthesis, change in cell numbers, and change of sulfate in 117 mono- and cocultures of S. sulfatireducens with D. desulfuricans ND132 or D. africanus in a propionate-sulfate (3.94 mM) medium 3.7 Effect of sulfate concentration on Hg methylation during syntrophic 118 growth of S. sulfatireducens with D. africanus or D. desulfuricans S3.1 Light scatter distributions of pure strains and co-cultures in the 127 associations of S.
Recommended publications
  • Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens
    microorganisms Article Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens Maryam Rezadehbashi and Susan A. Baldwin * Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-822-1973 Received: 2 January 2018; Accepted: 17 February 2018; Published: 23 February 2018 Abstract: Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations.
    [Show full text]
  • UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Biologia SANDERSON TARCISO PEREIRA DE SOUSA INVESTIGAÇÃO DE GENES ENVOLVIDOS NA BIODEGRADAÇÃO DE HIDROCARBONETOS AROMÁTICOS A PARTIR DO METAGENOMA DE MANGUEZAL IMPACTADO COM PETRÓLEO INVESTIGATION OF GENES INVOLVED IN THE BIODEGRADATION OF AROMATIC HYDROCARBONS FROM THE OIL-IMPACTED MANGROVE METAGENOME Campinas 2018 SANDERSON TARCISO PEREIRA DE SOUSA INVESTIGAÇÃO DE GENES ENVOLVIDOS NA BIODEGRADAÇÃO DE HIDROCARBONETOS AROMÁTICOS A PARTIR DO METAGENOMA DE MANGUEZAL IMPACTADO COM PETRÓLEO INVESTIGATION OF GENES INVOLVED IN THE BIODEGRADATION OF AROMATIC HYDROCARBONS FROM THE OIL-IMPACTED MANGROVE METAGENOME Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutor em Genética e Biologia Molecular na Área de Genética de Micro-organismos. Thesis presented to the Institute of Biology of the University of Campinas as partial fulfillment of the requirements for the degree of Doctor in Genetics and Molecular Biology in the area of Genetics of Microorganisms. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO SANDERSON TARCISO PEREIRA DE SOUSA E ORIENTADO PELA DRA. VALÉRIA MAIA MERZEL. Orientador (a): DRA. VALÉRIA MAIA MERZEL Campinas 2018 Campinas, 20/04/2018. COMISSÃO EXAMINADORA Prof.(a) Dr.(a). Valéria Maia Merzel (Presidente) Prof.(a). Dr.(a) Cynthia Canedo da Silva Prof.(a) Dr(a). Tiago Palladino Delforno Prof.(a) Dr(a). Fabiana Fantinatti Garboggini Prof.(a) Dr(a). Geizecler Tomazetto Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se encontra no processo de vida acadêmica do aluno. DEDICATÓRIA... Dedico essa tese a minha querida avó Antonina do Carmo Ribeiro, que hoje, infelizmente, já não está entre nós, mas tenho certeza que continua olhando e orando por mim de onde ela estiver.
    [Show full text]
  • Protein Components of the Microbial Mercury Methylation Pathway
    Protein Components of the Microbial Mercury Methylation Pathway ______________________________________________________________ A Dissertation presented to the faculty of the Graduate School at the University of Missouri - Columbia ____________________________________________________ In partial fulfillment of the requirements for the degree Doctor of Philosophy __________________________________________ by Steven D. Smith Dr. Judy D. Wall, Dissertation Supervisor December 2015 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation titled Protein Components of the Microbial Mercury Methylation Pathway Presented by Steven D. Smith, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. ____________________________________________ Dr. Judy D. Wall ____________________________________________ Dr. David W. Emerich ____________________________________________ Dr. Thomas P. Quinn ____________________________________________ Dr. Michael J. Calcutt Acknowledgements I would first like to thank my parents and family for their constant support and patience. They have never failed to be there for me. I would like to thank all members of the Wall Lab. At one time or another each one of them has helped me in some way. In particular I would like to thank Barb Giles for her insight into the dynamics of the lab and for her support of me through these years. I am greatly appreciative to Dr. Judy Wall for the opportunity to earn my PhD in her lab. Her constant support and unending confidence in me has been a great source of motivation. It has been an incredible learning experience that I will carry with me and draw from for the rest of my life. Table of Contents Acknowledgements ………………………………………………………………………………………………………… ii List of Figures ………………………………………………………………………………………………………………….
    [Show full text]
  • Radionuclide Fate in Naturally Occurring Radioactive Materials (NORM) in the Oil and Gas Industry
    Radionuclide Fate in Naturally Occurring Radioactive Materials (NORM) in the Oil and Gas Industry A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2019 Faraaz Ahmad School of Earth and Environmental Sciences 1 Table of Contents List of Figures…………………………….……………………………………………………………………………………….7 List of Tables…..……………………………..…………………………………………………………………………………15 List of Abbreviations ............................................................................................................. 17 Thesis Abstract ...................................................................................................................... 20 Declaration ............................................................................................................................ 22 Copyright statement ............................................................................................................. 22 Acknowledgements ............................................................................................................... 23 About The Author .................................................................................................................. 25 CHAPTER 1: Introduction…………………………………………..……………………….26 1.0 Project Introduction ................................................................................................... 26 1.1 Aims and objectives ............................................................................................... 31 1.1.1
    [Show full text]
  • Phylogenetic and Functional Characterization of Symbiotic Bacteria in Gutless Marine Worms (Annelida, Oligochaeta)
    Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta) Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Anna Blazejak Oktober 2005 Die vorliegende Arbeit wurde in der Zeit vom März 2002 bis Oktober 2005 am Max-Planck-Institut für Marine Mikrobiologie in Bremen angefertigt. 1. Gutachter: Prof. Dr. Rudolf Amann 2. Gutachter: Prof. Dr. Ulrich Fischer Tag des Promotionskolloquiums: 22. November 2005 Contents Summary ………………………………………………………………………………….… 1 Zusammenfassung ………………………………………………………………………… 2 Part I: Combined Presentation of Results A Introduction .…………………………………………………………………… 4 1 Definition and characteristics of symbiosis ...……………………………………. 4 2 Chemoautotrophic symbioses ..…………………………………………………… 6 2.1 Habitats of chemoautotrophic symbioses .………………………………… 8 2.2 Diversity of hosts harboring chemoautotrophic bacteria ………………… 10 2.2.1 Phylogenetic diversity of chemoautotrophic symbionts …………… 11 3 Symbiotic associations in gutless oligochaetes ………………………………… 13 3.1 Biogeography and phylogeny of the hosts …..……………………………. 13 3.2 The environment …..…………………………………………………………. 14 3.3 Structure of the symbiosis ………..…………………………………………. 16 3.4 Transmission of the symbionts ………..……………………………………. 18 3.5 Molecular characterization of the symbionts …..………………………….. 19 3.6 Function of the symbionts in gutless oligochaetes ..…..…………………. 20 4 Goals of this thesis …….…………………………………………………………..
    [Show full text]
  • Tree Scale: 1 D Bacteria P Desulfobacterota C Jdfr-97 O Jdfr-97 F Jdfr-97 G Jdfr-97 S Jdfr-97 Sp002010915 WGS ID MTPG01
    d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermodesulfobacterium s Thermodesulfobacterium commune WGS ID JQLF01 d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermosulfurimonas s Thermosulfurimonas dismutans WGS ID LWLG01 d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f DG-60 g DG-60 s DG-60 sp001304365 WGS ID LJNA01 ID WGS sp001304365 DG-60 s DG-60 g DG-60 f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f Desulfofervidaceae g Desulfofervidus s Desulfofervidus auxilii RS GCF 001577525 1 001577525 GCF RS auxilii Desulfofervidus s Desulfofervidus g Desulfofervidaceae f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfatatoraceae g Thermodesulfatator s Thermodesulfatator atlanticus WGS ID ATXH01 d Bacteria p Desulfobacterota c Desulfobacteria o Desulfatiglandales f NaphS2 g 4484-190-2 s 4484-190-2 sp002050025 WGS ID MVDB01 ID WGS sp002050025 4484-190-2 s 4484-190-2 g NaphS2 f Desulfatiglandales o Desulfobacteria c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g QOAM01 s QOAM01 sp003978075 WGS ID QOAM01 d Bacteria p Desulfobacterota c BSN033 o UBA8473 f UBA8473 g UBA8473 s UBA8473 sp002782605 WGS
    [Show full text]
  • Syntrophism Among Prokaryotes Bernhard Schink1
    Syntrophism Among Prokaryotes Bernhard Schink1 . Alfons J. M. Stams2 1Department of Biology, University of Konstanz, Constance, Germany 2Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands Introduction: Concepts of Cooperation in Microbial Introduction: Concepts of Cooperation in Communities, Terminology . 471 Microbial Communities, Terminology Electron Flow in Methanogenic and Sulfate-Dependent The study of pure cultures in the laboratory has provided an Degradation . 472 amazingly diverse diorama of metabolic capacities among microorganisms and has established the basis for our under Energetic Aspects . 473 standing of key transformation processes in nature. Pure culture studies are also prerequisites for research in microbial biochem Degradation of Amino Acids . 474 istry and molecular biology. However, desire to understand how Influence of Methanogens . 475 microorganisms act in natural systems requires the realization Obligately Syntrophic Amino Acid Deamination . 475 that microorganisms do not usually occur as pure cultures out Syntrophic Arginine, Threonine, and Lysine there but that every single cell has to cooperate or compete with Fermentation . 475 other micro or macroorganisms. The pure culture is, with some Facultatively Syntrophic Growth with Amino Acids . 476 exceptions such as certain microbes in direct cooperation with Stickland Reaction Versus Methanogenesis . 477 higher organisms, a laboratory artifact. Information gained from the study of pure cultures can be transferred only with Syntrophic Degradation of Fermentation great caution to an understanding of the behavior of microbes in Intermediates . 477 natural communities. Rather, a detailed analysis of the abiotic Syntrophic Ethanol Oxidation . 477 and biotic life conditions at the microscale is needed for a correct Syntrophic Butyrate Oxidation . 478 assessment of the metabolic activities and requirements of Syntrophic Propionate Oxidation .
    [Show full text]
  • Desulfovirga Adipica Gen. Nov., Sp. Nov., an Adipate-Degrading, Gram-Negative, Sulfate-Reducing Bacterium
    International Journal of Systematic and Evolutionary Microbiology (2000), 50, 639–644 Printed in Great Britain Desulfovirga adipica gen. nov., sp. nov., an adipate-degrading, Gram-negative, sulfate-reducing bacterium Kazuhiro Tanaka,1 Erko Stackebrandt,2 Shigehiro Tohyama3 and Tadashi Eguchi3 Author for correspondence: Kazuhiro Tanaka. Tel\Fax: j81 298 61 6083. e-mail: ktanaka!nibh.go.jp 1 Applied Microbiology A novel, mesophilic, Gram-negative bacterium was isolated from an anaerobic Department, National digestor for municipal wastewater. The bacterium degraded adipate in the Institute of Bioscience and Human-Technology, presence of sulfate, sulfite, thiosulfate and elemental sulfur. (E)-2- Higashi 1-1, Tsukuba, Hexenedioate accumulated transiently in the degradation of adipate. (E)-2- Ibaraki 305-8566, Japan Hexenedioate, (E)-3-hexenedioate, pyruvate, lactate, C1–C12 straight-chain fatty 2 Deutsche Sammlung von acids and C2–C10 straight-chain primary alcohols were also utilized as electron Mikroorganismen und donors. 3-Phenylpropionate was oxidized to benzoate. The GMC content of the Zellkulturen GmbH, Mascheroder Weg 1b, DNA was 60 mol%. 16S rDNA sequence analysis revealed that the new isolate D-38124 Braunschweig, clustered with species of the genus Syntrophobacter and Desulforhabdus Germany amnigenus. Strain TsuAS1T resembles Desulforhabdus amnigenus DSM 10338T 3 Department of Chemistry with respect to the ability to utilize acetate as an electron donor and the and Materials Science, inability to utilize propionate without sulfate in co-culture with Tokyo Institute of T T Technology, O-okayama, Methanospirillum hungatei DSM 864. Strains TsuAS1 and DSM 10338 form a Meguro-ku, Tokyo ‘non-syntrophic subcluster’ within the genus Syntrophobacter. Desulfovirga 152-8551, Japan adipica gen.
    [Show full text]
  • Sp. Nov., New Syntrophically Propionate-Oxidizing Anaerobe Growing in Pure Culture with Propionate and Sulfate
    Arch Microbiol (1995) 164:346-352 Springer-Verlag 1995 Christina Wallrabenstein Elisabeth Hauschild Bernhard Schink Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate Received: 3 July 1995 / Accepted: 16 August 1995 Abstract A new strain of syntrophically propionate-oxi- teria (Zehnder 1978). Fermentation of propionate to ac- dizing fermenting bacteria, strain KoPropl, was isolated etate, CO2, and hydrogen is a highly endergonic process from anoxic sludge of a municipal sewage plant. It oxi- (calculations of free energies after Thauer et al. 1977): dized propionate or lactate in cooperation with the hydro- CH3CH2COO + 2 H20----)CH3COO -t-CO2 + 3 H 2 (1) gen- and formate-utilizing Methanospirillum hungatei AG 0" = +76.0 kJ/mol propionate and grew as well in pure culture without a syntrophic part- ner with propionate or lactate plus sulfate as energy The hydrogen partial pressure has to be kept low by the source. In all cases, the substrates were oxidized stoichio- partner organism to make the reaction energetically feasi- metrically to acetate and CO2, with concomitant forma- ble, e.g., in syntrophic methanogenic propionate degrada- tion of methane or sulfide. Cells formed gas vesicles in tion: the late growth phase and contained cytochromes b and c, 4 CH3CH2COO- + 2 H20--M CH3COO- + CO2+3 CH 4 (2) a menaquinone-7, and desulforubidin, but no desul- AG 0" = -26.5 kJ/mol propionate foviridin. Enzyme measurements in cell-free extracts indi- cated that propionate was oxidized through the methyl- However, the amount of free energy liberated during syn- malonyl CoA pathway.
    [Show full text]
  • Understanding Mercury Transport and Transformation by Computational Simulations
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2017 Understanding Mercury Transport and Transformation by Computational Simulations Jing Zhou University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Zhou, Jing, "Understanding Mercury Transport and Transformation by Computational Simulations. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4675 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jing Zhou entitled "Understanding Mercury Transport and Transformation by Computational Simulations." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Life Sciences. Jeremy Smith, Major Professor We have read this dissertation and recommend its acceptance: Jerry Parks, Xiaolin Cheng, Hong Guo, Francisco Barrera Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Understanding Mercury Transport and Transformation by Computational Simulations A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Jing Zhou August 2017 Copyright © 2017 by Jing Zhou All rights reserved.
    [Show full text]
  • (Pelobacter) and Methanococcoides Are Responsible for Choline-Dependent Methanogenesis in a Coastal Saltmarsh Sediment
    The ISME Journal https://doi.org/10.1038/s41396-018-0269-8 ARTICLE Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment 1 1 1 2 3 1 Eleanor Jameson ● Jason Stephenson ● Helen Jones ● Andrew Millard ● Anne-Kristin Kaster ● Kevin J. Purdy ● 4 5 1 Ruth Airs ● J. Colin Murrell ● Yin Chen Received: 22 January 2018 / Revised: 11 June 2018 / Accepted: 26 July 2018 © The Author(s) 2018. This article is published with open access Abstract Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope 13 probing with high throughput sequencing of 16S rRNA genes and C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm 13 incubation with C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that 1234567890();,: 1234567890();,: choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway.
    [Show full text]
  • 'Candidatus Desulfonatronobulbus Propionicus': a First Haloalkaliphilic
    Delft University of Technology ‘Candidatus Desulfonatronobulbus propionicus’ a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes Sorokin, D. Y.; Chernyh, N. A. DOI 10.1007/s00792-016-0881-3 Publication date 2016 Document Version Accepted author manuscript Published in Extremophiles: life under extreme conditions Citation (APA) Sorokin, D. Y., & Chernyh, N. A. (2016). ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles: life under extreme conditions, 20(6), 895-901. https://doi.org/10.1007/s00792-016-0881-3 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Extremophiles DOI 10.1007/s00792-016-0881-3 ORIGINAL PAPER ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes D. Y. Sorokin1,2 · N. A. Chernyh1 Received: 23 August 2016 / Accepted: 4 October 2016 © Springer Japan 2016 Abstract Propionate can be directly oxidized anaerobi- from its members at the genus level.
    [Show full text]